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A regularization method, called dynamic quantization, is proposed for nonabelian gauge 
theories. It is shown that within the framework of dynamic quantization the nonabelian anomaly 
is in fact absent. In consequence the Weyl nonabelian theory, i.e., the theory ofinteracting Yang- 
Mills and Weyl fields, turns out to be self-consistent. 

1. INTRODUCTION 

In recent papers of the author'.' a regularization meth- 
od for nonabelian gauge theories was proposed and named 
the dynamic quantization method. Here we expound the dy- 
namic quantization method in an extended form and show 
that within the framework of this method nonabelian Weyl 
theories may be correctly quantized. These theories turn out 
to be relativistically and gauge invariant, hence unitary. 

We emphasize that our quantization of nonabelian 
Weyl theories is different in principle from the quantization 
proposed by Fadeev and Shata~hvili.~ 

We clarify briefly what we understand by dynamic and 
what by Feynman, or static, quantization methods. We in- 
terpret dynamic quantization as the solution of Heisenberg 
equations or time-dependent Schrodinger equations. Regu- 
larization of perturbation theory (PT) is carried out on the 
energies of intermediate states (see Ref. 4).  In particular, 
regularization of fermionic degrees of freedom is accom- 
plished by partially filling the Dirac sea. In this manner in 
the regularized theory the right and left Weyl fields are sepa- 
rated, if the gauge field is viewed as external. In the corre- 
sponding PT use is made of the retarded Green function 
G" (x), which vanishes for x0 < 0. Dynamic quantization is 
adequate in those situations in which the physical vacuum is 
qualitatively restructured relative to the naive vacuum when 
the interaction is turned off (for example in chromodyna- 
mics), or when a stable vacuum is altogether absent. This 
idea is due to V. N. G r i b ~ v . ~  In contrast, in Feynman quanti- 
zation it is assumed that the physical vacuum differs little 
from the naive one and elementary excitations carry quan- 
tum numbers of bare fields. Under that assumption one ob- 
tains a PT which makes use of causal Green functions. The 
location of the poles of the causal Green function permits 
rotation of the contour of integration in the complex plane of 
the variable k O in such a way that the calculation ofS-matrix 
elements can be performed in Euclidean space. 

We note that in Feynman quantization the nonabelian 
anomaly is determined unambiguou~ly.~ 

2.THE REGULARIZED FERMION TRANSITION AMPLITUDE 
AND THE ANOMALY 

We shall describe a special technique used in evaluating 
the anomaly which is equivalent to dynamic quantization. 

In four-dimensional Minkowski space we consider a 
theory with the action S = S, + S, , where 

In what follows we have V, = a /dx, + A,, A, = A, "t ", tr 
Pt  = - Sab, d are Pauli matrices, Greek indices p, 
v ,... = 0,1,2,3, while Latin indices i j ,... = 1,2,3. Let us de- 
note by Z+{A,  ) the fermion transition amplitude in a speci- 
fied gauge field. Then the full transition amplitude in a finite 
time interval (t,,t,) can be represented symbolically in the 
form 

K (ti, to )  = J DA,,Z+ {A,) exp isA. (2.1) 

The operation of integration over the gauge field is described 
below, and the quantity Z+{A,  ) is determined according to 
Refs. 1 and 2 as follows: let {pN (x))  be a complete ortho- 
normal set of solutions of the right Weyl equation: 

Everywhere we write (t,x) = (x) .  As a consequence of the 
completeness condition (2.3), arbitrary fields p (x )  and 
q, + (x) can be expanded in the sets offunctions C P N  (x) ) and 
{q,, + (x))  with time-dependent coefficients {a, ( t ) )  and 
{Z, ( t ) )  respectively. The set of these coefficients is viewed 
as a complete set of Grassmann degress of freedom of the 
system. We regularize the fermion amplitude in terms of 
these variables. To this end we discard the ultraviolet (in 
energy) tails in the expansions of the fields p ( x )  and p + (x)  
in terms of q,, (x)  and q,, + ( x )  . Further, a prime over the 
sign for summation or multiplication with respect to the in- 
dex N means that the index does not run over values in the 
ultraviolet tail (regardless of the sign of the energy). We 
define regularized Fermi fields as follows: 

Let us break up the time interval into small segments of 
length E-+O: t,+ I = t, + E. TO satisfy unitarity the coordi- 
nate variables { a ,  (t, )) are determined at the instant of time 
t,, while the momentum variables {Z, (t, + ~ / 2 ) )  are deter- 
mined at the instant of time t, + ~ / 2 .  The regularized fer- 
mionic measure and amplitude are given by the formulas 

The Fermi-fields q, and q, + are considered regularized ac- 
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cording to (2.4). It is assumed that at the end of all calcula- 
tions one passes to the limit of removing the cut-off. Such a 
limiting transition makes sense in asymptotically free theo- 
ries. In an abelian theory this regularization (with the fer- 
mion sea partial filled, then gradually filled up) is hardly 
correct in view of the strong interaction in the ultraviolet 
region. (This remark is due to V. N. Gribov.) 

The regularized measure (Dx + Dx) and transition 
amplitude Z-{A, ) for the left Weyl field are defined in ex- 
actly the same way. In that case the field x (x) is expanded in 
terms of a complete orthonormal set of solutions of the left 
Weyl equation (iV, - id V, )xp = 0 with coefficients 
{b, (t)). Let $(x) denote the Dirac field. The regularized 
Dirac measure is defined in a natural way: 

Since 

it follows from (2.6) that the regularized Dirac transition 
amplitude Z{A, ) factors: 

It is assumed that regularization preserves charge par- 
ity in the Dirac theory. To that end it is sufficient for the 
charge conjugation operation to establish a one-to-one cor- 
respondence between the solutions q,, (x)  and X, + (x)  in 
the expansions of the fields (2.4) and the analogous expan- 
sions for the fieldsx(x) andx+ (x) .  The charge-conjugation 
operation has the form 

Here the - symbol denotes transposition. The necessary 
one-to-one correspondence is established thanks to the fact 
that the function q, ,C (x)  = - 22, + (x) satisfies the right 
Weyl equation (iV: + i ~ ' V ~ ) q , , ~  = 0, where 
V; = a/dxp + A ,C and the set offunctions {q, :,q, ,t 3 form 
a complete orthonormal set. 

Let the capital Greek letter Z denote either the index N 
or P and the Dirac spinor $, denote either (rN) or (;,). We 
then have the expansion 

where 772 ( t )  equals either a, ( t )  or b, ( t ) .  
A. First of all we shall study the general dependence of 

the fermion amplitude on the gauge field. The fermion wave 
functionals depend in our representation on the variables 
- 
a,. Since the fermion Hamiltonian in the variables ii,, a, 
vanishes, the amplitude takes on the very simple form: 

To discover the gauge-field dependence of the amplitude the 
coordinates {ii, (t, )) in the moving frame {q,  ,+ (t,,x)) 
should be expressed in terms of the coordinates {Z$' (t, )) in 
the stationary frame C q N +  (to,x) ). This connection is estab- 

lished with the help of the equation 

To begin with we calculate the change in the amplitude 
for infinitesimal change in the gauge field. Assume that 
A ; = A ,  + SA, and the function q, ;, with the boundary 
condition q, ;, (t,,x) = q,, (t,,x). To first order in the field 
SA, we have ( (x' ) = ( t ',x) ) 

We have introduced the notation aC" = ( l , d  ). From the 
equation 

we find 

Substituting into the amplitude 

expressions (2.1 1 ) we obtain 

The current has the form 

Consequently it is seen from (2.12) and (2.10) that 

Everywhere (...),, denotes the evaluation of matrix ele- 
ments with respect to the fermion states (A( and (Z), which 
depend on the variables {a,)  and { E N )  respectively. It 
should be remembered that in terms ofthe variables {a,,~,) 
the Hamiltonian equals zero and the operator Z + { A , }  is 
diagonal in the basis {(A), [E), ... 1. 

Let us see what Eq. (2.12) gives in the case SAP = V, u. 
Substituting SA, = V,u into (2.12) and integrating by 
parts, we find 

In evaluating the expression in square brackets in (2.14) one 
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should take care as the operator V, acts on a singular quanti- 
ty. To eliminate the ambiguity we use time point-splitting of 
the functions in ( 2 .14 ) ,  p M +  ( t , x )  + p M +  ( t  + E,X )  and go 
to the limit E +  + 0 in the answer. With such an approach 
the calculation simplifies because the prime on the summa- 
tion sign in (2 .14)  may be omitted: the ultraviolet tail drops 
out automatically. Using the Weyl equations in the gauge 
A, = 0 we reduce ( 2 .14 )  to the form 

ISZ+ {A,)=-iZ+ {A,) J d4x ua ( x )  

The final answer is easily written in any gauge as a result of 
covariance considerations. The overdot always denotes the 
derivative a /at. Upon averaging with respect to states with 
filled Dirac sea only negative frequency functions from the 
ultraviolet region in (2 .15)  contribute to the anomaly. In- 
deed, in the ultraviolet region the states have the form 
I )  - n; - ,, Z,, where the symbol n; - ,, denotes multipli- 
cation of 5, with numbers N corresponding to negative fre- 
quency functions p, ( x ) .  But for E -  + 0 the negative fre- 
quency part of the ultraviolet tail drops out automatically 
from the summation in ( 2 .15 ) ,  since under the Euclidean 
rotation E-+ - i ~  the quantity p, ( t , x ) p ,  ( t  - i ~ , x )  is found 
to be proportional to exp( - &EN ), where EN - + a,. 

In evaluating the matrix elements ( [...I ) ,,. , where [...I 
is the square bracket in (2 .15) ,  there arise Green's functions 
of the form 

where T is the time-ordering symbol. Here $ ( x )  and $ ( y )  
are nonregularized Fermi-fields, obeying the usual commu- 
tation relations and the Dirac equation iy+' V, $ = 0. There- 
fore such Green's functions satisfy the equations 

from which it is seen that for A f  Z the element G,, ( x ,y )  
has no singularities for x  = y and that ( [...I ),. -SAX.  Set- 
ting G,, = G,, and going over to the continuum we get from 
(2 .15)  

Taking the real part of the expression in square brackets is 
explained by comparison with the original expression 
(2 .14) .  Direct calculation shows that only the term propor- 
tional to 9 contributes to ( 2 .16 ) .  

We write out just that part of G, that is relevant in 
( 2 .16 )  for E -  + 0 :  

G, (x,x + E )  = - f ' ( 8 2 ~ )  -'uP"Fp, + irrelevant terms. 

Substituting this in ( 2 .16 )  we obtain 

Comparing ( 2 .17 )  and ( 2 .13 )  we find 

In this fashion the regularization considered here brings 
about the covariant value for the nonabelian anomaly for the 
"correct" current [see (2 .13)  and ( 2 .18 )  1. 

B. We shall now obtain the anomaly by another meth- 
od, applicable to evaluations of functional integrals. This 
method was widely used by R. Feynman in deriving various 
Ward identities (Ref. 7,  chapter 7 ) .  The author noted in 
1978 that in the case when the regularized functional mea- 
sure is not invariant under a certain continuous transforma- 
tion an anomalous Ward identity results.' This method was 
used for the first time in Ref. 9  to derive the axial vector 
anomaly. Thereafter the method was rediscovered and de- 
veloped by Fujikawa. 'O 

Let us make an infinitesimal transformation of the 
fields in the form 

where u  ( x )  = ua ( x ) t a  are transformation parameters and 
the symbol 2," denotes summation over the ultraviolet tail 
so that 

It should be remembered that the functions entering Eqs. 
(2 .19)  are taken at the points t,  and t,  + &/2 respectively, 
but u ( t , , x )  = u ( t ,  + E / ~ , x )  because the fields p ( t , , x )  and 
p  + ( t ,  + E / ~ , x )  are transformed by one and the same pa- 
rameter. The last terms on the right hand sides of (2 .19)  are 
necessary to keep the transformations under consideration 
from taking the fields p  ' ( x )  and y7 + ' ( x )  outside the limits of 
the regularized spaces with bases { p ,  ( x ) } '  and { p  ,+ ( x ) } '  
respectively. Here { p ,  }' means that the basis does not con- 
tain functions from the ultraviolet tail. In the transition am- 
plitude ( 2 . 5 )  we make the change of variables according to 
( 2 .19 ) .  Let us follow the resultant change in the measure. In 
terms of integration variables ( 2 .19 )  takes on the form 

c i ,  ( t )  = ) d32 qMf ( x )  u ( x )  (PN (XI. ( 2 .20 )  

The Jacobian of the transformation from the variables 
{a,,Z,) to the variables { Z k ,  a h )  accurate to first order in 
the parameter u  has the form 
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Since a change in the variables does not change the integral 
the contributions from the change in the measure and the 
action in (2.6) cancel. It is easy to see that the last term in 
(2.19) does not contribute to the variation of the action. 
However this simplification occurs only in the case when the 
field is expanded in solutions of the Weyl (Dirac) equation. 
(In this manner, in the evaluation of the anomaly by the 
finite-mode regularization method one may ignore the pro- 
jection of the transformed fields on the original regularized 
space with basis { q ~ , , q ~  ,t 1'. ) We find for the variation of the 
action 

Sq. =S9 - 1 d'x uaPNJ+wl 

where the current Jy  is defined in (2.12'). Using what has 
been said above we arrive at the following equation: 

Similarly we find in left Weyl theory 

It is seen from the charge-conjugation properties of 
(2.7) that the sum of the right hand sides of Eqs. (2.22) and 
(2.23) equals zero. Indeed in the Dirac theory (2.6), which 
is explicitly even under charge conjugation, we have the 
equality [uC(x) = - ii(x) ] 

where (...) ,C, denotes taking matrix elements with respect to 
charge conjugate states. It follows from (2.24) and (2.13) 
that 

Here dk {u) denotes the right-hand-sides of Eqs. (2.22) 
and (2.23) respectively and dcP c { u C )  denotes the same 
quantities formed from charge conjugate fields. Using Eq. 
(2.7) and the equality uC= - ii it is easy to see that the 
right-hand-side of Eq. (2.25) is equal to the negative of the 
left-hand-side, i.e., that both sides of this equation vanish. 
This means that our regularization preserves the gauge in- 
variance of the Dirac theory: 

Using this, it is easy to find that in continuum notation (in 
the A, = 0 gauge) the nonabelian anomaly has the following 
form: 

Just as before we use the shift in the time variable 

$L + (x) -+ $= + (X + E )  , where the 4-vector E = (~,0,0,0) 
tends to zero, in order to correctly evaluate the derivative a / 
at. One should evaluate separately the contribution from the 
positive- and negative-frequency parts of the functions $, . 
We calculate first the negative-frequency contribution. Let 
E > 0. Then 

i $8 ( x ) G  (x+E) =G*(x, &a).  
( - 8 )  

With the help of the Dirac equation the negative-frequency 
contribution to (2.26) can be rewritten as follows: 

It is easily understood that taking the positive-frequency 
contribution into account results in adding to the right- 
hand-side of Eq. (2.27) its complex conjugate. The sum of 
the first term in (2.27) and its complex conjugate value van- 
ishes for &-+ + 0. In this manner comparison of (2.27) with 
(2.16) and (2.17) again results in the answer (2.18). 

3. SELF-CONSISTENCY EQUATIONS 

The value (2.18) of the nonabelian anomaly is in con- 
tradiction with the Wess-Zumino self-consistency equa- 
tion." It is obvious that (2.18) does not satisfy that equa- 
tion, although expression (2.18) is the variation of the 
fermionic transition amplitude with respect to the gauge 
transformation. To remove this paradox we look into the 
way the Wess-Zumino equation comes about. 

Let L ,  be the generator of an infinitesimal gauge trans- 
formation in space-time with parameter u  (x )  : 

The set of generators L ,  form a Lie algebra with commuta- 
tion relations 

Let us define the action of the operators { L ,  ) on the ampli- 
tude z+{A, )  by L,z+{A,)  = z+{A, + V ,  u ) .  We then 
have 

It immediately follows from Eqs. (3.2) and (3.3) that the 
expression (2.18) satisfies the Wess-Zumino equation 

When (2.18) is substituted into (3.4) the latter equation is 
not satisfied. 

To remove the resultant paradox one should try to 
change the self-consistency equation. 

Equation (3.4) is a consequence of the three equations 
(3.1)-(3.3). It is obvious that (3.1) and (3.3) cannot be 
changed. The only possibility is to change Eq. (3.2) by intro- 
ducing a Schwinger term. 

Let us denote by I the totality of operators 
{ L ,  , d + { u ) ) ,  acting on fermionic amplitudes, where 
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d + { u )  is given by Eq. (2.17) and it acts by multiplication. 
The manifold I becomes a Lie algebra if we assume the fol- 
lowing system of commutation relations: 

We shall postulate that the commutation relations (3.5) are 
realized in the action of the operators from the manifold I on 
fermionic amplitudes. It is easy to verify that the Jacobi iden- 
tity holds for the algebra (3.5). It now follows from Eqs. 
(3. I ) ,  (3.3), and (3.5) that the new self-consistency equa- 
tion has the form 

The anomaly (2.17) satisfies Eq. (3.6). 
The relations (3.5) show that Z+{AP } is not a uniquely 

defined quantity on the space of fields A,, which we shall 
denote by 8. Let d denote the space of classes of gauge- 
equivalent Yang-Mills fields and 3 the group of gauge 
transformations in the space X. Then the space 8 may be 
viewed as a fiber bundle with fiber 9 and base 8: (In fact it 
is assumed that 2? includes not all fields but only those on 
which 9 acts freely (see Ref. 12).) The first of the relations 
(3.5) shows that going round a closed contour in the fiber 9 
results in a change in the amplitude Z+{A,  ) + multiplica- 
tion by a certain phase exp(id+{[u,u]}). Let us introduce 
the operators 

~ { . y ) =  J ahx ~ ~ { s i s a ~ h , .  

As a result of what has been said we have 

Indeed, in the special case gP = V, u we have Q{V, u) = L ,  
and the relation (3.7) should coincide with (3.5). 

The right-hand-side of (3.7) is easily reestablished for 
gp, vp, satisfying V,gp = V P v P  = 0: 

A{?', q v ) = - 2 i ( -  t r )  (-- t r )  d ' ~ d ' y [ ~ ~ ( x ) ,  q , ( x ) ]  
X Y 

Here D ( x , y )  is the causal Green's function for the scalar 
field A" (x) ,  transforming according to the adjoint represen- 
tation of the gauge group and satisfying the equation of mo- 
tion VP2A = 0: 

We have 

V,2D(x1  y )  =?I(') ( x - y )  . (3.9) 

It is the causal Green's function that should be used in Eq. 
(3.8) for which the equality 

is valid, since the amplitude (2.8) is invariant under time 
reversal. If any other Green's function were used the equa- 
tion (3.7) would violate this funaamental property of the 
amplitude (2.8). The last equation will be used below in a 
substantial way. 

To verify (3.8) we take gp = VPu,$ = VC"u, so that 
V, 2~ = V, 2~ = 0 and therefore V, [u,u] = 2 [ Vp u,Vflv] . 
From here and from Eqs. (3.9) and (2.18) we find that in 
this case the right-hand-side of (3.8) equals 
( - id+{[u,v])) .  This agrees with (3.5) since 

Let us now construct a space in which the amplitude 
Z+.(Ap is single-valued. Let w be an infinitesimal horizon- 
tal path in the space of fields, whose projection iG onto the 
base 8 is closed. If A p(x;s),O<s<l is the path w and 
SAP = (LJA p/LJs)Ss, then V,SAM = 0 along the path o. It is 
easy to evaluate the change in the field A, along the path w in 
a general form (see Ref. 13) : 

Here A is the exterior multiplication sign. 
Assertion I. $?5SZ+{AP) = 0 where the integrand is 

given according to (2.13). 
Let us write out the integrand 1-form (2.13): 

i J d 4 r  ~ A ; ( J + ~ Z + ) .  

The integral along the closed contour iG can be transformed 
according to Stokes' theorem into an integral over the infini- 
tesimal area a bounded by the loop =(as = 75): 

From here it is seen that the integral is made up of two con- 
tributions. The first contribution has the form 

and after transferring the operator V, [see (3.10) 1 it is re- 
duced to a simple form expressible in terms of the anomaly: 

1 - (- t r )  (- t r )  J d4x d'ye*vLpF,(x)Fq ( x )  
16n2 . u 

x D ( x ,  Y )  ( 6 A V ( y )  A 6 A v  ( Y ) )  ( Z + > ,  V,6Ae=0. 

(An analogous and nonvanishing contribution to the change 
in the amplitude is present in Feynman quantization.) The 
second contribution arises from second differentiation of the 
amplitude Z+{A,), whose first derivative equals 
{J+,"Z+ ). Here the integral over the area a receives a con- 
tribution from the antisymmetric part of the second deriva- 
tive, which is expressible through the right-hand-side of 
(3.7). Using (3.7) and (3.8) we find the second contribu- 
tion: 
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[In Feynman quantization the analog of the second contri- 
bution is absent as the right-hand-side of Eq. (3.7) vanishes 
in that case.] We see that the sum of the two contributions 
equals zero. 

Although assertion 1 was established for infinitesimal 
paths it is easily generalized, using results of Ref. 12, to arbi- 
trary paths, at least for gauge groups SU(N). Assertion 1 
means in fact that fermionic amplitudes are correctly de- 
fined on the space of orbits b. According to (2.17) and 
(3.5) the manifold of generators {Z, 1, where Z, = L, + i 
<+k), forms a Lie subalgebra with commutation relations 
[L,,L,] = Z[,,, , and Z,Z+{A, ) = 0. Let us denote by 2 
the Lie group corresponding to the algebra (3.5), and by Y ' 
its subgroup, corresponding to the subalgebra {Z,). The 
group Y ' and its algebra (1, ) are in an obvious way isomor- 
phic to the gauge group 9 and its algebra {L, 1, correspond- 
ingly ( L ,  &, ). One may therefore construct the fiber bun- 
dle P with the structure group Y' over the base 8 ,  
associated with Z. These bundles are isomorphic as the 
space P differs from Z only in the replacement of the 
structure group 9 by 9' according to the specified isomor- 
phism. 

This means that the amplitude Z+{A, ) is defined to be 
single-valued and continuous on the space P. Moreover 
the amplitude is invariant under the action of the group 9 ', 
and Eq. (2.13) is valid in the event that SAP # V,Sa. 

In conclusion we note that restriction of the amplitude 
Z+{A, ) to the space P means in fact a certain change in 
the passage to the limit ofremoving the cut-off. Indeed, let us 
look at our equations from a different point of view. We 
carry out the gauge transformation SAP =V,Sa, 
SpN = - Sap,, Sp,+ = pN+6a,  Sa(x)  -0 for t-+to or 
t-t,. At the same time the variables {a, (to),ZN (t, )) are 
unchanged and therefore the amplitude (2.8) is left invar- 
iant by the action of the gauge group. Such an interpretation 
of the equations corresponds to direct evaluation (without 
time point-splitting) of the derivative J /d t  in the square 
bracket in (2.14). This is correct as the quantity in the 
square bracket is regularized. In this manner we again arrive 
at gauge invariance of the amplitude Z+{A, ). This change 
in the calculations corresponds to the passage from the alge- 
bra {L, ) to the algebra { I ,  1. Our work shows that the two 
ways of performing the calculations are equivalent. 

4. RELATIVISTIC INVARIANCE 

It is now obvious that the integration JDA, in (2.1) 
should proceed over the space X'. 

Let us clarify the question of relativistic invariance of 
the system. This question is technically solved analogously 
to the question of gauge anomaly: we subject the fields to an 
infinitesimal localized Lorentz transformation and evaluate 
the corresponding anomaly arising due to noninvariance of 
the measure. Since relativistically invariant methods for the 
regularization of the fluctuations of the gauge fields exist, 
the possible anomaly is contained in the integral (2.5). 

In the transition amplitude (2.1 ) let us carry out a vari- 
ation of the fields in the form 

Here w,, (XI  = - w, (x)  are the transformation param- 
eters. Since for d,w,, = 0 the action of the system is left 
invariant, some conservation law corresponds to the trans- 
formations (4.1 ) and can be violated by a Lorentz anomaly. 
Analogously to the derivation of the gauge anomaly, we find 
(in the dangerous case w" 0, woi(x) = wi(x) ) : 

Here the operator d /at acts only on the functions tC,P and tC,= 
for the same reason as in Sec. 2 [see (2.19) and following]. It 
is easy to see that the right-hand-side of (4.2) equals zero. 
Indeed, it follows from the properties of charge conjugation 
(2.7) that the right-hand-side of (4.2) is odd under charge 
conjugation; moreover it is gauge invariant. But it is impossi- 
ble to construct from gauge fields a local entity with these 
properties. Analogous conclusions hold for arbitrary values 
of the parameter w,, , as well as for arbitrary translations. 
Therefore we have 

where W v  is the energy-momentum tensor. 
We note that if the integration JDA, proceeds over the 

space P ,  then the accompanying gauge transformation of 
the Yang-Mills field in (4.1) plays no role, as the amplitude 
Z+{A, ) is invariant under the action of the group 3'. 

It follows from (4.3) that the operators 

are conserved. Moreover one obtains from (4.3), from the 
commutation relations [PC" ,P" ] = 0 and from the space ro- 
tation group the missing commutation relations of the Poin- 
care algebra for the operators P p , M p v  (see Refs. 14, 2).  

5. CONCLUSION 

We may now draw the following conclusion: 
Assertion 2. The nonabelian Weyl theory is relativisti- 

cally and gauge invariant, provided the fermionic ampli- 
tudes are viewed in the space 2" and the integration JDA, 
in (2.1 ) is understood to be over the orbit" space 8. 

To develop the perturbation theory for calculating tran- 
sition amplitudes use can be made of the Fadeev-Popov 
trick. In (2.1) should be inserted z+ {A ,  1, calculated ac- 
cording to the formulated rules. In contrast to Feynman PT, 
there will be present in the expansion of Z +  {A, ) the retard- 
ed Green's function G "'(x). Since the theory is gauge-invar- 
iant, renormalizability can be established with the help of 
generalized Ward identities. Variation of the variables in the 
integral (2.1 ) of the form SAP = V, 6 a  leads to the identity 
0 = 0, while variation under the condition SA, #V,Sa 
yields VvF,, = e2Jh, where 
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I,,'-(x)=lp(x)-V#(-tr) ~ d ' y ~ ~ ~ ~ ( x , y ) V ~ P ( y ) ,  
u 

V,'D"'(z, y )  =8'"(x-y), . D"' (x, y )  =O (xO<yo). 

Let us formulate the result in Hamiltonian language. 
Regularization of the theory should preserve gauge invar- 
iance. This can be achieved if the fermionic states are taken 
from an incompletely filled Dirac sea. Thereafter one must 
solve either the time-dependent Schrodinger equation, or the 
Heisenberg equation with constraints. The 't Hooft and 
Veltman dimensional regularization method is likely to turn 
out to be a useful tool for the regularization of PT in solving 
the Schrodinger or Heisenberg equations because it pre- 
serves gauge invariance. 

Let xu = $d ,xua ( - V, (S/GAia) + q, +t "q,) be the 
generators of gauge transformations. Then [xu, 
xu ] = xr., + S, where s is a Schwinger term, which is ex- 
pressed covariantly in terms of gauge field variables. If Lor- 
entz invariance is preserved (according to Assertion 2 this is 
possible), then the term s is necessarily local. The most gen- 
eral expression for such a term is 

However c, = 0, since the given formula can be obtained in 
PT, it is valid for all groups, and in the SU(2) case the 
Schwinger term is absent. It is easy to verify that c, = c, = 0 
follows from the Jacobi identity [xu, [xu ,xw] ] + ... = 0. 

Similarly, one establishes from kinematic consider- 
ations that 

It is therefore possible and consistent with relativistic invar- 

iance to impose the constraints xu -0. In addition to the 
Weyl equation the following are present among the Heisen- 
berg equations of motion: 

Ai=e2Ei+ ViAo, VoEia= (l/e2) VjFli+q+oiitncp. 

The author is grateful for useful discussions to V. N. 
Gribov, whose point of view is close to the one expounded 
above. 

"1t can be shown that in dynamic quantization global anomaliesZ are also 
absent. 
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