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A supersymmetric effective Lagrangian is derived which can be used to study the nonergodicity of 
a system with two nonequivalent sublattices. Equations for the susceptibilities and order 
parameters of the sublattices on macroscopic and microscopic time scales are derived in the 
molecular field approximation. A tetracritical point can arise on the de Almeida-Thouless 
instability lines by virtue of an interaction of two Edwards-Anderson order parameters. The 
condition for the existence of this point is derived. The behavior of this system in a nonergodic 
state is analyzed in detail. Frustration of the intrasublattice interaction stimulates a spin-glass 
phase. 

1. INTRODUCTION 

The spin-glass problem has attracted much interest be- 
cause of several unusual properties associated with the non- 
ergodicity of the system.' Most of the theoretical work has 
dealt with the single-sublattice model with an infinite Sher- 
rington-Kirkpatrick interaction range.2 Some interesting 
studies on spin glasses with a finite interaction range have 
also been carried o ~ t . ~ - ~  Experimentally, there have been 
studies of complex frustrated magnetic materials (e.g., Ref. 
7).  

The two-sublattice form of spin glass was originally 
studied theoretically by the method of replicas in Refs. 8 and 
9, where some results quite different from those in the single- 
sublattice case were found. However, the sublattices were 
assumed to be equivalent in the model used there. 

In the present paper we analyze a spin-glass model with 
two nonequivalent sublattices. On the basis of the dynamic 
equations and the concept of supersymmetry, we derive an 
effective Lagrangian for studying the nonergodicity of the 
system. We use the method of Ref. 10 to construct equations 
for the susceptibilities, irreversible-response functions, and 
order parameters of the two spin subsystems. The interac- 
tion of the two order parameters of the sublattices is shown 
to have an interesting result: A tetracritical point may ap- 
pear on the Almeida-Thouless singularity lines. This effect 
appears to have an analog in the ordinary theory of phase 
transitions, where it has been established that the interaction 
of two order parameters can give rise to a tetracritical 
point." A condition for the existence of this point is derived 
in the strong-frustration limit of the intersublattice interac- 
tion. The freezing temperature is calculated for various pa- 
rameters of the theory. As an example, the temperature de- 
pendence is constructed for the susceptibilities and 
Edwards-Anderson parameters in two cases. It is found that 
the nonequilibrium sublattice susceptibilities have a fairly 
weak temperature dependence. As in the single-sublattice 
case, the temperature of the paramagnet-(spin glass) transi- 
tion in our model decreases with increasing magnetic field in 
accordance with the familiar two-thirds law. l 2  We find those 
values of the external magnetic field at which the spin-glass 
phase is completely suppressed. We find that frustration of 
the intrasublattice interaction stimulates the existence of a 
spin glass. 
2. MODEL AND BASIC EQUATIONS 

We adopt a soft Ising model of the spin glass with two 
nonequivalent subsystems. The Hamiltonian of this system 

is then given by 

where the index a specifies the sublattice, mai are the classi- 
cal fields, Ja, and Jik are the intrasublattice and intersublat- 
tice exchange integrals, and hai are the local magnetic fields. 
We consider the case of an "ideal" spin glass with random 
magnetic fields: 

The quantities J,,, . , Jik , and ha, are assumed to have Gaus- 
sian distributions here. 

In our case the dynamic equations have the standard 
form of Langevin equations with random forces ( t ) :  

where r, ' is the bare relaxation time. 
To find the expectation value in ( 3 )  we could use, for 

example, the diagram technique of Ref. 13. We find it more 
convenient to work with an effective Lagrangian which can 
be constructed on the basis of the idea of supersymmetry. We 
introduce the superfields10 

ma,  ( t )  =mai ( t )  + [Oagqai ( t )  +qar* ( t )  0a] -0a80a~ai(t) ,  

where 8 ,  and B ,* are supersymmetric coordinates, and vai, 
v z i ,  and pa, are anticommuting and commuting variables, 
respectively. Using ( 1 1-(4), we find the following effective 
Lagrangian in the mean field approximation: 
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No de Almeida-Thouless singularity arises in first-order 
perturbation theory, so we need to go to second order in the 
anharmonicity constants u ,  and u,. The eigenenergy parts of 
2: and o, then take the form 

-- I [h,'+411G, (0..  I , ,  t - f f )  + ~ I o G z ( % ,  1t.t-1') 1 
2T2 

The second term, L,, is found from L,  through the inter- 
change of indices 1 F? 2, so all the equations written below are 
symmetric under this interchange. Since the Lagrangian L,, 
is a single-site Lagrangian in the approximation, it is suffi- 
cient to consider only one sublattice; the effect of the second 
is incorporated in the term containing I, in (5).  The correla- 
tion function G, which figures in the effective Lagrangian is 
given by 

Equations (7)-( 10) are the basic equations of our theory. 
In a nonergodic state, a difference arises between the 

equilibrium (Gibbs-averaged) susceptibility x,, and the 
nonequilibrium (time-averaged) susceptibility X, . The dif- 
ference is determined by an irreversible-response function 
(or Sommers parameter14) : 

A,=T (xao-xa) =Ga- (o=O) -g,, ga= lim Ga- (a). 
0 - 0  

Ga(0, E ,  t - t ' )=(Qai(O,  t )  Qai(E, t ' )  ), ( 6 )  

where the expectation value is carried out with Lagrangian 
(5).  Wesee from (1)  and (5)  that it is possible to construct a 
standard perturbation theory in the term Q, (Ref. 4).  

Following Ref. 10, we find a system of equations for the 
spin correlation function D, and the retarded and advanced 
Green's functions G + : 

The function A is obviously a measure of the nonergodicity. 
In the nondegenerate phase (A, = 0)  it is easy to derive 

the system of Sherrington-Kirkpatrick equations2 for g , ,  g, 
and for the Edwards-Anderson parameters q,, q,: 

The phase transition to the spin-glass phase is deter- 
mined by the pole in D, (w) as w-0 (the relaxation time 
becomes infinite). We thus find the following equation for 
the Almeida-Thouless singularity line: 

In deriving equations for the degenerate phase 
(A, f 0)  we use Sompolinsky's hypothesis," which allows 

where 
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where D,, ( w  ) and G & ( w )  satisfy the usual fluctuation- 
dissipation theorem. After substituting ( 1 4 )  into ( 17)-  
( l o ) ,  we find some equations for Aai and qai. In the limit 
k-+ co the quantity i /k  becomes a continuous variable x ,  
which varies over the interval [O, 1  1, while Aai and qai be- 
come functions A, ( x )  and q, ( x ) .  The function q ( x )  is 
called the "Parisi parameter."I6 Omitting the details of the 
calculations, we write the final result: 

where 

It is not difficult to see that q, and q,, are the Edwards- 
Anderson parameters at microscopic and macroscopic fre- 
quencies. In the approach which we are taking here, we find 
not the functions q, ( x )  and A, ( x ) ,  themselves but only 
their boundary values.1° In the vicinity of the Almeida- 
Thouless singularity, where q i  ( x )  and A; ( x )  are nonvan- 
ishing, the two equations in ( 1 6 )  are the same. In this case 

the expression in braces vanishes. At x = 1, this gives us 
condition ( 1 3 ) ,  while at x = 0  we have 

and it follows from ( 1 3 )  and ( 1 8 )  that on the Almeida- 
Thouless singularity line we have q, = q, and A, = 0 .  

Interestingly, the fact that the parameters A, vanish on 
the de Almeida-Thouless singularity line can be proved 
through direct derivation of the Sommers equations for our 
model. In second-order perturbation theory these equations 
take the form 

41, 9u,2 + (- +$-- q,') * ,g2=0,  
TZ 2T2 

wherep, aredefinedin ( 1 2 ) .  Using ( 1 2 )  and ( 1 9 ) ,  we find 

it follows that under condition ( 1 3 )  the quantities A, and A, 
are zero. 

3. POSSIBLE EXISTENCE OF A TETRACRITICAL POINT 

Let us analyze Eqs. ( 1 2 ) ,  ( 1 3 ) ,  ( 1 5 ) ,  and ( 1 8 ) .  Using 
the first two of Eqs. ( 1 2 ) ,  we rewrite condition ( 1 3 )  as 

We assume that the Edwards-Anderson order parameter q, 
for each sublattice is determined by exclusively its own local 
magnetic field ha. It is then a simple matter to verify that 
condition ( 2  1  ) holds if 

h12=3ui2q13, h 2 2 = 3 ~ 2 2 q Z 3 .  ( 2 2 )  

It can be seen from ( 1 2 ) ,  ( 15 ), ( 2 2 ) ,  and the definition 
of the susceptibilities in ( 1  1  ) that the quantities q, and X, 
are independent of the temperature, while q, and X, are 
independent of ha. We can thus write 

qa(T,  h)=quc(T),  g a ( T ,  h )  =gee( T ) ,  ( 2 3 )  

where q,, and g,, are the values of q, and g, on the ha, (T) 
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phase curves. The six functions q,, , g,, , and ha, are defined 
by the simultaneous solution of the six equations ( 12) and 
(22). We will not determine h,, (T), however; we will in- 
stead assume that they are known functions of the tempera- 
ture.l°From (12), (15), and (22) we then find 

These relations, along with ( 12) and ( 15 ), in principle con- 
stitute a complete solution of the problem. However, these 
equations cannot be solved analytically for the general case. 
We will accordingly restrict the discussion to particular 
cases. 

If the intrasublattice interaction of the spins is far 
stronger than the intersublattice interaction (I,,I,) I,), we 
can set I, = 0. In this case, all of the equations derived above 
break up into two independent subsystems. For each sublat- 
tice we find the result of the one-sublattice model," as is 
easily shown. Experimentally, one should observe two 
points of transition to a spin glass in such a situation (the 
susceptibility curve will have two slope changes). 

We are interested primarily in the opposite case, in 
which frustration of the intersublattice interaction domi- 
nates (I,) I,,I,) . In this case both sublattices can undergo a 
transition to the spin-glass phase simultaneously at some 
temperature Tf. This point is obviously the point at which 
the two curves h ,, ( Tf) = 0 and h ,, (Tf) = 0 intersect. In 
other words, on de Almeida-Thouless singularity lines a te- 
tracritical point arises; below this point, the order param- 
eters of the two subsystems are nonzero. The situation is 
shown qualitatively in Fig. 1. 

To determine Tf we first set I, = I, = 0. In this approx- 
imation we find from ( 12) and ( 13) 

where x, and x, are the solutions of the system 

Equations (26) do not have exact solutions for arbitrary a, 
and a,. It is possible, however, to find the condition under 
which it has positive solutions, i.e., the condition for the 
existence of a tetracritical point. In the Appendix we prove 
that a tetracritical point arises only if 

Figure 2 shows the freezing temperature as a fuiction of 
the parameters a, and a,. As these parameters increase, Tf 
decreases, as is easily seen. The reason is that for given an- 
harmonicity constants an increase in a, and a, is equivalent 
to a decrease in the degree of frustration [see (27) 1. The 
maximum value, reached at a, = a, = 39/4, is 

As we will see below, expression (29) corresponds to the 
point of transition to a metastable spin-glass phase. 

In the case a, = a, = a ,  Eqs. ( 26) can be solved exactly 
( x ,  = x,); we find 

( a )  =3- (4a-39) '", OGv(a)  <3. (30) 

Let us consider the case in which a, and a, differ only 
slightly. Setting a, = a, + E = a + E where E <  1, we find, in 
first order in E, 

ATfITj  (E=O) =-el9 (a )  [3-(P ( a )  1, (31) 

where ATf is the shift of the transition temperature from 
Tf (E = 0), which is determined by (30). The minus sign in 
(3 1 ) means that Tf decreases with increasing a,, in agree- 
ment with the general conclusion derived above. 

Near Tf we can derive exact general expressions for all 
quantities in terms of x, and x,. These expressions are too 
lengthy to reproduce here, however; we will write the results 
only for the case a ,  = a,: 

Here 

FIG. 1. Appearance of a tetracritical point on the de Almeida-Thouless 
singularity lines by virtue of the interaction between the two order param- FIG. 2. Freezing temperature versus the parameters a,  and a,. 1- 
eters of the sublattices. a, = 10; 2--a, = 11; 3 - 4 ,  = 12. 

322 Sov. Phys. JETP 68 (2), February 1989 Mai Xuan Ly 322 



From the latter equations we see that we havex a: h 413 and 
A ( h  = 0) a 171 '. The same field dependence and tempera- 
ture dependence have been derived for the one-sublattice 
modello (the only difference is in the numerical coeffi- 
cients). This result is apparently a consequence of the use of 
the molecular field approximation. 

As an example, we write the results of the numerical 
calculations for the temperature dependence of the Ed- 
wards-Anderson parameters and for the susceptibilities in 
the two particular cases 

ai=a2=11, u,=0,722, u2=u,/2,  

Here we have used I;'2 as a unit of energy, so we have 
u, , ha, T a  I 6, a I A"; while the other quantities, g, , 
q,, and A,, are dimensionless. In the numerical calculation, 
I A'2 drops out. In each case, the parameter values are chosen 
to satisfy Tf = Note also that in the limit T-0 we have 
q, = const, while g,  a T. Curves 1 and 2 in Fig. 3 show the 
temperature dependence of the parameters q, and q, in cases 
a )  and b), respectively. We see that the Edwards-Anderson 
parameters decrease with increasing a,. The reason is that 
an increase in a, prevents the existence of a spin glass, as we 
noted earlier. The horizontal lines in Figs. 4 and 5 corre- 
spond to temperature-independent equilibrium sublattice 
susceptibilities. As can be seen from Figs. 4 and 5, the non- 
equilibrium susceptibilities depend rather weakly on the 

FIG. 4. Susceptibilities of (a)  the first and (b) the second sublattice for 
cases a) and b).  The horizontal lines show the equilibrium values. 

temperature in our model. We believe this weak dependence 
is a general feature of a "soft" spin-glass model. Since the 
irreversible-response functions A, are related to X, and X, 
by ( 1 1 ), we will not reproduce the corresponding curves for 
them here. 

Let us examine the effect of an external magnetic field 
on the tetracritical point. In weak fields ( h  (I;") we find 
from (12) and (13) 

T ,  ( h )  =T,  (h=O) (1 -yh") ,  
y=3'/e{Tj% (h=O) [ 4 ~ ~ ~ - 6 x ~ ~ - ~ l ~ a ~ ( x , / x ~ )  I h ]  

X [ 4 ~ ~ ~ - 6 x ~ ~ - ~ / ~ a ~ ( x ~ / x , ) ' ~ ]  -n .nzi4)-' 
x {x2(1 -xZ2)  ~ ~ - ' / ~ [ a ~  ( x i l x 2 )  '1a+6x12-4xtbl 
+xt ( 1 - x i 2 )  U ~ - ' / ~ [ U ,  ( ~ ~ / x ~ ) ' " + 6 ~ ~ ~ - 4 ~ 2 1 1 ) .  (33) 

It  is easy to see that we have y > 0 at x,, x, < 1. According to 
the numerical calculations described in the Appendix, solu- 
tions x,, x, < 1 of Eqs. (26) are possible only in the interval 
10 <a, ,  a, < 12. Accordingly, for this region of the values of 
the parameters a, the external magnetic field suppresses the 
spin-glass phase in accordance with the two-thirds law.12 
Elsewhere in the interval 39/4 <a, ,  a, < 10 the coefficient y 
is negative. This result means that the temperature of the 
paramagnetic-(spin glass) transition increases rather than 
decreases with increasing field. We thus assume that the 
spin-glass phases which correspond to the interval 39/4 <a,,  
a, < 10 are metastable. 

In the case a ,  =a2[x ,  =x,  = (p(a)/,,1'2], expres- 
sion ( 33 ) simplifies substantially, becoming 

FIG. 3. Temperature dependence of the Edwards-Anderson parameters FIG. 5. Dependence of the solution of Eq. (A4) on a, and a,. 1 4 ,  = 10; 
q, ( la ,  lb) and q, (2a,2b) for cases a) and b ) .  2 4 ,  = 11; 3 - 4 ,  = 12. 
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It is not difficult to see that the coefficient y is positive for 
1 0 < a <  12 (O<p(a)  <2 )  and negative for 39/4<a< 10 
(2 < p (a)  < 3 ) . For cases a)  and b) introduced above, Eqs. 
(34) and (33) (x, = 0 . 5 1 6 8 , ~ ~  = 0.5345) yield y = 1.8 and 
y = 1.3, respectively. 

Let us find the critical external magnetic field, at which 
the spin-glass phase is totally suppressed ( Tf = 0). From 
(2) and (22) we find 

where q, ( T = 0) is the value of q, at absolute zero, which 
can be found only by numerical methods. For particular 
cases a )  and b), the values of h ,  are approximately 0.251;'' 
and 0.1 81;',, respectively. 

We now incorporate the intrasublattice interaction. As 
before, we assume that the internublattice frustration is 
dominant, i.e., I,% I,, I,. Expanding in the small parameters 
I,/I, and I,/&, we then find the shift of the freezing tem- 
perature: 

It can be verified that A Tf /Tf in (36) is positive for all a ,  and 
a, which satisfy (28), i.e., that Tf increases with increasing 
values of the parameters I, and I,. In other words, the frus- 
tration of the intrasublattice interaction stimulates the exis- 
tence of a spin glass. This is a natural result, since Tf must be 
proportional to the degree of frustration of the system as a 
whole. 

In the case a ,  = a,, Eq. (36) can be rewritten in the 
simpler form 

We see that ATf is positive for all a. We will not reproduce 
here the lengthy expressions for the other quantities. 

4. CONCLUSION 

We have shown that in the case of pronounced frustra- 
tion of the intersublattice interaction a tetracritical point can 
exist. When such a point does exist, the susceptibility of the 
system should have only a single slope change. This is appar- 
ently the situation in, for example, the frustrated system of 
the garnet MnFeG (Ref. 7). 

Note that if we assume the sublattices to be equivalent, 
as in Refs. 8 and 9, a tetracritical point no longer arises, since 
the point h,, (T)  = h,, (T)  and the two lines h,, (Tf) = 0 
and h,, (Tf) = 0 simply coincide, rather than intersecting. 

It would be interesting to examine the intermediate case 
in which the degrees of frustration of the intersublattice and 
intrasublattice interactions are approximately the same (I,, 
I, - I,). This question can be treated using the equations 

derived in this paper. 
The model which we have used in this paper can be 

generalized to study a state in which ferrimagnetism coexist 
with a spin glass (it is necessary to assume that the first 
moments of the distribution of the random exchange interac- 
tions are nonzero ) . 

I am deeply indebted to Prof. Wu Dien Ky for a useful 
discussion of this study. 

APPENDIX 

The condition for the existence of a tetracritical point is 
equivalent to the condition for the existence of nonnegative 
solutions of Eqs. (26) in the text proper. From (26) we have 

Assuming a ,  >a, and introducing the auxiliary variable 
z = (x,/x,)"~, we find 

Frsa the condition that the solutions x, and x, be nonnega- 
tive we find 

Inequalities (A1 ) and (A3) constitute a necessary con- 
dition. The sufficient condition is the condition for the exis- 
tence of a positive solution of the equation 

in the interval [39/4a,, 4a2/39]. The sufficiency is easily 
checked. 

Furthermore, the symmetry of Eqs. (26) under the in- 
terchange of the sublattice indices means that we can always 
choosez> 1 [it is not difficult to show that in the case a, > a, 
we choosez = (x,/x,) 'I2, while in the casea, <a, we choose 
z = (x,/x,) 1'2]. This result, along with (A1)-(A3), gives 
us condition (28) of the text proper. Figure 5 shows the 
result of a solution of (A4) for various values of the param- 
eters a, and a,. From these results and (A2) we find the x, 
and x, used in the text proper. 
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