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A new mechanism, involving electron-electron interactions, is proposed for the conductivity of 
highly disordered systems. The conductivity has a power-law, rather than exponential, low- 
temperature behavior. The results give a qualitative explanation of experimental data on the 
conductivity of doped semiconductors. 

1. INTRODUCTION 

The electronic properties of highly disordered systems 
such as doped semiconductors, solid solutions and amor- 
phous and liquid semiconductors are of current interest in 
research in solid state physics. The theoretical analysis of 
such systems is based on the concept of Anderson localiza- 
tion.' When applied to a system of noninteracting electrons, 
this concept means2 that at absolute zero the electrical con- 
ductivity of the system vanishes if the Fermi energy p lies 
below the mobility threshold E, (states with energies below 
E, are localized, while those above E, are delocalized). At a 
nonzero temperature, the conductivity mechanism may in- 
volve tunneling between localized states as a result of an 
interaction with phonons2-' and also an electron-electron 

ly be speaking about the energies of dipole excitations: 
w;, E El;  see the discussion below 1. If the value of E initially 
lies in the interval ( - A, O), and if the state of interest is 
filled by an electron, then a fluctuation in E with a transition 
in the interval (0, A) should lead to a transition of the elec- 
tron from the given localization center to a vacant center. 
These fluctuations thus cause a new mechanism for electron 
transitions-a mechanism distinct from the Mott mecha- 
nism. In the latter, the energies of the one-particle states are 
assumed to be fixed. This new process does not require the 
participation of phonons with an energy w >) T, as in the Mott 
mechanism does. 

Using this new mechanism, we can describe the overall 
electron hopping frequency T,' by 

intera~tion.~ 
'Ct;: = ~;i +JV ('Ti: ) , 

As was shown in Ref. 2, the following relation holds in 
the case of a phonon-supported conductivity of noninteract- 
ing electrons at low temperatures: 

A similar behavior was found in Ref. 9 on the basis of a 
mechanism involving tunneling due to an electron-electron 
interaction. However, temporal fluctuations of the energies 
of the localized states due to the diffusion of electrons were 
ignored in that paper, as was the resulting possibility of cor- 
related motion (more on this below). It was shown in Refs. 3 
and 4 that the long-range nature of Coulomb forces should 
give rise to a pseudogap at the Fermi level, with the result 
that the Mott decay of the electrical conductivity described 
by (1) should give way to a faster decay with decreasing 
temperature: 

A conductivity mechanism involving many-particle (cas- 
caded) excitations accompanied by involving the emission 
or absorption of a phonon was proposed in Refs. 7 and 8. 
That mechanism leads to a power-law temperature depen- 
dence of the conductivity. 

The operation of a hopping conductivity at zero fre- 
quency means that a macroscopic diffusion of electrons is 
occurring in the system. The corresponding coefficients are 
related to each other by the Einstein relation 

where T;' is the frequency of the hops caused by phonons, 
and wis  the frequency of the hops caused by this new mech- 
anism. For w<rphl, the contribution of this new diffusion 
channel reduces to an insignificant increase in the coeffi- 
cients of the exponential functions in ( 1 ) and (2).  In the 
case 

the fluctuational hopping mechanism should play an inde- 
pendent role. 

In this paper we adopt the hypothesis that the fluctua- 
tional mechanism for hopping diffusion (zero-frequency 
hopping conductivity) does not disappear when all electron- 
phonon interactions are turned off. Setting TS' = 0 in (3) ,  
we can evaluate the non phonon hopping frequency. We find 
an approximately quadratic temperature dependence for the 
diffusion coefficient. 

In this paper we take the approach which was pointed 
out in Refs. 10 and 11, for the case of the diffusion of impuri- 
ty particles in quantum crystals, and also in Refs. 12 and 13, 
for the propagation of spin excitations. 

As a rule, the experimental data on the electrical con- 
ductivity of doped semiconductors confirm expressions ( 1 ) 
and (2) .  On the other hand, there are reportsi4-" that in 
certain materials the exponential decay of the conductivity 
softens at low temperatures, becoming a power law. Such a 
behavior of the conductivity can be explained by the mecha- 
nism proposed in the present paper. 

where (dn/dp ( is the compressibility of the electron subsys- 
tem. The diffusion of electrons gives rise to a temporal fluc- 2. CLUSTERS 

tuation of the energy of a one-particle state, E, in an energy We consider a system of electrons in a highly disordered 
region on the order of the Coulomb gap A (we should actual- medium in which the mobility threshold E, lies well above 

776 Sov. Phys. JETP 68 (4), April 1989 0038-5646/89/040776-06$04.00 @ 1989 American Institute of Physics 776 



the Fermi level p .  Among the one-particle localized states, 
the only ones which play a decisive role are those whose 
energies lie in the Coulomb gap4: 

Here @, is a seed energy of state a with respect t op .  We 
assume that the random quantity @, is distributed uniform- 
ly over the interval (5) with a density g,[g, = (2A) - ' ] .  We 
assume that the localization centers are positioned randomly 
with a density a; ' but that the smallest separation of adja- 
cent centers which satisfy (5) is larger than a,. This restric- 
tion simplifies the percolation problem in such a system. 

The magnitude of the Coulomb gap is found from the 
condition that the sign of the energy of the state correspond- 
ing to any center [see (10) below] can vary when the occu- 
pation of neighboring center changes.' It follows that we 
have 

In general, centers for which the seed energy of the corre- 
sponding states does not belong to the interval (5)  are either 
always filled or always empty at sufficiently low tempera- 
tures. The Hamiltonian of the model in the basis of states a is 

h 

The term V, describes hop? of electrons which are induced 
by surrounding electrons; V, describes two-electron transi- 
tions. We will use the following estimates of the matrix ele- 
ments of the Coulomb interaction: 

We assume that the localization radius I of the one-particle 
states is small in comparison with the distance a, between 
localization centers ( Iga , ) .  Here and below, we assume 
a ,  = 1. 

The Coulomb repulsion of the particles in one state is 
assumed to be the largest of the energy parameters of the 
system, so there is a filling in which there is a single particle 
per state. We are thereby ignoring the role played by the 
spin. 

The ground state and elementary excitations of Hamil- 
h 

ton H, were described in Refs. 3 and 4. We are interested in 
the properties of the model at low but nonzero temperatures. 
In describing a state of the system which is close to the 
ground state, we use the self-consistent method of Ref. 4. For 
T #O, the centers a are filled with a probability 

where E, is the self-consistent energy of a localized state: 

In the approximation of a soft Coulomb gap,3 the distri- 
bution of energies ( 10) is 

A 

The perturbation V, in ( 7 )  causes a2 electron to hop from 
center a to center 8 .  The change in H, in the course of this 
transition is 

We are interested in pairs with r R 1 and w < A .  At T = 0, in 
the soft-Coulomb-gap approximation, such pairs have a dis- 
tribution4 

F, (o. r) =gor-5~ (a) €I (r-1) (13) 

[a soft gap arises from the requirement that the ground state 
be stable with respect to perturbations (22) 1. A deeper anal- 
ysis of the ground state of Hamiltonian H, (Ref. 4) strength- 
ens the singularities of distribution ( 13) at large rand small 
w [a hard Coulomb gap4 arises from the additional require- 
ment of stability against the excitations ( 18) ]: 

F ( o ,  r )=F,  exp [-G(a, r) I ,  
(14) 

G(o,  r)=ar(ln(A/o)] '$, nz l .  

h 

The perturbation V, in (7)^reconstructs (hybridizes) 
the eigenstates of Hamiltonian H,. The effect is basically a 
renormalization of the transition energy: 

This level of repulsion is important under the resonance con- 
dition 

A more important point for our purposes is that in a resonant 
pair an electron is at centers a and 8 simultaneously, al- 
though with different probability amplitudes. Using (13) 
and ( 14), we find that the probability for an electron to be- 
long to a resonant pair of size r is 

P+A (r) F ( A  (r) , r) . (17) 
h 

The perturbation V in (7)  causes two electrons to hop 
h 

simultaneously (a ,  V -8, S),  with a change in the energy H, 
(the transition energy) : 

For R r,, r2 (R = ray, r I  = rap, rZ = rys ) the quantity Ed 
is equal to the interaction energy of two dipoles: 

If one or both pairs of the Ccluster v ( v  = a,o,y,S) are close 
to resonance, we should use normalized values ( 15 ) in ( 18) : 

An important point for the discussion below is that in 
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this case the amplitude for a t r p i t i o n  of a Ccluster from a 
ground state to an excited state increases substantially by 
virtue of the hybridization: 

Actually, the last term in (21) always dominates. The 4- 
clusters are resonant under the condition 

1 E v 1 < I R v J .  (22) 

In a resonant Ccluster, both of the electrons are "smeared" 
within the corresonding pairs, even if these pairs are not 
themselves resonant. 

The distribution of 4-clusters can be approximated as a 
product of the pair distributions ( 14). The probability that a 
given electron belongs to a resonant 4-cluster of a given con- 
figuration (with fixed values of w,, r , ,  w,, r,, and R )  is then 

At a nonzero but low temperature T g  A the state of the 
system can be described approximately as a set of neutral m- 
clusters (m = 2,4, ... ) whose energies are set by the fixed oc- 
cupation numbers of the surrounding one-particle states. 
Most such m-clusters are, as before, in the ground state, but 
a small fraction are in an excited state and thus have a nega- 
tive transition energy. From this standpoint, the m-clusters 
constitute two-level systems of a sort. In particular, at the 
temperature T = /? - ' the numbers of pairs in the ground and 
excited states are, respectively, 

As a result we can say that at T # O  the pairs have a distribu- 
tion 

We will not consider clusters with m>6 in the present paper. 

3. LOW-TEMPERATURE DIFFUSION NOT INVOLVING 
PHONONS 

In the Introduction we described a fluctuational mech- 
anism for hopping diffusion which we believe may operate in 
the absence of an interaction with phonons. Let us examine 
this mechanism in more detail. We assume that most of the 
electrons belonging to an energy layer of width A near the 
Fermi surface are participating in a diffusion process. The 
diffusing electrons create an irreversible fluctuation of the 
Coulomb part of the energy over a length scale A. As a result, 
nearly every electron in the layer (5 )  which is initially at the 
center a will sooner or later be part of the resonant cluster v 
and will belong to two centers (a,/?) simultaneously. Over a 
time t, the resonant conditions will be violated, and an elec- 
tron will be at the center /? with a finite probability. After a 
certain time T* , the center a becomes part of a new resonant 
cluster; after the latter breaks up, the electron moves to the 
center 8. Over a time t ,  the repetition of this process moves 
an electron a distance 

where r, is a length scale of the pair which determines the 

hopping length. Expressions (26) determine a diffusion co- 
efficient 

D=~, ' /T . .  (27) 

Since the space in a disordered Coulomb system is inho- 
mogeneous, there is the possibility in principle that as this 
process takes place an electron will remain at all times in a 
bounded region of size R,. This is a bounded diffusion, 
which corresponds to a high-frequency conductivity a ( w ) ,  
where 

In the present paper we adopt the hypothesis that this 
nonphonon diffusion is unbounded (R, = co ), so we have 

In order to find the hopping frequency r* ' we need to 
solve a self-consistent problem: Starting from a given T; I, 

we are to find the temporal fluctuation of the energy of one- 
particle states, which in turn determines the hopping fre- 
quency. 

In the steady state, tunneling in a highly inhomogen- 
eous medium smears the wave function over several sites, 
but the state remains local. The motion of an electron be- 
comes irreversible only if the resonant conditions are satis- 
fied temporarily. Let us find the lifetime of a resonant clus- 
ter. We assume that a single electron undergoes on the 
average a single irreversible hop over a time 7 , .  Such a hop 
creates a fluctuation in the transition energy of a resonant 
cluster at a distance R from the electron: 

where r, is the length scale over which the wave function of 
an electron belonging to resonant cluster v is localized. If 

[C ,  is A ( r )  from (8 )  for pairs or B, from (21) for 4-clus- 
ters], such a jump drives cluster v from resonance. Condi- 
tion (30) holds if the distance between cluster v and the 
electron which is hopping is less than 

For R > R,, , many hops would be required to drive a cluster 
from resonance. It can be shown that this mechanism is not 
very effective. 

In a sphere of radius R,, around cluster v there are ( r r /  
3)R, electrons, which generate one jump of the cluster en- 
ergy over a time 

which is the lifetime of cluster v. Correspondingly, t ;- ' is 
the probability for the decay of this cluster per unit time. 

We can speak in terms of the existence of a resonant 
clusters and electron hopping in it only if 

where r, is a typical period of the beats in cluster v. In other 
words, if the inequality (33) is violated, an electron cannot 
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undergo a transition to a new state. Using (32), we can re- 
write (33) as 

We assume that at the time t = 0 a given electron is at the 
localization center a and belongs to the resonant cluster v. 
This electron executes beats with a period T,, and at the time 
t, when the resonant cluster breaks up, the electron has a 
probability of order 1/2 to be at center fi of the same cluster. 
The probability for such a transition per unit time is 
(1/2) t ; I .  Since the probability for an electron to belong to 
the given cluster is P,dv [see (23) and (25) 1, the total prob- 
ability for an irreversible hop of an electron per unit time is, 
in order of magnitude, 

The inverse of Wis the average time per hop, i.e., 7,. As a 
result we find a self-consistent equation for T, : 

z. 

The 4-clusters actually cause simultaneous hopping of 
two electrons. This circumstance does not, however, affect 
the form of Eq. (36). Equation (36) should be supplement- 
ed with an expression which gives the hopping length scale 
over a time T* : 

We first assume that the sums in (36) and (37) are dominat- 
ed by 2-clusters. In this case, (36) takes the following form 
at T=O: 

W2= j d3rr.r--' exp (-G) 0 [A  (r) (rr.) -"-C.], (38) 
1 

where A(r)  and G are defined by (8)  and (14). In the ap- 
proximation of a soft gap (G = 0 )  this integral is determined 
by small values of r. In order of magnitude we have W, zz r. 
The right side of (37) differs from (38) by a factor of 3. In 
the approximation of a soft Coulomb gap, the corresponding 
integral is determined by values of r of order 

and is equal to r, r,,, . As a result we find from (36) and 
(37) 

and, according to (27), D #O. We see that in the soft-Cou- 
lomb-gap approximation, ( 1 1 ) , ( 13 ) , a disordered electron 
system is delocalized even in its ground state. Incorporating 
the hardness factor of the Coulomb gap, exp( - G )  [see 
(14) 1,  leads to a substantial decrease in the corresponding 
integrals in (36) and (37), and the system of self-consistent 
equations does not have a solution. An important point is 
that for T <  A the contribution of 2-clusters to (36) and (37) 
depends only weakly on the temperature, so we will ignore 
resonant pairs in the discussion below. 

Let us examine the contribution to Eqs. (36) and (37)  
from 4-clusters. The gap hardness factor exp( - G) [see 
(14)]  and hopping amplitudes (8)  fall off exponentially 
with increasing hop length. In the coefficient of the exponen- 
tial function we can thus set the dimensions r, and r, equal 
to unity. In this approximation, Eq. (37) becomes extran- 
eous. We will ignore the factors which vary logarithmically 
slowly with the temperature. 

Substituting expressions (21) and (23) into the right 
side of (36), we find 

m m m  A A 

Expression (40) contains the three energy parameters T, 
A, = Aexp( - I/[), and C, = (A/T* ) ' I 2 .  The last is al- 
ways smaller than the first two, by a factor oforder of the gap 
hardness parameter exp( - G )  [see (41 ) and (44) below]. 
In the integration over the size of a 4-cluster, R,  the dimen- 
sions corresponding to Ed zz C, play the major role. We can 
thus discard Ed from the &function. In the integration in 
(40), we can ignore the dependence of G on w and r. 

Fo rA ,<T ,  the values w , ,  w,<Tand r,-r,=:r,=.l. 
are important for the integration. We find 

W,=-ZZ(A1/C.) exp [-2G (A , ,  I ) ] .  (41 

For T<A,, we conclude that (40) is dominated by hops of 
electrons over a distance r, z r ,  zr, ,  for which we have 

A (r.) =T. (42) 

This equation determines a characteristic hopping distance 

In this case we have 

W,=Za(TJC.) exp {-2G[T, r.(T) 1). (44) 

Equating (41) or (44) to unity, we find the temperature 
dependence of diffusion coefficient (28) : 

i., ( E )  =4al [ln ( A / E )  ] "'. 

For T< T, , at which we have T, = Aexp[ - (4al) -4], the 
parameter A ( T) is greater than unity, and the diffusion coef- 
ficient is very small. Since the relation 19 1 holds, there is a 
comparatively wide temperature interval, 

TA<T<A,, 

in which the parameter /2 is small in comparison with unity 
and in which the diffusion coefficient depends on the tem- 
perature in accordance with 

D= T ~ .  (46) 

For T >  A, the diffusion coefficient does not depend on the 
temperature. 
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The condition 1(1 does not mean that the factor 
exp( - G )  plays no role. This point can be seen clearly by 
rewriting result (45) in the form 

T, T-=Ai, 
A, ,  T > A , .  

We see that at all temperatures (but with T <  Tm ; Sec. 4)  the 
decrease in the state density near the Fermi level determined 
by the hard Coulomb gap (a  factor G% 1 ) shows the diffu- 
sion process down substantially. 

4. MOTT LAW; ROLE OF PHONONS 

In the model ofelectrons in a highly disordered medium 
which was proposed in Ref. 4, the scatter in the bare values of 
the energy is significantly larger than A, and the concentra- 
tion of centers is significantly larger than a; 3. At low tem- 
perature T <  Tm [see (53) below], centers with @, < - A 
are always filled, while those with a, > A are always emp- 
ty.' The numerical value of the parameter yo, which deter- 
mines the size of Coulomb gap ( 6 ) ,  should be found from the 
condition that all of the centers which satisfy condition (5) 
belong to some resonant cluster from time to time. This as- 
sumption allows electrons to escape to infinity and thus dif- 
fuse. 

With increasing temperature, the number of electrons 
participating in the diffusive motion should increase. Let us 
assume A ,  < T <  A. Corresponding to center 1 is a potential 
energy @, = 6A ( 1 < 6 < 2)  in the external field. Because of 
the interaction with neighboring electrons, this center has an 
energy (10) in theinterval ( ( 6  - 1)A, ( 6  + 1)A). By virtue 
of the thermal motion of the surroundings, the energy takes 
on all values in this interval alternately. The intervals 
( - A,A)and((<-- l )A,(C + l)A)overlap,soanelectron 
from layer ( - A,A) may hop to center 1 resonantly in a 
process which does not involve phonons. The probability for 
finding an electron at center 1 is proportional to 

The probability that there is no electron at center 2, for 
which we have @, = - 6A, is proportional to the same ex- 
ponential function. With increasing temperature there is ac- 
cordingly an increase in the number of centers for which the 
occupation numbers fluctuate significantly. Corresponding- 
ly, there is an increase in the density of electrons participat- 
ing in the diffusive motion, and the effective hopping length 
decreases. 

Let us find the characteristic layer width ( - &A,gA) 
and the density of centers which form an infinite cluster at 
T #O: 

[ a  ( T )  ] - 3 = u T ) a o - 3 .  

In an inhomogeneous medium, the diffusion is determined 
by the rate of passage through a "bottleneck." The bottle- 
neck of a new cluster would be centers of type 1 or 2. Let us 
estimate the probability [see (40) ] for an electron to escape 
from center 2. For definiteness we assume that center 2 is 
part of that pair of the resonant 4-cluster for which the tran- 
sition energy w is positive. For it we find 

The first factor incorporates the circumstance that in an ex- 
panded system of clusters the minimum distance between 
clusters decreases. In the second factor, wmi, is the lowest 
energy [see (12)] for a transition of an electron from the 
upper state of center 2, E, = (6 - 1 )A ,  to the closest center, 
E l  = ( 6  - 1)A: 

The second pair of a resonant 4-cluster should have a nega- 
tive transition energy, so we can write 

F (  - a,,, ,r2,T) a exp (-!omin) .  (50) 

In place of (41 ), (44) we thus have 

2rmjn 
W,=-exp ------- ' I ,  C.  omi in] . 

Substituting in expressions from (48) and (49), we find 

1 2ao 
W ,  = - C .  e r y  [- - lglil - 84 (E-l-glh) 1. 

The value of the parameter 6, which determines the ef- 
fective density of centers which form an infinite cluster, 
should be found from the requirement that the bottleneck be 
traversed as fast as possible. The minimum value of (52) 
does not depend on the temperature for 

For T> Tm the maximum value of (52) corresponds to 
6-t  3'4, and the electrical conductivity is described by a 
Mott law 

The values of To in ( 1 ) and (54) are the same in order of 
magnitude. Consequently, the Coulomb interaction makes 
the electrical conductivity relatively independent of the tem- 
perature [see (45)]  at very low temperatures; as the tem- 
perature is increased, the conductivity begins to increase in 
accordance with the Mott law (54). The overall behavior is 
shown schematically by the solid trace in Fig. 1. When the 
phonon mechanism and the nonphonon mechanism for hop- 
ping diffusion are taken into account simultaneously, the 
former may predominate over a wide temperature range and 
may convert directly into a T 2  law (the dashed line in Fig. 1 ) 
as the temperature is lowered. 

According to Ref. 3, expression (53) determines the 
temperature of the transition from regime ( 1 ) to (2 ) ,  so for 
T <  T,,, the phonon conductivity decreases with decreasing 

FIG. 1 .  Temperature depen- 
dence of the electrical conduc- 
tivity. 
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temperature more rapidly than for T >  Tm . According to 
(45), in contrast, below Tm the temperature dependence of 
u should become smoother. The observation of this transi- 
tion regime could tell us which of the diffusion mechanisms 
predominates. Doped semiconductors exhibiting T  behav- 
ior for the conductivity were discussed in Refs. 14 and 15. As 
a rule, the behavior of the conductivity in these materials is 
described well by a functional dependence similar to that 
shown by the solid curve in Fig. 1. 

The T 2  law observed in doped semiconductors is some- 
times explained on the basis of the cascade conductivity 
mechanism proposed in Refs. 7 and 8. However, the power 
to which the temperature is raised in the case of that mecha- 
nism should be substantially greater than 2 (Ref. 7).  

We have not analyzed the role played by multicenter 
resonant clusters, with m>6. We believe that they would 
give rise to unbounded motion of the electrons, since a hard 
Coulomb gap would have less effect on them than on pairs 
and 4-clusters. 
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