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An approximate analytic theory of spiral waves in an anisotropic excitable medium is developed 
by considering the kinematics of their motion. The main parameters and shape of a spiral wave are 
calculated in the framework of this semi-phenomenological theory. A description is proposed of 
the unusual resonance effects accompanying the periodic change of the degree of anisotropy. 

INTRODUCTION 

Autowave phenomena in excitable media are attracting 
at present increased interest.'-3 A distributed excitable me- 
dium consists of locally interconnected active elements ca- 
pable of producing a pulse in response to an arriving external 
signal. This medium has a single quiescent state stable to 
perturbations that are small enough. Higher-intensity per- 
turbations can give rise to solitary autowaves. A solitary self- 
wave in a one-dimensional medium constitutes an excitation 
pulse that propagates undamped with constant velocity and 
preserves its form. After passage of the pulse, the medium 
returns to the initial quiescent state. The pulse propagation 
velocity is determined uniquely by the properties of the ac- 
tive medium and is independent of the initial conditions. 
Examples of excitable media are solutions subject to a Belou- 
sov-Zhabotinskii chemical rea~t ion ,~  cardiac-muscle tis- 
sue,5 semiconductors' distribution of the system6.' current- 
carrying magnetic superconductors,s and others. 

A special type of elementary autowave regimes in two- 
dimensional excitable media are rotating spiral waves. The 
rotation frequency of single-arm spiral wave in an unbound- 
ed homogeneous excitable medium is constant and consti- 
tutes a fundamental property of the particular medium. 

Excitable media are described as a rule by a system of 
nonlinear partial differential equations. In most cases of 
practical interest, two equations suffice: 

in which one of the zero-isoclines If(u,v) = 0] is N-shaped 
and the other [g(u,v) = 0]  is a monotonic function. In fre- 
quently used models one neglects also the diffusion of the 
variable v (or the inhibitor), i.e., it is assumed that D, = 0. 

Investigations of self-wave processes in excitable media 
are confined as a rule to isotropic (but possibly inhomogen- 
eous and nonstationary ) excitable media.9 At the same time, 
excitable media (such as semiconductor systems or biologi- 
cal tissues) are essentially anisotropic, so that an investiga- 
tion of the autowave structures produced in them is of con- 
siderable interest. Some aspects of this problem are dealt 
with in the present article. 

The diffusion coefficients in anisotropic excitable me- 
dia are tensors. Thus, the diffusion terF in the first equation 
of the system ( 1 ) is of the form div (D,^grad u).  We shall 
neglect the diffusion of the inhibitor v (D, = O), and drop 
therefore the diffusion-tensor subscript u. Note, \owever, 
that all our results remain in force also if the tensor D, is not 
zero, provided that its coTponents are proportional to the 
components of the tensor D, . 

1. KINEMATICS OF SELF-WAVES IN ISOTROPIC MEDIA 

We base ourselves below on the results of the kinematic 
approach developed in Refs. 9-1 5 for isotropic excitable me- 
dia. In the kinematic description, the autowave is completely 
specified by indicating the lines of its front. Each section of 
the front moves in a normal direction with a velocity 
V = V(K) determined by the front curvature K on this sec- 
tion (a  front convex in the direction of its propagation moves 
slower the larger its curvature). Since the state of the excit- 
able medium is the same before and after the passage of the 
pulse, the front in a two-dimensional medium can have a free 
end which not only moves in a normal direction with veloc- 
ity V(Ko), where KO is the curvature of the front on ap- 
proaching the free end, but also expands or contracts at a 
rate C = C(Ko). At sufficiently low curvatures KO, the free 
end begins to grow, the rate C vanishes at a certain critical 
curvature KO = Kc,, and at larger values the growth gives 
way to contraction. Near KO = Kc, one can put approxi- 
mately C = y(K,, - KO), where y > 0 is a constant. 

The shape of the front is specified by a natural equation 
K = K(1) that relates the curvature of the front line with the 
path length I; it is expedient to measure the latter from the 
free end. In the course of wave propagation the curvature K 
depends also on the time t. This dependence is described by 
the eq~ation'~." 

""I ] a2v -+- C +  KVdl' +KZV+-- - ; -=O.  
dt dl - " dl 

(2)  

Equation (2)  is the fundamental equation of the kinematic 
model and makes it possible to track various regimes of 
autowave front motion. 

The natural equation determines the form of the front 
accurate to its position on the plane. For a unique determina- 
tion of the front evolution it suffices to indicate the law gov- 
erning the motion of the free end of the autowave, i.e., of the 
point with I = 0. Ifxo(t) and yo(t) are the coordinates of the 
free end, and ao ( t )  is the angle between the tangent to the 
front at the point I = 0 and the x axis, they obey the follow- 
ing equations: 

a v I  +CK, ,  u, ( t )  = --- 
al ,,, (4) 

where V(0) = V(I = 0,t) and the dot denotes a derivative 
with respect to time. 

80 Sov. Phys. JETP 68 (1), January 1989 0038-5646/89/010080-05$04.00 @ 1989 American Institute of Physics 80 



Equation (2)  together with (3) and (4) describes fully 
the evolution of the autowave front. The stationary solution 
of Eq (2)  yields a steady-state regime in the form of a spiral 
wave. The curvature on the free end is KO = Kc,, so that this 
end moves along a normal to the front and traces in the 
course of time a circle. Inside this circle (referred to as the 
core of the spiral wave) the medium preserves a quiescent 
state. The rotation frequency wo of a spiral wave was deter- 
mined in Refs. 9 and 11. For a linear dependence of the ve- 
locity on the front curvature, V = Vo - DK, and under the 
condition DK,, & V, the frequency is described by the 
expression 

Accurate to small terms of order DKc,/Vo, the radius of a 
spiral-wave core is R, = V,/o,. 

Equation (2)  makes it also possible to determine the 
shape of the spiral-wave frontI2.l3: 

where lo- (D/Kc, VO)'l2, and it follows from (5)  that I,/ 
Ro& 1. The relation is thus linear inside a narrow layer of 
width I, (the same relation describes the Cornu spiral), and 
outside this layer we have K cx 1 -If2, i.e., the front takes the 
form of the evolvent of a circle of radius R,. 

Highly convenient and effective in the investigation of 
nonstationary propagation of autowave fronts is the so- 
called quasistationary appr~ximation. '~. '~ To describe the 
nonstationary evolution in this case in a wide range of excit- 
able-medium parameters it suffices in this case to determine 
the character of the motion of only one end point (I  = 0) of 
the front. The curvature KO on the free end obeys then the 
equation 

In the quasistationary regime, Eq. (4)  takes the form 

where w is given by Eq. (5)  in which Kc, is replaced by KO. 
The quasistationary-approximation equations (7 ) ,  (8) ,  and 
( 3 )  can be used if y/D< (Vo/DK,, ) ' I 2 .  This condition is 
rather weak, since p = DK,, / V ,  is a small parameter of the 
problem. 

The quasistationary approximation has made it possi- 
ble to study the drift of spiral waves in an inhomogeneous 
medium" and predict the resonance of spiral waves in non- 
stationary excitable media, which was recently observed in 
experiments with the Belousov-Zhabotinskii reaction.I6 

2. SPIRAL AUTOWAVE IN A STATIONARY ANISOTROPIC 
MEDIUM 

We proceed now to anisotropic media. In the system of 
its principal axes, thz diffusion tensor is diagonal and Eq. 
(1) takes the form (D, = 0):  

We introduce new coordinates x' = x and y' =Ay, 
where A = (D /D, ) 'I2. In these coordinates Eqs. (9)  coin- 

cide with Eqs. (1) (D, = 0). In other words, in the new 
coordinates the medium becomes isotropic and the diffusion 
coefficient is equal to D. To investigate the motion of an 
autowave in an anisotropic medium it suffices therefore to 
carry out the calculations, as in Sec. 1, in the "primed" sys- 
tem, where the medium is isotropic, and then return to the 
earlier "laboratory" frame. 

It is thus easy to obtain the dependence of a plane 
autowave front in an anisotropic medium on the direction of 
its propagation: 

where V, is the plane-front velocity in an isotropic medium 
with a diffusion coefficient D, and 8 is the angle between the 
propagation direction and the x axis. 

We obtain now an expression for the shape of a spiral- 
wave front in an anisotropic medium. Let the wave front be 
described in the primed coordinate frame by a natural equa- 
tion K ' = K '(I '). From the definition of the curvature. 

where cr' is the angle between the tangent to the front and the 
x axis, it is easy to obtain the following equations for the 
laboratory coordinates of a section of the front: 

1' E.' 

Equations ( 11 ) can be treated as a parametric specification 
of a curve, the parameter being the path length I '  in the 
primed coordinates. Having a parametric description of the 
curve, we can calculate its curvature in standard fashion: 

To obtain the natural equation (i.e., the dependence of K on 
I) of the curve in the lab, we must express I ' in terms of 1 with 
the aid of the equation 

dl 1 
-= - { ~ + ( A z - * )  
dl' a 

Expressions ( 12) and ( 13) determine the natural equation 
of the curve in the lab if the natural equation of the same 
curve in the primed system is known. Thus, substitution of 
Eq. (6) (in which K and I are replaced by K ' and I ' )  in ( 12) 
and ( 13) leads to a natural equation of the line of a spiral 
wave front in an isotropic medium. An examination of this 
equation shows that the shape of the front in an anisotropic 
medium is not stationary, and the curve oscillates with a 
period ?r/w0 (recall that a; = w,t + q,, where q, = a;, 1 ,  =, ). 
Thus, the curvature at the approach to the end point has the 
following time dependence: 
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The time dependence of the front curvature notwithstand- 
ing, one can speak of stationary circulation of a spiral wave 
in an anisotropic medium, stressing the fact that the wave 
core, which is an ellipse with semiaxes R, and RJA, remains 
immobile. 

This premise is illustrated in Fig. 1, which shows the 
calculated motion of a spiral autowave of form ( 9 )  in an 
anisotropic medium for D = 1 and D, = 2. The form of the 
functions f(u,v) and g ( u , v )  corresponds here to the two- 
component model proposed for an excitable medium in Ref. 
17 and modified in Ref. 9: 

f (u, v)-N(u)-g ,  

I - uk,, u  <a 
N(u)=  ( u - a ) k f ,  u < u f  1 - 0 ,  

(L-u)k , ,  I - o < u  

"kgu  - v), k,u > g 
g (u. v) = (k.e(k,u-v), k+<g9 

where the coefficients are kf = 1.7, kg = 2.0, a = 0.1, 
a = 0.01, E = 0.3, k,  = 6.0. The coefficients k, and k, are 
chosen to obtain continuity of the piecewise-linear function 
N ( u ) .  

Examination of the successive positions of the bound- 
ary of the excited region on Fig. 1 shows that the form of the 
boundary is not stationary and varies periodically. The free 
end of the spiral wave, however, describes in this case an 
ellipse whose shape and location remain unchanged. 

3. JUMPLIKE CHANGES OFTHE DEGREE OF ANISOTROPY 
OFTHE MEDIUM 

We proceed now to consider nonstationary problems. 
We investigate first the evolutions of a spiral wave following 
instantaneous changes of the anisotropy of the medium. Let 
a stationary spiral autowave rotate at t < 0  in an isotropic 
excitable medium with a diffusion coefficient D, and let the 
anisotropy of the medium change instantaneously at t = 0, 
so that the diffusion tensor acquires the form 

D^=(* O ) A D a D .  
0 D-AD ' 

We put p  = AD/D. At the instant t = 0  the profile of the 
spiral-wave front is described by relation ( 6 ) .  The initial 

profile ( 6 )  relaxes next to the "stationary" profile (12 ) ,  
( 13) of a spiral wave in an anisotropic medium. The center 
of the spiral-wave core is shifted thereby. Let us calculate 
this shift. We change to the primed frame. In this frame, as 
follows from ( 14),  curvature on approaching the free end of 
the front is equal at t = 0  to 

where g, is the angle between the tangent to the front at its 
end point and the x axis at the instant t = 0  (we confine 
ourselves to terms linear in p ) .  

Substituting ( 16) in the solution of Eq. ( 7 ) ,  we obtain 
the time variation of the curvature of the end point of the 
front in the primed frame 

Substitution of ( 17) in ( 4 )  leads to the following time de- 
pendence of the angle between the tangent to the front at the 
end point and the x axis: 

~o'=o,tScp+'/ ,y  {sin cp cos cp-3(1-3/2 COS' c p )  
~ ( D l y )  [I-exp(-yo0tlD)I) .  ( 1 8 )  

We obtain the shift of the spiral-wave in the laboratory 
frame by substituting ( 1 7 )  and ( 1 8 )  in ( 3 ) ,  averaging over 
the time, and returning to the variables x = x' and y = yl/il: 

( y lD)  sin rp+cos cp 
X 

( y /D)  =+I ( 1 9 )  

r 3  sin' cp+ (3 -2  - p') ( L - - cosz cp) ( y / D )  cos cp-sin cp 
D 2 (7 lD)  " I  

We have left out of ( 19) terms of higher orders, which 
are small in view of the condition p = DK,,/ V, g 1. 

We can similarly calculate the displacement of the cen- 
ter of a spiral wave following a rapid transition from an an- 
isotropic medium ( 15) to an isotropic with diffusion coeffi- 
cient D: 

It follows thus from ( 19) and ( 2 0 )  that a jump change of the 
anisotropy of the medium displaces the center of the spiral- 
wave core in a direction determined by the ratio F, /F ,  which 
depends only on the initial phase g, of the spiral wave, on the 
parameter p, and on the "inertia" y/D. Stationary rotation 
of the wave around the new center begins after a characteris- 
tic time T = D /p,. 

4. PERIODIC MODULATION OFTHE DEGREE OF 
ANISOTROPY 

With expressions ( 1 9 )  and (20 )  we can proceed to in- 
vestigate resonance effects connected with the action, on a 

FIG. 1. Successive positions of a spiral autowave in an anisotropic medi- rotating spiral wave, of a periodic change of the ankotropy 
um at indicated instants of time. Calculation using a model of the reac- of the medium. Let the diffusion-coefficient tensor of the 
tion-diffusion type. excitable medium have the following time dependence: 
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where ADgD, lo, - w,l gw,. 
Relation (21) describes a jumplike periodic, with fre- 

quency w, onset and vanishing of anisotropy in a medium. 
Let a spiral wave be excited in this medium. The center of the 
spiral wave is shifted by each anisotropy jump and traces in 
the course of time a certain curve. Let us find the shape of 
this curve. 

To avoid unwieldy expressions, we confine ourselves to 
excitable media with sufficiently low inertia, i.e., we assume 
that y/D k 1. In this case a time interval t ,  = v / w ,  between 
two succeeding jumps (note that t ,  is close to half the rota- 
tion period of the spiral wave) is sufficient for relaxation to a 
new stationary value of the rotation-center coordinates. This 
means that Eqs. ( 19) and (20) can be used to determine the 
trajectory of the center of the spiral wave when the anisotro- 
py is varied periodically. Using the fact that P I , ,  (y/D,p, 
q, + T )  = - F1,2 (y/D, p, p), we obtain recurrence rela- 
tions for the coordinates of the spiral-wave core center after 
the nth jump of the anisotropy of the medium: 

where p = ~ ( w ,  - w, )/mi. We assume in (22) that the 
jump with number n = 0 occurred at t = 0. Prior to this 
jump, the center of the spiral wave was at the origin. 

Recognizing that p (< 1, we transform from the discrete 
relations (22) to differential equations for the trajectory of 
the center of a spiral wave: 

Integrating (23 ) with respect to time, we easily obtain equa- 
tions that specify in parametric form the sought spiral-wave- 
center trajectory. These equations, however, are quite un- 
wieldy and will not be given here. 

Relations (22) and (23) show that when the anisotropy 
of the excitable medium varies periodically the spiral-wave 
center moves along a closed curve. The characteristic dimen- 
sions of this curve are inversely proportional to the modulus 
of the difference between the modulation frequency w, and 
the spiral-wave proper.rotation frequency w,. A resonance 
effect is thus produced. It is most remarkable, however, that 
in contrast to the resonance of a spiral wave in an isotropic 
medium,'' the trajectory of the core center is not a circle. 
Nor is it an ellipse with eccentricity governed by the degree 
of anisotropy. 

Calculation of the spiral-wave kinematics for steplike 
variation of the anisotropy, using Eqs. (22) or (23), shows 
that the trajectory of the core center has a quite complicated 
shape and can be significantly altered by varying the param- 
eters (see Fig. 2).  It is important to note, however, that the 
form of the trajectory is determined by the properties of the 
medium itself (by the parameter p and by the inertia y/D) 

and does not depend on the initial phase q, of the external 
action and on the modulus Jw, - w,) of the frequency differ- 
ence. It is easily seen, in particular, that the initial phase q, 
depends only on the position of the trajectory relative to the 
origin, while the modulus lo, - o,l determines only the di- 
mensions of the trajectory. The shape of the trajectory and 
its orientation are determined by the parameters of the medi- 
um and are therefore important properties of the latter. By 
way of illustration, Fig. 2 shows spiral-wave core-center tra- 
jectories calculated on the basis of (22) for a number of dif- 
ferent values of the inertia y/D under the condition (y/D) 
(DKcr/Vo) ' I 2  g 1 (recall that this inequality is the condition 
for the quasistationary approximation to be valid). 

In the case of full resonance (a, = w,) the spiral-wave 
center moves along a straight line at a velocity 

in a direction determined by the phase g, and by the inertia y/ 
D. In contrast to the case of resonance in an isotropic medi- 
um (where the center of the core moves with constant veloc- 
ity at any p), the velocity U in an anisotropic medium de- 
pends substantially on p [see (24) 1. 

It is of interest to compare the results of a kinematic 
analysis of spiral-wave motion in an excitable medium hav- 
ing a periodically modulated anisotropy with calculations by 
the reaction-diffusion modelY given above, in which the dif- 
fusion coefficient is described by expression (21 ). Figure 3a 
shows a spiral-wave-center trajectory calculated for 
AD = 0.2 and w, = 0.12. Note for the simulated medium the 
propagation velocity Vo and the circulation frequency w,, 
measured in the computer experiment, are V, = 1.3 and 
w, = 0.1 1. Since D = 1, we can determine from these data 
the parameterp = DKcr/Vo = 0.21 by using (5).  As shown 
by the analysis above, given the parameterp the shape of the 
resonance trajectory is determined only by the inertia y/D, 
which we do not know. Figures 3b-3e show three trajectory 
shapes calculated from Eqs. (22) for different values of y/D. 
It  can be seen that for y/D = 3.3 the trajectory has no con- 
cave sections, in contrast to Fig. 3a. Such sections appear 

FIG. 2. Spiral-wave core-center trajectory, calculated for periodic vari- 
ation of the degree of anisotropy using the kinematic relations (22) for 
p 4  1 and for the marked values of y/D. 
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FIG. 3. Resonance trajectories of a spiral-wave core center, obtained in 
the reaction-diffusion model (a)  and calculated using the kinematic rela- 
tions (22) for y/D = 3.3 (b),  6 (c),  and 9 (d) .  

when y/D is increased (Figs. 3c and 3d), but the trajectory 
of Fig. 3d has too large a slope relative to they axis. Com- 
parison of Figs. 3a and 3c shows that the kinematic approach 
gives a correct picture of the considered phenomenon. It can 
be assumed on this basis that y/D=. 6 for the simulated medi- 
um. More accurate quantitative results should be expected 
for media with smaller values of the parameter p. 

CONCLUSION 

The foregoing analysis has revealed a number of unex- 
pected and unusual resonance phenomena in anisotropic ex- 
citable media. Furthermore, the results of the analysis of 
anisotropic media are also of more general significance. The 
kinematic description developed in Refs. 9-15 and in this 
paper is at present the only approach that yields analytic 
(i.e., not requiring a computer) results in the theory of prop- 
agation and interaction of autowaves in two- and three-di- 
mensional media. Many effects known from computer ex- 
periments (such as the drift of spiral waves in 
inhomogeneous media," collapse and expansion of spiral 
rings,I9 evolution of twisted vortices2') can be analytically 
described by the kinematic approach. 

Just as macroscopic electrodynamics, the kinematic ap- 
proach is a phenomenological theory in which the excitable 
medium is described by a small set of parameters, viz., D, V,, 
Kc,,  and y. These phenomenological parameters must be de- 
termined either from experiments with actual excitable me- 
dia, or from computer experiments with models of the reac- 
tion-diffusion type. The first three parameters D, V,, and 
Kc, are relatively easy to determine. In fact, for any model 
such as in Ref. 9, D is the diffusion coefficient, the determin- 
ation of V, (of the velocity of a plane front) calls for "mere- 
ly" integrating a system of type ( 1) in the one-dimensional 
case, and the critical curvature Kc, can be measured for a 
stationary rotating spiral wave or calculated with the aid of 
(5 )  if the angular velocity a, of the spiral wave is known. No 
simple method, however, of estimating the parameter y has 
been proposed so far. Recall that the parameter y determines 
the rate of expansion (or contraction) of the free end of an 
autowave, and assumes the leading role in the investigation 
of nonstationary effects. The spiral-wave-core drift investi- 

gated above for periodic variation of the anisotropy of the 
medium permits a simple estimate of the parameter y by 
investigating the shape of the resonance trajectory. 

It must be noted that the presented analysis touches 
upon only a small fraction of the problems connected with 
autowave propagation in anisotropic media. In particular, 
computer experiments performed by us recently on a two- 
component model of type ( 1 ) show that in all cases in which 
the diffusion of the activator is anisotropic while the diffu- 
sion of the inhibitor is isotropic (we emphasize that by an 
appropriate transformation of the parameters it is possible to 
reduce to this problem the most general case of diffusion that 
is anisotropic also with respect to the inhibitor) the motion 
of a spiral wave exhibits a large number of singularities. The 
shape of the trajectory of the free end of the spiral can in this 
case differ strongly from an ellipse even in a stationary medi- 
um. If the diffusion coefficient of the inhibitor is large 
enough, the boundary of the core is no longer a convex curve, 
and acquires subsequently self-intersection points. More- 
over, open free-end trajectories may appear and lead to a 
drift of the spiral wave. However, the construction of theo- 
retical models of these interesting phenomena observed in 
computer experiments are outside the scope of the present 
paper. 
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