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We examine possible finite motions of particles in the Kerr metric. We determine the topology of 
the various sets of constants of the motion of the particle, and identify invariants that are 
independent of the rotation parameter. 

In a pair of previous papers,'.2 the present author con- 
sidered various types of particle motion in the Kerr metric 
that are unbounded in the radial direction, and established 
the topology of sets of constants characterizing the various 
types of motion. Finite motions in the equatorial plane were 
examined in Refs. 3,4 (de Felice3 studied finite motion with- 
out making use of the first integrals, which were derived by 
Carter,5 also in 1968), and they were studied in a fair amount 
of detail by a number of other  author^,"^ who considered the 
continuous transition from stable to unstable equatorial or- 
bits. WilkinsIo studied a number of properties of orbits not 
lying in the equatorial plane, including those typical only of 
extreme Kerr-Newman geometry. The latter subject was 
treated by the present author,'' who also described certain 
orbital properties peculiar to the extreme rotation of a black 
hole. Detailed studies of equatorial orbits have also been car- 
ried out by Chandrasekhar,12 Novikov and Frolov,I3 and 
Shapiro and Teukol~ky,~ and a rather more comprehensive 
survey of the field is to be found in Ref. 14. 

Thus far, however, nowhere has the topology ofthe var- 
ious types of radial motion in the space of constants defining 
that motion been considered for finite orbits. Also left unre- 
solved is the problem of finding a continuous transformation 
that takes one through a continuum of stable (or unstable) 
orbits from stable (or unstable) prograde equatorial orbits 
(in which the particle angular momentum with respect to 
the black hole rotation axis has the same sign as the black 
hole angular momentum) to stable (or unstable) retrograde 
equatorial orbits (in which the particle angular momentum 
is oppositely directed), for a test particle of given energy. 

1. TYPES OF FINITE RADIAL MOTION 

The motion of a test particle in the Kerr metric is de- 
scribed by the Carter equations (the first integrals of the 
geodesic equations),' and the corresponding equation for 
the rate of change of the coordinate r may then be written in 
the form'.2 

where the polynomial R (i.) is given by 

and the constants M and a are specific to the black hole: M is 
its mass, and a is its rotation parameter (angular momentum 

per unit mass), i.e., a = S /M, whereSis the angular momen- 
tum of the black hole. In Eq. (2) ,  E, L, , Q, andp relate to the 
particle: E is the particle energy, L, is its z-component of 
angular momentum, p is the particle mass, and Q is Carter's 
separation constant: 

Below we omit the cap from all variables. 
Here we shall consider only finite orbits, for which the 

particle energy satisfies E < 1, since the case E ,> 1 was thor- 
oughly investigated in our previous papers.'.2 We already 
know that the only possible finite orbits with E have 
constant r, and such orbits are unstable. In the present paper, 
we classify the various types of finite motion of test particles 
in the Kerr metric by investigating the roots of R ( r ) ,  as 
Synge did for the Schwarzschild metric,I5 and as the present 
author did for unbounded particle motion in the Kerr met- 
ric. ',, 

We thus plan to classify particle motion having E < 1. 
The polynomial R ( r )  will clearly then have at least one root 
with r>r  + = 1 + ( 1 - a2) since R ( r  + ) >0, and for 
large enough r, R ( r )  < 0. Since for r > r + the polynomial 
can have no more than three distinct roots when multiplicity 
is taken into account,1° possible types of motion are as fol- 
lows: 

1)  the polynomial R ( r )  has one nonmultiple root at 
r > r +  . The particle will fall into the black hole in a finite 
proper time; 

2)  R ( r )  has three nonmultiple roots ( r  + <r l  < r, < r,). 
There is then a range of r-values (r,<r<r,) for which finite 
motion is possible over an infinitely long particle time. If 
r, < r < r, or r > r3, no motion is possible. If r<rl,  the particle 
will fall into the black hole in a finite proper time; 

3) R ( r )  has two distinct roots r, and r,, with 
r + < r ,  < r,, where r ,  is a nonmultiple root and r, is double 
(R (I,) = R(r2)  = R '(r2) = 0).  Particle motion is impossi- 
ble for r > r2 or r, < r < r,. There is a stable orbit at r = r2, 
since R " (r,) < 0; 

4)  R ( r )  has two distinct roots r, and r,, with 
r + <r,  < r,, where r ,  is a double root and r, is a single root. 
Motion is impossible for r > r,, and an unstable orbit exists 
for which r = r,; 

5)  R ( r )  has one triple root r = r, ( r ,>r  + , 
R ( r I )  = R ' ( r , )  = R "( r , )  = 0).  

Types 3 and 4 are clearly manifolds of codimension 1, 
and type 5 is a manifold of codimension 2 in the space of 
constants defining the motion, namely, E, L,, and Q. We 
shall refer to orbits for which particle motion is confined to a 
surface of constant r as being spherical. This terminology is 
not entirely accurate, but it is quite widespread.16 
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Note that if the black hole is undergoing extreme rota- 
tion (a = I) ,  the possible types of motion are as follows 
(with L, = 2E and E > 1/2) : 

1) type 4 for O<Q<3(E2 - 1/3); 
2) for Q =  3 ( E 2 -  1/3), thereisa triple root ( r =  1) 

and a root at r2 > 1. Thus, there is an unstable spherical orbit 
(type 6 motion) when r = 1; 

3)for3(E2 - 1/3) < Q < E 4 / ( 1  - E2),wehaveadou- 
ble root at r = 1, as well as roots with 1 < r, < r2, so a region 
r, <r<r2 exists in which finite motion is possible, and at r = 1 
we have a stable spherical orbit (type 7 motion); 

4) for Q = E 4/( 1 - E '), we have two double roots, 
r = 1 and r = E2/(1  - E 2 ) ,  and there are thus two stable 
spherical orbits (type 8 motion); 

5) when Q> E4/ (  1 - E ') we have one double root 
( r  = l ) ,  and thereby one stable spherical orbit (type 9 mo- 
tion). 

It should also be pointed out that just as for the corre- 
sponding orbits in the case of infinite particle motion, orbit 
types 6-9 disappear when the rotation parameter no longer 
has an extreme value (structural instability"); this also hap- 
pens to the properties examined by Dymnik~va.'~." The 
case 1/3<E '( 1/2 may be treated similarly. 

2. TYPES OF FINITE RADIAL MOTION IN THE 
SCHWARZSCHILD METRIC 

For a moving particle in the Schwarzschild metric 
(a = O), radial motion is governed by the equation 

(d r /d~ )~=R (r) , (3) 

where ~ ( r )  = (E2-  1 ) r 4 + 2 ? - L 2 ? + 2 L 2 r  (E is the 
particle energy and L is its angular momentum). With the 
notationl= L 2 / ( E 2  - 1 ) , a  = (E2 - I)-', wemay write 
out the condition for a multiple root of the polynomial R ( r )  
by setting the discriminant to zero (as in Ref. 19): 

which yields 

where D ( a )  = a4 + 28a3 + 270a2 + 972a + 729. It is 
straightforward to show that D ( a )  = (a + 9)3(a  + 1). 
Clearly, if a< - 9, we have D ( a )  >O. We thus find that for a 
given particle energy, the angular momentum correspond- 
ing to a stable or unstable circular orbit (LS or Lu ) is given 
by 

It is not hard to see that for a< - 9, the right-hand sides of 
Eqs. (6)  and (7) are greater than zero. There are thus two 
values of the angular momentum corresponding to stable 
circular orbits and two corresponding to unstable circular 
orbits, for a given particle energy: 

Orbits for which the angular momenta in (8)  and (9)  have 
opposite signs clearly differ only in the direction of particle 
motion in those circular orbits. We can also easily write out 
the expression for the radius of a stable or unstable circular 
orbit. 

r"= [V2,a3+1+ (a13+1)] "-'13a, (10) 

where ru is the radius of the unstable orbit, and r' is the 
radius of the stable orbit. If the particle energy is such that 
circular orbits exist (and E2  < 1) and a< - 9 (E2>8/9), 
then both ru and r' will be greater than zero, since I, < 0 
and a/3 + 1 < 0. It follows from the form of the polynomial 
R ( r )  that when 0 < r < 2 there are no roots, so ru > 2 and 
rs > 2. A more thorough analysis9 shows that r' >6, ru >3. 

It is not difficult to verify that when the particle energy 
E is fixed and IL I > IL 7 ,  type 1 motion takes place; for 
IL I = ILs I we have type 3 motion, for IL "I < 1L I < IL "1 we 
havetype2,forIL I = ILuIitistype4,andforIL I<ILuIthe 
motion is of type 1. Finally, IL I = IL "1 = IL "1 results in 
type 5 motion (this accurately summarizes the well-known 
fact7v9 that the maximum of the polynomial R ( r )  merges 
with the minimum at a = - 9, E = 8/9. 

3.TYPES OF RADIAL MOTION IN THE KERR METRIC 

The radial motion of a particle in the Kerr metric is 
determined by three constants, E, L, , and Q (Refs. 1,2). We 
now investigate those sets of constants of the motion of a 
particle that correspond to different types of motion, given 
the value of the black hole rotation parameter (angular mo- 
mentum per unit mass). As before,'.2 we pass a plane of 
constant E through E, L,, Q space and examine the sets of 
constants that correspond to the various types of motion. 
Clearly, the boundary of the set of constants corresponding 
to motion of the first and second types is a set of constants of 
the third and fourth types. According to our previous argu- 
m e n t ~ , " ~  the motion will be of type 3 or 4 (or type 5 in the 
degenerate case) if 

R ( r )  =0, R' (r) =O (12) 

when Q>0 and r>r+. 
Noting that Eqs ( 12) specify the functions r(L, ) and 

Q(L, ) implicitly, we obtain 

(dQldL,) ( - A )  =2L,P-4 (L,-aE) r, 

when r > r,, Q>O (assuming that R " ( r )  # 0, i.e., the motion 
is not of type 5). A rather lengthy but straightforward calcu- 
lation then shows that when Q = (Lu ) 2  and r = ru , where 
(Lu )' and ru are given by (7)  and ( lo) ,  and 

5,=-2aEl (r" - 21, (14) 

the equations (12) are satisfied identically. Furthermore, it 
can then readily be shown that R,, " ( ru  ) > 0 (if E * > 8/9). 
As was the case previously,' one may conclude that these 
values of the constants of the motion correspond to a maxi- 
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FIG. 3. 

FIG. 1 

mum of Q(L, )-in other words, for a particle of given ener- 
gy that is initially located in the equatorial plane, the maxi- 
mum value ofp: (which corresponds to an orbit of type 4) 
will be independent of the rotation parameter of the black 
hole, as will the value of ru (the radius of the spherical or- 
bitI6). Similarly, for Q = (Ls )' and r = 4, where (L s ) 2  and 

Eqs. (12) are satisfied identically. Moreover, it then turns 
out that R,, " (r' ) < 0 (for E > 8/9). hence, for a particle of 
given energy that is initially located in the equatorial plane, 
the maximum value of p i  (which corresponds to a stable 
spherical orbit at r = 4 ) will be independent of the rotation 
parameter of the black hole, as will the value of 4 . Since an 
analysis of orbits in the Schwarzschild metric shows r' > 6 

FIG. 2. 
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and ru > 3 (for E > 8/9), the corresponding inequalities will 
still hold for the orbits under consideration here in the Kerr 
metric. 

Finally, we present some plots of the constants corre- 
sponding to the various types of motion, assuming extreme 
rotation. In Fig. 1, we show the domains of Q and L, for a 
particle energy E = (25/27) 'I2 (resulting in type 5 motion; 
for higher energy, type 5 motion is not possible). Roman 
numeral I marks the region corresponding to motion of type 
1, and so on up through Roman numeral IX; Roman nu- 
meral X identifies the set of constants for which motion is no 
longer possible. In Fig. 2. we have plotted similar results for 
a particle energy E = (8/9)'12 (yielding r" = r ' ,  with the 
above-mentioned stable and unstable spherical orbits merg- 
ing into an orbit of type 5). Figure 3 presents our results for 
E = 0.9. The notation in Figs. 2 and 3 is the same as in Fig. 1. 
Clearly, for particle energy E < 3-'I2, only orbits of type 1 
are possible. 

In closing, the author thanks V. S. Imshennik for his 
attention, and S. I. Blinnikov, I. D. Novikov, A. G. Pol- 
narev, and D. G. Yakovlev for valuable discussions. 
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