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A representation for the generating functional of the Green functions of a quantum Heisenberg 
ferromagnet in the nonsymmetric phase is obtained in the form of an integral over two number 
fields-a neutral field and a charged field. Simple criteria for the correctness of this 
representation are given and checked. By means of this representation the dynamics of the 
fluctuations of the longitudinal component of the spin at low temperatures is studied and the 
asymptotic form of the correlator of these fluctuations at large times is calculated. 

1. INTRODUCTION in the constructions of Ref. 7 the above-mentioned global 

T~ represent the partition function and the generating effects are unimportant, since the representations of Refs. 7 
functionals of different averages in the form of an integral and are 

over number fields is natural for the use of the method of 
steepest descent and convenient for the analysis of perturba- 
tive and nonperturbative effects. Attempts to obtain a func- 
tional representation for the quantum Heisenberg ferromag- 
net have been repeatedly ~ndertaken, ' .~ but the final 
expressions either cannot be expressed in an explicit closed 
form' or, as in Ref. 2, do not pass the test of fulfilling trivial 
identities (see Sec. 2).  In a paper by one of the authors3 a 
method was proposed that makes it possible to write an 
expression for the partition function of a magnet in the non- 
symmetric phase in the form of an integral over two nmber 
fields-a neutral field and a charged field. The elementary 
excitations corresponding to the charged field behaved as 
ordinary bosons (magnons), and the expansion in a pertur- 
bation-theory series of the functional integral of Ref. 3 re- 
produced the results of the operator diagram techniques of 
Refs. 4 and 5. We note that among these results were some 
which provided evidence of the defective nature of the per- 
turbation theory developed, e.g., the "frozen character" of 
the fluctuations of the longitudinal component of the spin 
(for more detail, see Sec. 3 ) . 

In the present paper we show that the functional repre- 
sentation of Ref. 3. is erroneous because certain global ef- 
fects were ignored in its derivation. Using, as before, the 
method of Ref. 3, we have obtained a correct expression to- 
gether with several simple criteria for the consistency of the 
construction. In Sec. 3 we use this expression to consider the 
longitudinal fluctuations, and convince ourselves that they 
are "revived." 

The integration fields in our integral (2.12) have re- 
mained the same as.in Ref. 3; however, the charged field, 
despite its numerical nature, now describes not bosons, but 
something else. This is consistent with the obvious limitation 
of the idea that the excitations in a magnet have a Bose char- 
acter. 

Our method is not limited with respect to the spin mag- 
nitude S, although the concrete calculations pertain to the 
case S = 4. In a recent paper6 a functional integral for quan- 
tum magnets with spin S = + and S = 1 that differs substan- 
tially from ours was derived. This difference is discussed in 
more detail at the end of Sec. 2. 

The functional approach has also been used in the study 
of the high-temperature dynamics.' It should be noted that 

2. THE FUNCTIONAL REPRESENTATION 

1. We recall how the functional integral is obtained for 
the simplest case of the partition function of the Ising mod- 
el8: 

ZI=Tr (s-"". = j dqi exp ( - ' / , pq id i j - ' )  Tr  exp(pq,o,) 

Here J0 is the matrix of the exchange interaction, J ;  ' is the 
inverse of the matrix JU, and summation over repeated in- 
dices in implied. The meaning of the Gaussian trick used in 
(2.2) consists in the reduction of the trace over the entire set 
of states of the magnet to a product of traces over the states of 
each spin separately. For the quantum Heisenberg ferro- 
magnet the direct generalization of (2.2) does not work be- 
cause of the noncomrnutativity of the spin operators. How- 
ever, for the operator exp ( - P c H e ,  ), where 

and E - 0 ,  a Gaussian transformation of the type (2.2) can be 
performed to within terms - E ~ .  Thus, writing 
e - OHex = ( e  - EBHex) with E - 0, we arrive at an expression 
for the generating functional of the temperature Green func- 
tions of the spin operators: 

B 

Z ( h ) = T r T e x p ( - - p ~ , +  5 h i ( t ) S i d t  ) (2.4) 
0 

in the form'z9 

Z ( h )  = j n mi ( t )  exp (- + I dt ( t )  ~ i ' q ,  ( t )  ) 
1 

The symbol T denotes time ordering and hi ( t )  is the external 
field at lattice site r i .  
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The functi~nal integral (2.5) is understood as the limits 
of finite-dimensional approximations: 

R 

We shall rewrite (2.5) in a more convenient form, by 
shifting the integration fields by - hi (t): 

1 - - J at h ~ , - ~ h ~ ) , n  T ~ [ T  exp ( J d t  (t) st)]. (2.5') 
2 0  I 0 

The ordered operator exponential 
t 

satisfies the equation 

with the initial conditin A (0) = 1. The operator A ( t )  cannot 
be calculated explicitly as a functional of cq(t). However, 
there exists a substitution that transforms a T-ordered expo- 
nential into a product of ordinary exponentials (see also Ref. 
3 ) .  In fact, we sha;~ consider the explicitly specified operator 

x exp (s- J $+ (tr) exp ( J (tv) dtx) at') exp (-s+$- (01 ) , 
0 0 

where Sk = Sx _+ is", and $* ( t )  and p ( t )  are certain 
functions of argument t. Using the commutation relations 
for the spin operators, we can convince ourselves that the 
operator B(t)  satisfies the equation 

B ( t )  = {~+($--p$--$+ ($-) ') f S-Q+ 
+s.(p+2*+$-)B(t) (2.10) 

The last factor in (2.9) ensures the equality B(0)  = 1. This 
means that the substitution 

where p * = + (p " + ip  Y), brings the operator A ( t )  to the 
form (2.9). 

Thus, regardingp and @* as new integration variables, 
we can calculate the trace of the T-exponential explicitly and 
obtain a closed functional representation for Z(h) .  But, 
since the substitution (2.11 ) contains *- in the right-hand 
side, some boundary or initial condition with respect to the 
argument t should be imposed on the filed $- . The apparent- 
ly natural periodic boundary conditions used in Ref. 3 make 
the mapping (2.11) irreversible (see below). Instead of 
these, in the present paper we use the Cauchy-type condition 

2. In the functional measure Dp'Dp +Dp - we can re- 
gard the fields p' and p * as independent complex variables; 
the conditions Imp' = 0 and p + = (p -) * will determine 
the surface along which the integration is performed. Analo- 
gously, the variablesp and $ * in the calculation of the Jaco- 
bian J[p, @+, $-I : 

DqzDq+Dq-=I [p, $+, 9-1 DpDg+D$-, (2.13) 

are also treated as indepe~dent. 
The Jacobign J = det J depends on the regularization of 

the differential J of the transformation (2.1 1 ). The expres- 
sions obtained for J with the use of different regularizations 
will differ by a factor exp(a jtPdt), where a is a certain real 
number (see, e.g., Fef. 10, in which the determinant of an 
operator similar to J i s  considered). In our case, the arbitrar- 
iness is removed by the obvious requirement that with an 
exchange Jq = csq the partition function Z(h = 0) calcu- 
lated with the aid of the functional integral coincides with 
the following expression, which follows trivially from the 
kinematic identity S * = S ( S  + 1 ) , where Sis  the magnitude 
(maximum projection) of the spin: 

Z(h=O) =exp(p (~ .~ /~S(S+ l )  +const)) for Jij=c6ij. 

From what follows below it will be clear that to the 
condition (2.14) there corresponds the Jacobian (we tempo- 
rarily omit the site index for each set of single-site variables) 

B 
1 

~ [ p ,  $+, $-I= const exp (- 1 (2.15) 
0 

This value of J results from the following discretization of 
the transformation (2.1 1 (p, =p( t, ) ,..., t, = no /N, 
A=p/N,N-, co): 

In fact, it is easy to see that if after (2.1 1 ) we make one 
more change of variablesp = @' - 2$+$-, with @+ and $- 
unchanged, the Jacobian of the transformation from the 
original variables p*  , pz to @, $* will be simply 
det(d, --@+2@+@-) =det(d,  -p ) .  But since the map- 
pingp +@, @ +  -+ $* obviously has a unity Jacobian, we con- 
clude that 

det J=det (8,-p). (2.16) 

In the discretization (2.11 ) and with the condition (2.12) 
the right-hand side - of (2.16) is the Jacobian of the transfor- 
mation p, =(l/A)($,--$;-,) -(1/2)p,, 
X ($, - + $, , 1, where n = 1 ,..., N, and $0 -0; thus, 

120 Sov. Phys. JETP 68 (I), January 1989 I. V. Kolokolov and E. V. Podivilov 120 



We can deform the original surface of integration into the 
standard surface 

as the determinant of a triangular matrix. In the limit A -0 
we arrive at the expression (2.15), where const = l/AN. 

We note that the regularization (2.11') ensures that the 
operators A ( t )  and B(t)  also coincide in the case when, in 
the discrete variants of Eqs. (2.5) and (2.7), terms of order 
A are taken into account. 

3. The calculation of the trace of the operator B(P)  
does not present any difficulty even for an arbitrary spin 
magnitude S; however, in order to avoid unnecessarily cum- 
bersome expressions, we shall give the answer only for the 
case S = 4 (the entire subsequent analysis is also performed 
for S = +). Hence follows a functional representation for 
Z(h) in the form 

Z ( h )  = j DpD.p+D$-e-'. TI [ I+%- (p )  

+ 1 pi d t  - 5 hiJ,j-'qj dt.  

Here we have omitted the term quadratic in h, since it does 
not make a contribution to the unequal-time correlators of 
interest to us, and the quantity pi in the term with the source 
implies the expression in terms ofp, and $? given by (2.1 1 ). 

if our integral converges on all intermediate surfaces. For 
ferromagnetic exchange the convergence of the integral over 
$' is determined (and ensured) by the kinetic term 
+hi* J ;  '$; in the Lagrangian, and such a deformation is 
possible. 

4. Of fundamental importance is the fact that we have 
imposed on the integration fields 11 not boundary conditions 
but the initial conditions 

In particular, this implies that the magnons described by 
these fields do not obey Bose-Einstein statistics in the strict 
sense. This, incidentally, is rather obvious consequence of 
the bounded character of the spin operators. 

The fulfillment of the equality (2.14) is a necessary 
(but, of course, not sufficient) condition for the correctness 
of our representation (2.18). For Jq = csq 

and Z (h  = 0)  can be represented in the form of a product of 
single-site Gaussian integrals, which are easily calculated 
and indeed lead to (2.14). Also by explicit calculation one 
can convince oneself that a change of regularization, equiva- 
lent to adding to term 

to r, violates the equality (2.14) (in particular, instead of 
being a constant, the free energy will be a nontrivial func- 
tionof p) . 

5. In Ref. 3, the usual (for bosons) boundary conditions 
$- (0)  = $- (p) was used instead of the initial condition 
$- (0)  = 0. The Jacobian of the change of variables (2.11 ) 
with boundary conditions periodic in t and in the regulariza- 
tion (2.11') is equal to (compare with (2.17); 11; = $i ) 

(2.22) 
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and, unIike (2.15 ) , vanishes on the hypersurface 

( m  is an arbitrary integer). This implies that the holomor- 
phic mapping (p, 4; - (e ,  ', ,e, i+ ,p ; of complex 
space is not one-to-one: Several configurations of the fields 
($* , p )  correspondto one configuration of ( p * , pz ) (see, 
e.g., Ref. 11 ). 

The existence of configurations of the fields ($* , p )  
that make the Jacobian of the transformation (2.1 1 ) vanish 
upon compactification of the segment (0 ,P)  into a circle is 
preserved under modifications of this transformation that 
do not change the number of derivatives in the right-hand 
side. It is easily verified that for periodic boundary condi- 
tions there does not exist a regularization ensuring fulfill- 
ment of the equality (2.14). The change from boundary con- 
ditions to initial conditions as a way of getting rid of the zero 
modes was proposed by Vergeles in Ref. 12, devoted to the 
SU(2) anomaly. 

The not inelegant method proposed in Ref. 2 for obtain- 
ing a functional representation leads to a result that does not 
satisfy the relation (2.14). This is evidently due to the im- 
possibility, in the approach of the authors of Ref. 2, of fixing 
the gauge uniquely (the gauge of Ref. 2 has a Faddeev-Po- 
pov determinant of alternting sign, i.e., is not free of double 
counting). 

6. There exists one further way of checking the correct- 
ness of the representation (2.18)-a way which also illus- 
trates the decisive role of the boundary conditions in the 
functional integral. 

We shall consider the vacccum expectation value of the 
operator e 

where 

J ( 0 )  = J f ,  

is the zeroth spatial Fourier component of the function 

On the other hand, a functional representation for Z, is ob- 
tained from (2.18) by replacing TrB(j3) by 

The functional integral (2.24) with the condition 
$-(0) = 0 can be calculated exactly, despite the nonlinear 
interaction of the fields $* (which prevents an exact calcu- 

lation in the case of periodic boundary conditions). In fact, 
the bare propagator of the field $ 

is such that the integration over $* all the contributions to 
the effective action [a functional ofpi ( t )  ] that contain more 
than one vertex corresponding to interaction of the fields 
$' with each other and with the fieldp are equal to zero. As 
a result, the effective action W, will be a linear functional of 
pi ( t )  (r+ is that part of the action which contains the fields 
$* ): 

exp (-Wo[pi ( t )  I )  = SD)+D)-~-'* 

= const exp (- J pi d l ) ,  (2.26) 
i o  

and the integral over Dp is Gaussian. [Our regularization 
(2.1 1') corresponds to the step-function value 8(0)  = 4.1 
Performing this integration, we arrive at (2.23 ) . 

7. The functional integral of Ref. 6 for S = 4 and S = 1 
has a local action that depends on one complex number field, 
one real number field, and ghost fields of a Grassman nature. 
The boundary conditions with respect to the variable t that 
are obeyed by these fields are standard, as is the expansion of 
the functional integral itself in a perturbation-theory ~ e r i e s . ~  
But the integration over the Grassmann variables reduces to 
the calculation of the determinant of a four-dimensional op- 
erator, and is not carried out in the final form. In this sense, 
the difference between the representation in Ref. 6 and the 
representation (2.18) is radical. 

It makes sense to elucidate the origin of our choice of 
fields (p, $). The sttes of a classical spin-vectors of a fixed 
length-form a sphere. As is well known, the sphere is cov- 
ered by two complex planes. Thus, in order to define a state 
in this case it is necessary to specify one complex number $ 
and one variable taking two values-the number of the 
plane. With this Ising spin degree of freedom we can associ- 
ate, in the sence of (2.2), the real field p. This "trivializa- 
tion" of the topology of the configuration space, accompa- 
nied by the appearance of nontrivial dynamics, also occurs in 
the quantum case. 

3. DYNAMICS AT LOW TEMPERATURES 

1. The low-temperture limit implies that j3J(O) ) 1 and 
E = ( S  +S -) ( 1. In addition, we shall use one further small 
parameter-the inverse range of the interaction, first intro- 
duced for the Heisenberg ferromagnet in Refs. 4. This means 
that J, [the Fourier transform of the exchange matrix 
J ( r i  - r,)]  is of the order of J, in a neighborhood of the 
point k = 0 of linear dimensions - 1/R, and of order J,(a/ 
R)3  in the rest of the Brillouin zone (here a is the lattice 
constant). Hence, in particular, it follows that 

~k~ - loz ( a / ~ )  3. 

k 

In the case of nearest-neighbor interaction we have (a/ 
R )3  =-l/z, where z is the number of these neighbors, and for 
lattices with cubic symmetry this quantity is small (see also 
Ref. 13). 
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For the description of the effects contained in the pic- 
ture of a gas of interacting magnons the representation 
(2.18) is less convenient than the explicit boson representa- 
tions of Holstein and PrimakoffI4 and Dyson and Ma- 
 lee^,'^"^ which neglect the finite-dimensionality of the space 
of spin states. Therefore, in the present paper we shall con- 
centrate on the nonmagnon part of the dynamics of a mag- 
net-namely, on the dynamics of the fluctuations of the lon- 
gitudinal component of the spin. 

2. In Ref. 4 it was found that the correlator 
K,, ( t )  = (S:(O)Sf t ) contains two terms of different na- 
ture. The first ("dynamic") term arises because the mag- 
nons carry away magnetization, and thus give a contribution 
to Kg (t).  This contribution has a power-law degree of small- 
ness in the temperature, and is also small in the inverse range 
of the interaction. The second ("static") term corresponds 
to "frozen" longitudinal fluctuations of the Ising type, and is 
exponentially small for PJ,fP 1 but has no degree of small- 
ness in R -I .  At low temperatures and for not very long times 
the second contribution can be neglected in comparison with 
the first. However, if the real time t -, m, the dynamic term 
decreases as t -' (see Refs. 4 and 5), whereas the static term 
does not depend on t. The fact that terms ensuring the relax- 
ation of the static contribution in K,, ( t )  are absent in the 
perturbation-theory series of Refs. 3 and 4 implies that this 
series is incomplete. This also applies to the equilibrium var- 
iant of the spin-operator diagram technique developed in 
Ref. 5a. Below we shall show that in the functional represen- 
tation (2.18), which correctly takes into account the organi- 
zation of the spin degrees of freedom, the "frozen" fluctu- 
ations "revive" and are described by a dynamic neutral 
scalar field with nonzero mass. 

3. In (2.18) we cannot perform the integration over $ * 
exactly, and, as usual, we divide the action into a principal 
part and a perturbation: 

+x pi dt -1 hiJij-l(pj+2*+*-) dt, 
$ 0  0 

Here we have introduced the notation r, for the nonpoly- 
nomial part of rin, and the notation ij, = p i  - j5, wherep is 
the average value of the field pi ,  and have set hi = (O,O,h, ), 
since we are interested in the dynamics of only the z compo- 
nent of the spin. The saddle-point value,Z0 is determined by 
minimizing the bare effective potential, equal to [see 
(2.26) 1 

Then 

and the average spin (S ), = - 4 corresponds to the usual 
ferromagnetic vacuum. The bare propagator of the field $in 
the Fourier representation with respect to the spatial coordi- 
nates has the form 

The contributions from the terms of rin, to the various aver- 
ages and correlators are either small in the temperature or 
small in the inverse range of the interaction. 

4. We shall obtain the correlation functions in real time 
directly from the representation (3.1 ) by replacing the seg- 
ment (0,B) on which the integration fields are specified by a 
rectangular contour in the complex t-plane and placing 
sources hi ( t )  on this contour in the necessary manner (for 
more detail, see Ref. 17 and also Ref. 7). 

The correlator Kg ( t )  in our representation is the aver- 
age 

Fort - m the magnon (dynamic) contribution to (3.5) van- 
ishes (one can convince oneself of this by direct calcula- 
tions), and there remains 

By integrating over $* , we obtain Z(h)  in the form 

where the functional W[ij] is represented in the form of a 
series in ij, starting from the quadratic terms: 
W[ij] = W,[ij] + W,[ij] + ... . The terms linear in i j  are 
eliminated by a redefinition ofp, and for us are unimportant. 
The decisive contributions for the behavior of Kg(t) as 
t- m are the infrared-singular contributions to W, [ij] : 

The terms omitted in (3.8) either are smaller in the tempera- 
ture and R -' than those taken into account, or do not play a 
role in the formation of the asymptotic form of the correlator 
for t- m (an example is the contribution that has arisen 
because of the local interaction of the fiels ij and $). Substi- 
tuting (3.4) into (3.8) and assuming that 
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we obtain in the first nonvanishing order in R  - ' 

Again we retain only the infrared-singular terms: 

Ifwe now replace the segment (O$) by a contour Ccoincid- 
ing with this segment along the real axis and having ends 
going off to + im , the trajectories for which 

J dt qzo 
C 

will give an infinite contribution to the action W,[ij] on 
account of the second term in (3.10), and these trajectories 
can be neglected. This means that it is legitimate to make the 
replacement 

where the field 7 vanishes at the ends of the contour C. 
[More precisely, we change from ij(t) to the variables 

The term quadratic in 6 appears in the action with an infinite 
coefficient, and fluctuations of this mode do not give any 
contribution to the dynamics of the other variables or to the 
observable correlators. ] The generating functional (3.7) for 
the correlations functions takes the form 

It can be seen from (3.1 1 ) that the neglect of terms in W[ij] 
that are small in R  - ' is admissibleonly when one is studying 
fluctuations 7, with ka > a / R  (i.e., the dominant region of 
k-space), and J, = J, . For such fluctuations, 

where 

The 7-field propagator, satisfying zero boundary condi- 
tions at the remote ends of the contour for real time t, fol- 
lowss directly from (3.11'): 

Thus, the desired asymptotic form of the longitudinal corre- 
lator is 

for ka > a /R;  we note that in the calculation of, say, a single- 
site correlation function such values of k give the main con- 
tribution, and the asymptotic form for 

Rii (f) =x K k ( t )  

coincides in the leading approximation in R  -' with the 
right-hand side of (3.14). 

The exponential temperature factor in the expression 
(3.12) for mi has a simple explanation. The systematic per- 
turbation theory describes a small transverse disturbance on 
the background of the "frozen" longitudinal fluctuations, 
and in no finite order of magnon perturbation theory will 
there be relaxations of these fluctuations. The destruction of 
the longitudinal correlations in time occurs owing to rapid 
flips of the spins at the lattice sites; the probability of such 
configurations is suppressed precisely by the factor 8" since 
- /5 is the energy necessary to their appearance. A similar 

mechanism of restoration of symmetry for a particle in a 
two-humped potential has been described in detail in Ref. 
18. 

5. Reference 5b contains the statement that the longitu- 
dinal fluctuations acquire nontrivial dynamics only in the 
case of exact fulfillment of kinematic identities, one of 
which, in essence, is the relation (2.14). The authors of Ref. 
5 suggest that one abandons the systematic expansion of 
each correlation function in a perturbation-theory series, 
and, instead of this, substitutes the perturbative result for the 
transverse correlator into the kinematic identities and solves 
the resulting equation for the longitudinal correlator exact- 
ly. This calculational scheme, in its construction, involves 
the fulfillment of a relation of the type (2.14), but contains a 
certain inconsistency. In addition, because of the prescrip- 
tive character of the procedure of Ref. 5, it is extremely diffi- 
cult to point to even a formal reason for any particular phe- 
nomenon. 

6. Our formalism is explicitly inhomogeneous in time; 
e.g., theaverages (p, ( t ) )  and ($7 ( t ) $ ,  ( t ) )  are nontrivial 
functions oft.  However, the observable 

is independent of t  in each order of perturbation theory, and 
one can convince oneself by direct calculations that the ex- 
pansion of ( 3.1 ) in a series in R  - ' reproduces the result of 
Ref. 4. Here the Green function of the field $ is determined 
by the bilinear part of the action r together with the term 
[see (3.1)] 

In place of (3.4) we obtain 
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Using for the calculation of (qj+ ( t )  $,- ( t )  ) the propagator 
(3.17) and taking into account in (pi ( t ) )  the contribution 
of the following term in rint : 

we arrive at the expression in Ref. 4 for (S ;) . 
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