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It is shown for the first time that self-oscillations can in principle arise at the long-wavelength 
fundamental absorption edge of a crystal during resonant excitation of high-density excitons. The 
conditions for the appearance of various temporal structures in a system of coherent excitons and 
photons are found from the Keldysh equations generalized to the case with a coherent external 
pump and decays, in the spatially homogeneous case. Both regular and stochastic self-oscillations 
are possible in the system, depending on the parameters of the equations. A numerical simulation 
has been carried out. The primary bifurcations in the system have been found. 

1. INTRODUCTION 

Cooperative nonlinear coherent processes in optical 
systems have recently attracted much attention. Among 
these processes are self-induced transparency, optical nuta- 
tion, photon echos, and optical bistability and multistability. 

Risken and Numendal' analyzed self-oscillations in la- 
sers on the basis of the Bloch-Maxwell equations describing 
the interaction of an electromagnetic field with a system of 
two-level atoms. It was shown that for a certain set of param- 
eters of the system the steady-state continuous states become 
unstable, with the result that self-oscillations occur in the 
lasing intensity. 

Self-oscillations in the geometry of a ring resonator and 
a Fabry-Perot resonator filled with two-level absorbers were 
studied in Refs. 2 4 .  It was shown that incorporating propa- 
gation effects has the consequence that a certain part of the 
upper branch of optical bistability, with a positive slope, 
goes unstable, and the steady state of the field converts into 
pulsating light. 

Haken5 and Oraevski? showed that the system of 
Bloch-Maxwell equations is homologous to the system of 
Lorenz equations, which has in addition to ordinary attrac- 
tors, some singular attractive sets in phase space (strange 
attractors). The presence of these strange attractors is evi- 
dence of a dynamic stochastic nature in dissipative systems. 
The onset of dynamic chaos in optics has now been the sub- 
ject of many studies. It was shown in Refs. 7-9 that the am- 
plitude of the field which is transmitted through a ring reso- 
nator with a nonlinear medium undergoes a sequence of 
period-doubling bifurcations which result in the appearance 
of an optical turbulence. This effect has been observed ex- 
perimentally.I0 The transition from periodic to chaotic be- 
havior in bistable optical devices (nonlinear Fabry-Perot 
resonators and ring resonators) was studied in Refs. 11 and 
12. Dynamic stochastic behavior in quantum generators was 
studied in Refs. 13 and 14. 

Research on these phenomena in a system of excitons 
and biexcitons in a condensed medium was begun compara- 
tively recently. Biexciton-exciton conversion and interexci- 
ton transitions exhibit many similarities with the model of 
two-level atoms. There are, on the other hand, some substan- 
tial differences. Specifically, a system of excitons and biexci- 
tons differs from a disordered set of atoms or impurity 
centers in a crystal by virtue of its translational and quan- 
tum-statistics properties. It also differs in the method by 

which the initial state is prepared. We have studied15-l8 opti- 
cal turbulence accompanying exciton-exciton and exciton- 
exciton transitions in semiconductors. Since excitons and 
biexcitons are transient excitations of a crystal, it was shown 
that the dynamic evolution of the corresponding quantum 
transitions is described by a generalized system of Lorenz 
equations in a four-dimensional phase space. The conditions 
under which that system of equations can be reduced and 
converted into the ordinary system of Lorenz equations were 
found. 

The time evolution of coherent excitons and photons 
was studied in Refs. 19-21 for both low and high excitation 
levels; the pulse length was shorter than the characteristic 
relaxation times, and the system was a Hamiltonian system. 
We know that Hamiltonian systems do not have asymptotic 
stable states or stable limiting c y ~ l e s . ~ ~ , ~ ~  Incorporating the 
scattering of coherent quasiparticles causes the oscillations 
which arise to decay, and there are no nonzero steady states 
of excitons or photons.24 

In this paper we examine a new cooperative optical phe- 
nomenon: self-oscillations in the exciton part of the spec- 
trum in which quantum transitions occur not between two 
levels, e.g., exciton and biexciton levels, but between the 
ground state of the crystal and one specific exciton level. 
Using a generalized system of Keldysh equations during the 
application of a coherent external pump, with decays of 
quasiparticles, in the spatially homogeneous case, we show 
that nonlinear periodic and stochastic self-oscillations can 
arise in a system of coherent excitons and photons. We find 
the simplest bifurcation properties of the equations and the 
conditions under which both regular and stochastic self-os- 
cillations arise in the system. We have carried out a numeri- 
cal simulation. We describe the transition of a system from a 
steady state of periodic self-oscillations (a  Hopf bifurca- 
tion). It has been found that the transition of the system to a 
state of dynamic chaos occurs through period-doubling bi- 
furcations. 

The self-oscillations with which we are concerned here 
are quite different from the free oscillations of coherent exci- 
tons and photons which were studied in Refs. 19-21 and 24. 
Simultaneously incorporating an external pump and decays 
leads to the appearance of long-lived nonlinear and stochas- 
tic self-oscillations and to the appearance of complex attrac- 
tors in phase space. 

Coherent nonlinear effects, including self-oscillations 
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in the exciton part of the spectrum, are quite different from 
the corresponding phenomena in two-level systems. At rela- 
tively low exciton densities, at which the excitons may be 
regarded as bosons, the Hamiltonian of the interaction of the 
excitons and photons is quadratic, and the amplitude of the 
electromagnetic field, E, is related linearly to the amplitude 
of the exciton wave: E-a. This circumstance is an impor- 
tant distinction between the exciton problem and the model 
of two-level atoms, in which the Hamiltonian for the interac- 
tion of the light with the two-level medium is cubic, and the 
system has a natural nonlinearity. The change in the field in 
Maxwell's equations is determined by the density of atoms. 

In the case of excitons, the nonlinearity stems from a 
dynamic and kinematic exciton-exciton interaction. The de- 
velopment of coherent nonlinear phenomena in the exciton 
part of the spectrum is described by a system of Keldysh 
equations.25 These are equations of the Ginzburg-Landau 
type and describe coherent states of excitons and photons 
which vary slowly in space and time. The Keldysh equations 
have served as the starting point for a study of many aspects 
of the coherent nonlinear propagation of light in dense con- 
densed media in the exciton part of the spectrum. In particu- 
lar, in Refs. 26-30 we used the Keldysh equations to con- 
struct a theory for a self-induced transparency in the exciton 
part of the spectrum and a theory for optical bistability in the 
geometry of a Fabry-Perot resonator. This bistability was 
observed in Ref. 3 1. 

Since the dynamic evolution of a system of coherent 
excitons and photons is described by equations which are 
quite different from the Bloch-Maxwell equations, the peri- 
odic and stochastic self-oscillations which arise in our prob- 
lem differ from the corresponding self-oscillations in two- 
level systems. In particular, the nonlinearity due to the 
exciton-exciton interaction unavoidably leads to phase mod- 
ulation and to the result that the system of coherent excitons 
and photons evolves in a four-dimensional phase space, 
while the dynamic evolution of two-level systems takes place 
in a three-dimensional phase space, and the phase modula- 
tion is inc~nsequential.~.~ 

Furthermore, an optical bistability and self-oscillations 
are possible in the model of two-level atoms under exact- 
resonance  condition^.^.^ As we will see in the analysis below, 
these phenomena can arise in the exciton part of the spec- 
trum only if the difference between the frequency of the ex- 
ternal electromagnetic field and the frequency of the exciton 
transitions (the "detuning of the resonance") exceeds the 
characteristic frequencies of the problem, i.e., only if there is 
a frequency threshold in addition to the intensity threshold. 

Because of all these facts, the periodic and stochastic 
self-oscillations and the corresponding attractors in phase 
space which arise in our problem have a more complicated 
structure than that in the model of two-level atoms. 

2. GENERALIZED DYNAMIC EQUATIONS OF COHERENT 
EXCITONS AND PHOTONS 

A monochromatic plane wave 

E=Eo exp (ikX-iot) (1) 

is incident on a resonator, whose mirrors may be the pol- 
ished faces of the crystal itself. This wave excites a field mode 
of the resonator, which is in turn coupled with excitons. The 

interaction of the active medium with the coherent external 
pump and the heat reservoir, which provides the relaxation 
processes, will be taken into account phenomenologically at 
a certain point in our analysis. 

A system of equations describing coherent excitons and 
photons which are slightly nonuniform in space and time, 
without an external pump and without dissipation effects, 
was derived by K e l d y ~ h . ~ ~  For waves which are propagating 
along the X axis this system of equations is 

where a(X,t) is the amplitude of the coherent excitons, 
E + (X,t) is the positive-frequency part of the oscillatory 
electromagnetic field, g is the constant of the exciton-exciton 
interaction, d is the dipole moment of the transition from the 
ground state of the crystal to the exciton state, m is the trans- 
lational mass of an exciton, v, is the volume of a unit cell, Vis 
the volume of the crystal, and R, is the limiting frequency of 
a transverse exciton. 

We write the macroscopic amplitudes of the excitons 
and the field as modulated plane waves with a carrier fre- 
quency w and a wave vector k: 

a (X, t) = VIhif exp ( ikX-iot), 

where the slowly varying functions2 and E are the envelopes 
of corresponding wave packets. 

At this point we adopt the approximation of slowly 
varying envelopes, which is valid under the conditions 

etc. The meaning here is that the envelopes of a wave packet 
are functions which are fairly smooth in comparison with 
the rapidly oscillating part. The envelopes change only 
slightly over a wavelength and over a period of the light 
incident on the crystal. 

Substituting (4),  ( 5 )  into (2) ,  (3) ,  assuming slowly 
varying amplitudes, and ignoring spatial-dispertion effects 
(which are inconsequential in the pertinent part of the spec- 
trum), we find the following simplified equations for coher- 
ent excitons and photons with uniform spatial distributions: 

d& 2ndo 
-= i- 02-cZk2 

X+i-  F - ~ C + E ~ ,  
dt v,'" 20 

where ye,, y, and &,-the decay constants of the excitons 
and photons and the amplitude of the coherent external 
pump-were introduced phenomenologically in Eqs. (7 )  
and (8) .  These equations give a comprehensive description 
of the dynamic evolution of coherent excitons and photons 
which are distributed uniformly in a crystal when an exter- 
nal pump is acting and when there are decays. In the most 
general case, the amplitudes 2 and Z- are complex quantities, 
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so system (7),  (8)  consists of four independent nonlinear 
ordinary differential equations. These equations are, we 
might note, the same as the equations for the exciton and 
photon amplitudes in Ref. 32. The latter equations were de- 
rived rigorously on the basis of the quantum theory of fluctu- 
ations and decays from the flux part of the corresponding 
Fokker-Planck equation; the fluctuation terms were ig- 
nored. 

At this point we switch to dimensionless quantities. We 
introduce 

where Y = 1 corresponds to a repulsion between excitons, 
and Y = - 1 to an attraction. Using (9),  we find that system 
(7 ), (8)  takes the form 

Equations ( 10) and ( 1 1 ) fall in the class of nonlinear ordi- 
nary differential equations which describe open dynamic 
systems. For such equations, several steady-state solutions 
x,y are possible. Not all of the steady states, however, can be 
stable, depending on the relations among the parameters. 
Accordingly, an analysis of the solutions of Eqs. ( 10) and 
( 11) involves resolving the question of the stability of the 
steady states. The latter are found from the condition 
x = y = O .  Inthiscasewefindfrom ( lo) ,  (11) 

from which we in turn find 

where I, = IP 1' is the dimensionless intensity of the field 
which is incident on the crystal, and n = 1x1' is the steady- 
state density of coherent excitons. Expression (14) relates 
the exciton density to the external pump and is essentially 
the equation of the theory of optical bistability in the exciton 
part of the spectrum and incorporates an exciton-exciton 
interaction. 

Writing the complex amplitudes x and y in the form 
x = x, + ix,, y = x, + ix,, we find the following system of 
equations from ( lo),  ( 11 ) : 

The system of nonlinear differential equations (15)- 
( 18) is our basic system of equations for analyzing the possi- 
ble occurrence of self-oscillations in the exciton part of the 
spectrum. For simplicity we will be discussing the case in 
which the frequency w of the external field is equal to the 
natural frequency of a field mode of the resonator, w = ck 
( A  = 0). In this case the characteristic equation for the 
steady-states of Eqs. ( 15 )-( 18) can be written 

where 

If the steady-state solutions xst are to be stable, all the roots 
of Eq. ( 19) must have negative real parts. A necessary and 
sufficient condition for this negativity is that all of the princi- 
pal diagonal minors of the Hurwitz matrix be positive. The 
following inequalities must then hold: 

Treating I, as a function of n, we easily find from ( 14) 
that under the condition 

this function is a single-valued, monotonically increasing 
function and has an inflection point n, = (2/3)S; we also 
find 

If S > S2, the function I,(n) has two extrema (at n = n, and 
n = n,), given by, respectively, 

The inverse function n (I,) is triple-valued at S > 6,; in 
other words, there are three values of the exciton density in 
the crystal which correspond to a given value of the ampli- 
tude of the external field (Fig. 1). It is not difficult to see that 
region 3 -4 of the functional dependence n (I,) is unstable 
for S > S,, since the second of the inequalities (20) does not 
hold on this part of the curve. 

Analysis shows that the stability of the n (I,) curve de- 
pends strongly on whether the first ofinequalities (20) holds 

FIG. 1.  The exciton density n = 1xI2 versus the intensity of the electro- 
magnetic field incident on the crystal, I,, = (P 12. 
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and on the relation between the frequency of the free linear 
exciton-photon nutation, a, and the parameter o. If a > 0, 
then S, > 6, = 31'2(u + 1). For resonance detunings such 
that the relation S <S, holds, the functional dependence 
n(I,) is then single-valued, and a steady state is stable for all 
values of the external pump. Although there is no bistability 
in the system in the case S, < S < S,, the part of the n(I,) 
curve in the interval I, <Io  <I, goes unstable. Here I, and I, 
are given by 

In the case S > S,, as we have already mentioned, an optical 
bistability arises in the system in the pump interval I4 < I, 
<I3, where 

On the lower and upper branches, however, instabilities 
arise in a certain interval of the pump. The lower branch of 
the curve is stable for 0 < Io  < I ,  and unstable for I, <Io  <I,. 
The upper branch is stable for I,>I, and unstable for 
1 4  < I, <I,. 

If the frequency of exciton-photon conversions satisfies 
a <a ,  there will again be no bistability in the system at 
S < S,, and the entire n (I,) curve will be stable. At 6 > S,, a 
bistability arises in the system; both the lower and upper 
branches of the curve are stable. 

3. NUMERICALSIMULATION; CONCLUSION 

At present there is no standard algorithm for solving 
general nonlinear differential equations, and it is difficult to 
find analytic solutions of Eqs. ( 15)-( 18). We have accord- 
ingly carried out a numerical simulation. 

The evolution of the solutions of system of differential 
equations ( 15)-( 18) depends strongly on the evolution of a 
small region in the phase space of this system. Treating the 
motion of points in the phase space as the motion of a liquid 
with a divergence 

a;, a a;, a;, -+-+-+-= -(20+2), 
ax, ax2 ax, ax, 

we conclude that any small volume of the phase space tends 
toward zero as T+ CXJ at a rate which does not depend on xi, 
with a time scale (2a  + 2)-'. The situation is analogous to 
the famous Lorenz system,33 which plays a special role in 
modern physics primarily in connection with the problem of 
turbulence. To be fair, we should point out that the 
"strange" behavior of the solutions of deterministic nonlin- 
ear equations has been seen even before the appearance of the 
work by Lorenz, in particular, in studies by the Soviet physi- 
cists Grasyuk and OraevskiL6 The tendency of a small vol- 
ume of interest to go to zero does not mean that it shrinks to a 
point. All of the orbits contract to a certain subset in phase 
space with a vanishing phase volume. 

If the steady-state solutions are unstable, the attractors 
in phase space may be one of several things: a limit cycle, a 
torus, or a strange attractor. These entities correspond to 

nonlinear periodic, quasiperiodic, and stochastic self-oscil- 
lations in the system. A characteristic property of the latter 
is that the random self-excitations arise in the system not 
because of the introduction of random forces in the initial 
conditions or the action of random external forces; instead, 
their appearance is an internal property of the system and is 
related to the comlex motion of the orbits in phase space. 

Figure 2 shows plots of the exciton density 1x1' and the 
intensity of the internal electromagnetic field, lyI2, along 
with projections of the phase orbits onto the (x,,x,) and 
(x3,x4) plane for o = 10, a = 22.3, S = 20, and P = 85 
(6, = 19, 6 ,  = 98). We see that for these parameter values 
nonlinear periodic self-oscillations arise in the system, and 
as time passes a phase orbit goes over to a stable limit cycle. 

Figure 3 shows the time evolution of the internal elec- 
tromagnetic field and a projection of the phase orbits onto 
the (x3,x4) plane for the values o = 10, a = 22.9, S = 46, 
and P = 107. We see from this figure that bifurcation occurs 
from one limiting cycle to another, in a process accompanied 
by a quadrupling of the period. 

Figure 4 shows a record of the stochastic self-modula- 
tion process and corresponding projections of the phase or- 
bits for a = 10, a = 22.9, S = 46, and P = 135. We see that 
random self-oscillations arise in the system. The numerical 
simulation shows that the onset of dynamic chaos in a sys- 
tem of coherent excitons and photons depends strongly on 
the level of the external pump in the region of instability of 
the system. That surface in phase space to which phase orbits 
contract varies with the level of the external pump. The on- 
set of a chaotic regime of oscillations occurs through a se- 
quence of period doublings. In contrast with Lorenz chaos, 
in which the stochastic oscillations and the creation of a 
strange attractor are associated with periodic jumps between 
corresponding equilibrium states, in our case the stochastic 
nature is a consequence of the phase modulation and thus of 
the appearance of a chaotic attractor in the four-dimensional 
phase space, which becomes filled in a complicated way with 
nonintersecting phase orbits. 

Figure 5 shows the time evolution of 1x1' and lyI2 and 
corresponding projections of the phase orbits for conditions 
corresponding to the onset of optical bistability at 6 >  6, 
= 98 and P = 245. Oscillations with two characteristic per- 

iods arise in the system. The oscillations with the smaller 
period are associated with the detuning of the resonance be- 
tween the frequency of the external field and the frequency 
of the exciton transition. The larger oscillation period is as- 
sociated with the natural frequency of exciton-photon con- 
versions, modulated by the exciton-exciton interaction in a 
situation in which an external pump is acting and quasiparti- 
cles are decaying. 

The numerical simulation shows that when the pump 
falls in the stability region of the lower branch of the optical- 
bistability curve the system goes through a few regular 
damped oscillations and arrives at its steady state; corre- 
spondingly, there is a stable focus in the phase space. If the 
external pump takes on values near the instability region of 
the lower branch of the optical-bistability curve, a Hopf bi- 
furcation occurs; i.e., there is a transition from a focus to a 
limiting cycle. The numerical simulation shows that the low- 
er branch of the optical bistability is stable in a very small 
region near the point at which the instability arises. Small 
deviations from the steady state in the direction of a stronger 
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FIG. 3. Time evolution of the internal electromagnetic field; phase pro- 
trait of a bifurcation of a limiting cycle after a quadrupling of the period in 
the (x,,x,) plane for (T = 10, n = 22.9, S = 46, and P = 107. 

FIG. 2. Time evolution of the exciton density 1xI2, and 
the intensity of the eIectromagnetic field, (yI2; projec- 
tions of the phase orbits onto the (x,,x,) and (x,,x,) 
planes for a = 10, a = 22.3,6 = 20, and P = 85. A sta- 
ble limiting cycle appears. 

pump result in self-oscillations in the system. In the case in 
which the upper branch of the optical-bistability curve is 
stable, while the lower branch is unstable, the system will go 
through a few regular oscillations and then into a state of 
stable focus; i.e., an inverse Hopf bifurcation will occur. The 
region of stability of the upper optical-bistability curve is far 
larger than the lower region. 

We have a few comments regarding the possibility of 
experimentally observing self-oscillations in the exciton part 
of the spectrum. As we mentioned above, instabilities arise if 
the exciton-photon conversion constant a is larger than the 
decay parameter o(a > o ) ,  i.e., if there is a clearly expressed 
polariton effect in the system. The optical bistability which 
was first observed among excitons in systems consisting of 
layers of GaAs and AlGaAs (Refs. 34-37) stems from a 
change in the refractive index of a crystal with the light in- 
tensity. It is caused by bleaching of an exciton resonance due 
to screening of the Coulomb intera~tion,~' not by an exciton- 
exciton interaction. Optical bistability resulting from the ex- 
citon-exciton interaction has been seen experimentally in a 
GaSe cyr~ta l .~ '  We know that the polariton effect is extreme- 
ly weak in this crystal, so that observing self-oscillations here 
is highly unlikely. The most likely place to observe this effect 
is in the CdS crystal, in which the polariton effect is most 
pronounced. 

We conclude with some numerical estimates for crys- 
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FIG. 4. Time evolution of a stochastic self-modula- 
tion process; projections of phase orbits in the 
( x , , ~ , )  and (x,,x,) plane for u = 10, a = 22.9, 
6 = 46, and P = 135. 

tals of the CdS type: g = 2.4.10-32 erg.cm3, ye, -3.10" which regular and stochastic self-oscillations can be ob- 
s-l, y-3-1012 s-' (0= lo) ,  and R, = 10-4.R, = 4-10" served-are n,,, - 1017 cmP3, n,,, -8-1017 cmP3, I,-10 
s-I. We find that the critical exciton densities and the criti- MW/cm2 and 1,- 100 M W / C ~ ~ ,  respectively. The density 

I cal power levels of the light incident on the crystal-at of excitons at which a Mott transition occurs in the CdS 

FIG. 5. Time evolution of 1x1 and ly12; projections 
of phase velocities onto a plane in a regime in which 
bistability appears, with u = 10, a = 23.6, S = 110 
(S>S, = 98),  andP= 245. 
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crystal is n, - 1019 ~ m - ~ .  Our numerical estimates thus lead 
to the conclusion that there is a real possibility of observing 
self-oscillations in the exciton part of the spectrum during 
intense excitation of a crystal. 

'H. Risken and K. Numendal, J. Appl. Phys. 39,4662 ( 1968). 
'R. Bonifacio and L. A. Lugiato, Lett. Nuovo Cimento 21,510 ( 1976). 
3R. Bonifacio, M. Gronci and L. A. Lugiato, Opt. Commun. 30, 129 
(1979). 

4F. Casagrande, L. A. Lugiato, and M. L. Asquini, Opt. Commun. 32, 
492 (1980). 

'H. Haken, Introduction to Synergetics, Springer-Verlag, New York, 
1977 (Russ. Transl. Mir, Moscow, 1980). 

6A. N. Oraevskii, Kvant. Elektron. (Moscow) 8, 130 ( 1981) [Sov. J. 
Quantum Electron. 11,71 ( 1981) 1. 

7 ~ .  A. Lugiato, L. M. Narducci, D. K. Bandy, and C. A. Pennise, Opt. 
Commun. 43,281 ( 1982). 

'K. Ikeda, Opt. Commun. 30,257 (1979). 
'K. Ikeda and 0. Akimoto, Phys. Rev. Lett. 48,617 ( 1981 ). 
'OH. M. Gibbs, F. A. Hopf, D. L. Kaplan, and R. L. Shoemaker, Phys. 

Rev. Lett. 46, 474 (1981). 
"K. Ikeda, H. Daido, and 0. Akimoto, Phys. Rev. Lett. 45,709 ( 1980). 
12R. R. Snapp, H. J. Carmichael, and W. S. Schieve, Opt. Commun. 40,68 

(1981). 
"L. M. Narducci, H. Sadiky, L. A. Lugiato, and N. B. Abraham, Opt. 

Commun. 55, 1370 (1985). 
14A. N. Oraevskii, in: Tr. Fian SSSR, Vol. 171, 1986, p. 3 (Proceedings of 

the Lebedev Physics Institute, Vol. 171). 
15A. H. Rotaru and G. D. Shibarshina, Phys. Lett. A109, 292 ( 1985). 
16A. Kh. Rotaru, Fiz. Tverd. Tela (Leningrad) 28, 2492 (1986) [Sov. 

Phys. Solid State 28, 1393 (1986)l. 
"A. Kh. Rotaru, Fiz. Tverd. Tela (Leningrad) 29, 3282 (1987) [Sov. 

Phys. Solid State 29, 1883 (1987)l. 
''A. Kh. Rotaru and V. A. Zalozh, Fiz. Tverd. Tela (Leningrad) 29,3438 

(1987) [Sov. Phys. Solid State 29, 1969 (1987)l. 
"S. A. Moskalenko, P. I. Khadzhi, and A. Kh. Rotaru, Solitony i nutat- 

siya v bksitonno ioblasti spektra (Solitons and Nutation in the Exciton 
Part of the Spectrum), Shtiintsa, Kishinev, 1980. 

'OS. N. Belkin, S. A. Moskalenko, A. Kh. Rotaru, and P. I. Khadzhi, Izv. 

Akad. Nauk SSSR. Ser. Fiz. 43,355 (1979). 
"P. I. Khadzhi, Nelineinye opticheskieprotsessy v sisteme bksitonov i bibk- 

sitonov v poluprovodnikakh (Nonlinear Optical Processes in Systems of 
Excitons and Biexcitons in Semiconductors), Shtiintsa, Kishinev, 1985. 

22V. N. Arnol'd, matematicheskie metody klossicheskoi mekhaniki, 
Nauka, Moscow, 1974 (Mathematical Methods of Classical Mechanics, 
Springer-Verlag, New York, 1978). 

23G. M. Zaslavskii, Stokhastichnost' dinamicheskikh sistem (Stochastic 
Nature of Dynamic Systems), Nauka, Moscow, 1974. 

24A. S, Davydov and V. A. Sericov, Phys. Status Solidi b56, 51 ( 1973). 
25L. V. Keldysh, Problemy teoreticheskoifiziki (Problems of Theoretical 

Physics), Nauka, Moscow, 1972, p. 433. 
"S. A. Moskalenko, A. Kh. Rotaru, V. A. Sinyak, and P. I. Khadzhi, Fiz. 

Tverd. Tela (Leningrad) 19, 2172 (1977) [Sov. Phys. Solid State 19, 
1271 (1977)l. 

"S.A. Moskalenko, A. H. Rotaru, and P. I. Khadzhi, Opt. Commun. 23, 
367 (1977). 

"S. N. Belkin, P. I. Khadzhi, S. A. Moskalenko, and A. H. Rotaru, J. 
Phys. C14,4109 ( 1981). 

29S. A. Moskalenko, P. I. Khadzhi, G. D. Shibarshina, and A. Kh. Ro- 
taru, Fiz. Tverd. Tela (Leningard) 25, 678 (1983) [Sov. Phys. Solid 
State 25, 387 (1983)l. 

''A. Kh. Rotaru, P. I. Khadzhi, M. I. Baznat, and G. D. Shibarshina, Fiz. 
Tverd. Tela (Leningrad) 29,555 ( 1987) [Sov. Phys. Solid State29,315 
(1987)l. 

31G. P. Golubev, V. S. Dneprovskii, and E. A. Kiselev, Dokl. Akad. Nauk 
SSSR280, 591 (1985) [Sov. Phys. Dokl. 30,71 (1985)l. 

32M. L. Steyn-Ross and C. W. Gardiner, Phys. Rev. A27, 310 (1983). 
33E. N. Lorenz, J. Atmos. Sci. 20, 130 (1963) (Russ. Transl. Mir, Mos- 

cow, 1981, p. 88). 
34N. M. Gibbs, A. C. Gossard. S. L. McCall et al., Solid State Commun. 

30,271 (1979). 
35N. M. Gibbs, S. S. Tarng, J. L. Jewell et al., Appl. Phys. Lett. 44, 360 

( 1984). 
36S. S. Tarng, H. M. Gibbs, J. L. Jewell et al., Appl. Phys. Lett. 44, 360 

(1984). 
37H. M. Gibbs, J. L. Jewell, J. V. Maloney et al., Appl. Phys. B29, 171 

(1982). 
38J. P. Lowenau, S. Schmitt-Rink, and H. Haug, Phys. Rev. Lett. 49,151 1 

(1982). 

Translated by Dave Parsons 

344 Sov. Phys. JETP 68 (2), February 1989 Zalozh et al. 344 


