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We discuss a relatively simple and attractive prescription for multi-loop calculations. It consists 
in defining the metric, the Beltrami superdifferentials and summation over the spinor structures 
with the help of one and the same odd 8-characteristic e, . At the end of the calculations modular 
invariance is restored by summing over e.. It is noted that included in the prescription should be a 
description of a limiting procedure needed in intermediate stages of the calculations. For a 
particular choice of this procedure the contribution to the cosmological constant from matter 
supercurrents is absent, at least for the first five loops (p< 5 ) . 

Among the string models the theory of superstrings oc- 
cupies a special place-it is the simplest string theory which, 
as is to be expected, is free of divergences in the scattering 
amplitudes in all orders of perturbation theory. Unfortu- 
nately, the proof of finiteness and the calculation itself of 
multi-loop superstring amplitudes encounters definite diffi- 
culties. The approach to the construction of these objects 
that has been carried the farthest consists of the following 
(see, e.g., Ref. 1 ). Use is made of first-quantization formal- 
ism for string theory, in whichp-loop diagrams are described 
in terms of Riemann surfaces of genusp. In such a formalism 
one is really discussing definite correlators in two-dimen- 
sional quantum field theory for nontrivial topology of the 
two-dimensional world surface. Under these conditions one 
may define theories with local two-dimensional supersym- 
metry and introduce the concept of super Riemannian sur- 
faces and the space of supermoduli. The simplest model is 
based on a supergeneralization of the Polyakov action, 
which is quadratic in the fields in the lightcone gauge (when 
that gauge can be chosen). 

However, the theory of fermionic superstrings obtained 
in this fashion is not endowed with supersymmetry in the 
multidimensional spacetime and is not free of divergences. 
To obtain a theory of superstrings from it the following idea 
might be used. The super-Riemann surfaces depend on one 
discrete parameter-the so-called spinor structure or theta 
characteristic e. In the case of the fermionic string the ampli- 
tudes are represented in the form of a sum over e, whose 
terms are in the form of integrals of the square of the modu- 
lus of the corresponding generalized Mumford supermea- 
sure over the supermoduli space. Instead of such a sum of 
squares of moduli another quantity may be considered. Let 
us integrate the Mumford supermeasure over the odd modu- 
li. Let us form a linear combination of such integrals with 
different values of e-this yields a certan measure in the con- 
ventional space of moduli. The integral of the square of its 
modulus over this space also defines a certain amplitude. 
This Neveu-Schwarz-Ramond (NSR) procedure is well 
suited to the one-loop case and for an appropriate choice of 
linear combinations indeed leads to superstring amplitudes 
satisfying the requirement of unitarity. In this approxima- 
tion this procedure is easily interpreted as the projection 
onto the G-even sector of the fermionic string.' 

Unfortunately in the case of many loops the situation 
becomes more complicated. The procedure formulated 

above has two obvious ambiguities: in the choice of the odd 
moduli to be integrated over in the first stage, and in the 
choice of the linear combinations in the second stage. The 
initial expectation that the answer would be independent of 
the choice of odd moduli has not been confirmed and at this 
time it is widely believedK4 that the NSR formulation at the 
multi-loop l e ~ e l ' . ~ - ~  must be supplemented by special pre- 
scriptions to resolve the ambiguities indicated above. It may 
be that in the future these prescriptions will be derived from 
general principles, when the global structure of the space of 
supermoduli become better studied (see e.g., the papers in 
Refs. 6 and 9 where definite steps were taken in this direc- 
tion). However it makes sense to search for the needed pre- 
scription in a more heuristic fashion by attempting to devel- 
op a procedure which, on the one hand, would be sufficiently 
simple and allow the performing of the calculations and, on 
the other hand, would satisfy a number of simple require- 
ments such as modular invariance, factorization, finiteness 
and the vanishing of certain entities such as, for example, the 
cosmological constant. In our opinion the propositions 
made in Refs. 4 and 7 deserve further study as prototypes of 
this kind of a recipe. 

Thus, the main difficulties in the NSR formalism stem 
from two sources: the arbitrariness in the choice of the Bel- 
trami superdifferentials and the ambiguity in the summation 
over the spinor structures (0 characteristics). For p)2 the 
summation over the spinior structures (the Gliozzi-Scherk- 
Olive projection) cannot be accomplished in a modular-in- 
variant manner if all the spinor structures are included in the 
sum with weights equal to + 1. 

This problem might not appear explicitly in the calcula- 
tion of the vanishing expressions for the 0-, I-, 2- and 3-point 
functions. Consequently, for an arbitrary prescription which 
is not manifestly modular-invariant, the vanishing of the 
cosmological constant and the correlation functions for 1,2, 
and 3 massless particles cannot serve as the decisive criterion 
for its validity: whether such a prescription is reasonable 
cannot be decided without evaluating with its help some 
nonvanishng expressions and verifying its modular invar- 
iance. 

The Beltrami superdifferentials are chosen most conve- 
niently in the form of 6-functions:'."'-' 
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The fixing of the 2p - 2 points {P, ) on each Riemann sur- 
face may also break modular invariance. Moreover, due to 
the manifest noninvariance of the Riemann identities even a 
modular-invariant choice of the points P, could lead to a 
modular noninvariant answer after the standard noninvar- 
iant summation over the spinor structures. Starting from 
these considerations it was proposed in Ref. 4 that the two 
indicated sources of "modular anomaly" be compensated. 
Also, a concrete method for achieving this compensation 
was proposed. 

The Polyakov formulation of string theory includes in- 
tegration over metrics on the world sheet. In order to show 
that in the case of the heterotic and supersymmetric strings 
this reduces to finite-dimensional integration over the mod- 
uli space of Riemann surfaces it is necessary to demonstrate 
the absence ofthree anomalies: a )  the Weyl-Polyakov anom- 
aly; b) the analytic anomaly; c )  the modular anomaly. 

The first two anomalies are local and have been well- 
studied; it is known that they are related to each other and 
are indeed absent in string theory. But in explicit formulas 
for individual determinants and correlator~ '~ there appears 
particulary strikingly the principal value of the singular me- 
trices oL the form g a 1 W(z) 1 2exp [a(z,.F) ]. (Here 
W(z) = W(z)dz is a holomorphic I-differential on the Rie- 
mann surface. As regards the Weyl factor exp[a(z,?) l ,  it 
disappears from anomaly-free combinations of determinants 
and correlators.) There exists no particular method for a 
one-to-one association of W(z) with Riemann surfaces. Let 
us say that the zeros of W(z), which we agree to denote by 
Q,, ...,Q,, -, , are constrained by the single condition 

where 2 6  is the so-called canonical divisor by the Jacobian of 
the Riemann surface. For an arbitrary set of 2p - 2 points 
{Qi} on the surface, whose Jacobi transformed image satis- 
fies this condition a holomorphic I-differential can be found 
with such a set of zeros. There exists a multitude of sets of 
points {Q,) of this type, and for a unique specification 
of W(z) one must impose some additional requirements. It is 
convenient to demand that W(z) have double zeros: 

i.e., that it be the square of a 4-differential: W(z) = Y. 2(z).  
In this manner one may arrive at an almost unique choice of 
W(z). However forp22 there remains a finite set of possibil- 
ities, correlated with odd 8 characteristics, which we shall 
denote by e, or simply "*". 

Thus, this choice of metric breaks modular invariance 
and only invariance with respect to transformations that do 
not affect e, is left. This provides a potential source for mo- 
dular anomaly. It is known that modular anomaly is can- 
celled in combinations of determinants, free from the local 
anomalies a )  and b)  .' ' However the measure on the space of 
moduli connected with superstrings does not simply reduce 
to the anomaly-free combination of determinants; it also 
contains the correlator of 2p - 2 supercurrents located at 
the points Pi [assuming that the Beltrami superdifferentials 
are chosen in the form ( 1 ) 1.  In Ref. 7 it was proposed to 
place the supermoduli at the zeros of the metric: Pi = Qi . If 

the metric is taken asg = I Y. l 4  then the location of the points 
Pi turns out to be specified by the odd 8-characteristics e.  
and in this sense modular invariance is explicitly violated. In 
Ref. 7 it was proposed to also sum over the spinor structures 
e  with weight ( e ,  , e )  determined by that same odd Scharac- 
teristics e . .  

In other words it is proposed to specify any odd spinor 
structure e. whatsoever and carry out all calculations using 
the metric lv. l 4  with double zeros at the points 
R 7 ,  ..., R ,*- , , using the Beltrami superdifferentials 

and in the sum over the spinor structures e use as weights 
( e ,  , e ) .  Generally speaking such a procedure will produce an 
answer 4, dependent on e . .  For this reason the premise of 
Ref. 4 is to sum these answers over the odd 8-characteristics 
e,  and consider as the final answer 4 = 8.4.. Obviously 4 is 
modular-invariant but, clearly, it is not known a priori 
whether this procedure agrees with the factorization re- 
quirement and whether it results in vanishing answers for 
the 0-, 1-, 2- and 3-point functions. It could happen that this 
is not so and one would have to admit that this prescription is 
erroneous. Its advantage, however, is in being constructive, 
which allows performing calculations and verifying the ade- 
quacy of this way of action. It should also be noted that, due 
to the additional summation over e, which restores modular 
invariance, the procedure under discussion does not fall into 
the class considered in Ref. 9, and for this reason we refrain 
from commenting on those papers. We also do not repeat the 
arguments that were advanced in Ref. 4 in favor of the pro- 
posed prescription. 

Instead we briefly discuss the formal apparatus needed 
in this approach. The point is that the limit P,-+P, -+ R 7 ,  
P4 - P, -+ R : ,... P,, - , - P,, _ , -+ R ,*- , is strongly singular 
and one must resolve a number of ambiguities of the type 
0/0. Below we confine ourselves to the case when the odd 
spinor structures do not contribute to the Gliozzi-Scherk- 
Olive sum. 

To discuss the singular limit prior to summing over the 
spinor structures is most difficult. But to perform the sum 
over e in the general case is not easy either since the denomi- 
nator contains the superghost determinant 
det ,,j, 5 l(P, )det,8,,2 (6 ; ,..., 5 4, - , are holomorphic 3/2- 
differentials), which is proportional to 8, (ZE; 'Pi - 2A). 
The sum over even characteristics e  looks as follows: 

,.., e) 
0, (a,). . .ee  (a,) 0. (0) 

0, (ZPi-2A) 
e 

(a,  ... a, are combinations of the same vectors Pi that occur in 
the Jacobian, resulting from the correlators of the ;-differen- 
tials $. The combination a, vanishes since otherwise the odd 
spinor structures would not disapear from the sum). 

The problem has to do with the fact that the Riemann 
identities cannot be used to evaluate (2)  as long as 8, re- 
mains in the denominator. In order to evaluate (2 )  in the 
general case we need some as yet unknown identities of the 
type discovered in Ref. 12 for the case of p = 1. If, however, 
we set 
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then 

and the argument of the Sfunction in the denominator of 
(2) vanishes. This, in truth, is insufficient since (2) is multi- 
plied by an e-independent factor which is singular in the 
limit P2 -+ P,, ... P2, - , -. PZp . Consequently a special 
limiting procedure is needed.'-'= The idea is to introduce 
"regularization" with a parameter E, to set Pi = Qi for the 
metric 

with pairwise different zeros Q, ,...,ex, _ 2 .  In that case the 
above-mentioned factor is finite, we still have 
BP, = ZQ, = 2A and the sum (2)  is easily calculated. The 
answer is 

Now one can pass to the limit E + O  without any difficulties, 
relying on the Riemann theorem on zeros (for details see 
Refs. 7 and 13). We note that in this procedure all differ- 
ences la = P2, - P2, - , are of the same order of smallness E. 

[Furthermore, the procedure proposed here has no need for 
assumptions of the type 8. (6, + 6,)/8. (6, ) - 1 for f ,  -6,, 
which have to be invoked in Ref. 13.1 

The passage to the limit defined by the regularization 
(3) turns out to be much more informative than would ap- 
pear at first glance. We note that whenever P, = Q, and 

2p - 2 Z, = , P, = Z:~P=; 2Q, = 2A, the vector 12%; 2P, coincides 
with some half-period in the Jacobian. Considerations of 
continuity in the parameter E show that this half-period 
equals A. = 2:: ', Ra*. Therefore 

2 p - 2  

This is a very useful relation. The point is that each of the 
vectors a , ,  a,, a,, a, in expression (2)  for the contribution of 
matter supercurrents to the cosmological constant is a dif- 
ference of the form a = P ,  - P, or 
a = P,  + P, - P, + P, - P, - P, etc., with each P, enter- 
ing one and only one of the vectors a,,a2,a3,a4. This means 
that the arguments of the 8. -functions in (4)  are sums of 
p - 1 vectors {Pa } minus p - 1 vectors {Fa 1, divided by 
two [see (5) 1 : 

But this is precisely the argument for which 8. vanishes 
identically according to the Riemann theorem on zeros: 

Thus using the regularization (3)  allows us to apply this 
theorem much more effectively than in Refs. 7 and 13. 

For example, for genusp = 2 

and the expression (4)  has the form 

We have explicitly shown the independent singular fac- 
tor 6 -4 ,  = P I  - P,, which was omitted in (2)  and (4).  
The Riemann theorem on zeros means that for any PI -.P2 
this product behaves like 6 -46 l 2  = 6 and vanishes in the 
limit 6 = 0. However, this discussion is not valid for p > 3, 
since the singular factor is constructed as 6 4 'Pp  ' )  , while 
the product of 8. -functions continues to go like 6 l2  in the 
l i t  P P ,  . P - + P , . It turns out that for the reg- 
ularization ( 3) and under the condition P, = Q, the 8, - 
functions vanish identically even for 6 f 0, since for 
t ( P ,  + P,) = A, we have 

and this discussion applies to all generap. 
In this manner we have demonstrated that the contribu- 

tion of matter supercurrents to the cosmological constant 
vanishes for p<5. [Beginning with p = 6 odd spinor struc- 
tures start to contribute and they require a separate analysis. 
For odd structures the superghost determinant in the de- 
nominator of ( 2 )  vanishes for P, = Q, . Therefore even for 
p = 5 one must first consider the case P, # Q, (with the odd 
spinor structures not contributing because a, = O), and then 
go to the "limit" P, = Q, , in which the contribution from the 
odd structures continues to be absent by continuity, and only 
following this type of argumentation can the sum (2)  be 
analyzed by the method indicated above.] For those who 
believe in the ansatz of Ref. 14 for the superstring measure, 
based on ignoring the contribution from ghost supercur- 
rents, the present result is sufficient to conclude that forp(5 
the measure corresponding to the cosmological constant 
vanishes pointwise on the space of supermoduli. However, 
the evaluation of the contribution of the ghost supercur- 
rents, which we continue to consider relevant, is more com- 
plicated than the evaluation of (2)  (in this connection see 
Appendix). 

The fact that we have not completely exhausted the 
freedom in the choice of the limiting procedure is also worth 
mentioning. The choice of the holomorphic 1-differential w 
in (3)  has not been restricted in our discussions in any way 
(except for the one requirement that the points Q,, ...,Q2, -, 
be pairwise different). It might turn out to be useful to 
choose w in some special manner. This possibility should be 
kept in mind. 

In this manner we have discussed the necessity and util- 
ity of the concentration of the limiting procedure to refine 
the definition of the prescription for multiloop superstring 
calculations proposed in Refs. 4 and 7. We see no obstacles 
within the framework of this procedure to carrying out all 
the necessary calculations and determining all necessary 
modifications. In our opinion considerations along these 
lines deserve further study. 
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We are grateful to 0. Lechtenfeld for sending us his 
paper,I3 which served as stimulus for the publication of these 
remarks. 

APPENDIX 

We describe here technical details for dealing with cor- 
relators of ghost supercurrents. In the general case, what 
arises in the multiloop calculations for superstrings is not 
[detl  r(Pj )det,a3,,] - ' but the more complicated correlator 

In what follows we make use of the description of this corre- 
lator given in Ref. 8, and of the notation from that paper: 

z p - 2  

(it should be noted that in the correlator in the denominator 
the field [(P, ) is omitted. The subscripts run over the values 
p = 0 ,..., 2p - 2; i = 1 ,.., 2p - 2). The additional point Po 
appears in these formulas, but in fact Ge is a sum of terms, 
each of which is independent of any of the points P, : 

2 p - 2  " 
he (Po. .  . PLL . . . PZp-z 1 zi) 

Ge (Po, I { z f }  1 = 
LL-0 (f ( P O )  ... f (P,) ... f ( ~ 2 P - z ) ) .  

= h e  ( {Pc) I { z i ) )  +. . . , 
(C ( P i ) .  . . c(P2P-2) )e 

(A31 

and only one term, independent of Po, contributes to the 
formulas for superstrings. However, the representation 
(A3) also has disadvantages as compared to (A2): 
he ({Pi) I {zi)) turns out to be a rather complicated expres- 
sion (see below). Let us introduce the notation 

( f  (Po ) .  . . f (pZ,-,) G(z) >, 
? p - 2  

=r:%)(pO, {Pi }  l z )  =oe (E P < + P ~ - ~ - ~ * ) ,  
is-2 

The correlators re depend on the metric on the surface.'' 
For g = I W I 2  with zeros Qi we have BE; 2Qi = 26, and, 
from the point of view of dependence on the spinor structure 
e, the correlator r63/2' ({P, ) Iz) is equivalent to the analo- 
gous correlator of 4-differentials: 

One may therefore use Tj1/2' to establish the dependence of 
he on e in (A3). For Wick's theorem is valid15: 

r?) ( { P i }  I {Qd  1 
= dI3t(ij) [ r:"' (PilQj) 1, (As)  

0, ( 0 )  0, (0) 

with the two-point correlator equal to 

r;'") la 1 b )  
==($ (a )$ (b )  >, = 

0, (a-b)  
0, (0) E ( a ,  b )  

' (-46) 
0, ( 0 )  

The limit g = lv. l 4  is singular from the point of view of the 
relations (A5), and passage to this limit requires the use of 
the regularization ( 3 (see examples in Ref. 8; we also note 
that the singularities of T63'2' in this limit differ from those 
of r6'l2'; only the dependence on e is the same). 

In order to evaluate the sum over the spinor structures 
for the correlators of supercurrents in most general form we 
need to find 

but for matter supercurrents the integration over zj is so 
designed that he ({Pi) I {zi 1) can be effectively replaced by 
unity and a sum of the form (2)  results. We now present two 
simple examples, that illustrate how one deals with the sum 
(A7) in our regularization procedure. 

The simplest nontrivial expression, similar in structure 
to (A2) (literally it corresponds to genusp = 3/2), has the 
form 

r:') ( p o t  p i  I z, Q ~ )  = - 
r:'") ( p i  1 Z )  + r:*) ( P .  I Z) 

P o  1 Q i Q r':' (Pi I Q i )  ry'(PoI Q t )  ' 

The role of the term of interest from (A3) is played by the 
first term on the right-hand side of (A8). It is seen that in 
this case h, does not contain a 8-function in the denominator 
and the sum (A7) is easily evaluated. 

A more complicated and realistic example corresponds 
top  = 2: 
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In its e-dependence the combination in braces coincides with 
he (PllP,~zl,z2) in (A3) (for a metric g = I W 1'1, but this 
time it contains r, in the denominator. It is important that 
(A9) can be rewritten in such a way that the last two terms 
in he become 

(it is understood that the omitted terms, indicated in (A9) 
by dots, are also modified). 

In the process of evaluating the correlator of ghost su- 
percurrents we must set z2 = z, = z and integrate over z 
along a contour encircling P2. After that we must differen- 
tiate with respect to P,. Then we must add the analogous 
expression with PI  and P2 exchanged. After these operations 
are performed the terms omitted in (A3) and (A9) make no 
contribution. At the end of the calculations following our 
prescription one should let Pi-Qil followed by 
g = I WI2+g = I Y *  14. 

The first of the "dangerous" terms in (A10) has no 
singularities for z - P, and vanishes upon integration over z 
along a contour encircling P2. The second term in (A10) 
gives a nonzero contribution, but in this case the 
r~1'2)(P21Q2) that appears in the denominator need not be 
differentiated with respect to P,. The limit P2 + Q, is nonsin- 
gular as long as g# )Y, l 4  and all the points Q, are different. 
Therefore the T, in the denominator may be considered 

equal to 8, (0)  and it cancels against the 8, (0)  in the numer- 
ator in (A7). (When the integral over z is taken around P,, 
while the differentiation is with respect to P,, the nonzero 
contribution is connected with the first term in (A10) and 
the same argument applies. ) Apparently the same analysis is 
possible for higher genera as well, assuming reasonable re- 
striction of the arbitrariness in the regularization ( 3 ) .  
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