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An exact, asymptotically plane solution of the electrostatic equations of the general theory of 
relativity is obtained that goes over to the Schwarzschild solution in the case of zero electric field. 

Among the exact solutions of the Einstein-Maxwell 
equations those of greatest interest are the solutions which 
go over to the Schwarzschild solution in the absence of an 
electric field. From among the few known metrics of this 
type that describe the external gravitational fields of charged 
sources, one should note the Reissner-Nordstrom metric''2 
and the metrics found in the papers of Herlt3 and Hoense- 
laers4 and also in Ref. 5. 

In the present paper, using the method developed in 
Refs. 5 and 6 for solving the static Einstein-Maxwell equa- 
tions, we find one more electrostatic solution, which con- 
tains two arbitrary parameters and has as its vacuum limit 
the Schwarzschild solution. 

As is well known (see, e.g., Ref. 5),  the metric interval 
describing a static, axially symmetric gravitational field can 
be chosen, without loss of generality, in the form 

E, from the following system of first-order differential equa- 
tions: 

(the comma denotes the partial derivative with respect to 
the coordinate x  or y )  . 

In Ref. 5 it was shown that Eqs. ( 2 )  are satisfied by 
I 2 - 2  2 . . 2  \ ~otent ia ls  E ,  and E,  of the form 

( 1  - -n*L - 2 (1 -A)  ( I - B )  1 
J 

2 (1+A)  ( I + B )  ( 6 )  
where the unknown metric functions f and y depend only on eZ=e* 1  - [ x (1 -AB)  + y ( A - B )  + ( I + * )  
the two prolate ellipsoidal coordinates ( x ,  y)  (these coordi- 
nates are connected with the curvature coordinates r a n d  9 

where 11 is an arbitrary solution of the equation by the relations x  = ( r  - M)/k  and y = cos 9, where k and 
M are constants). The electrostatic equations can then be A$=O, 
written as follows5: 

( E I + E ~ ) A E ~ ' ~ ( V E ~ ) ~ ,  ( E I + E Z ) A E Z = ~ ( V E Z ) ~ .  ( 2 )  and A and B  obey the following system of differential equa- 
tions: 

Here the functions E ,  and E ,  are related to the metric coeffi- A,.=A(x-Y)-~[(xY-~)$,~+(~-Y~)J), , I ,  
cient f and the electric component A ,  of the four-potential of A,  , = A ( x - y ) - ' [ - ( ~ ~ - 1 ) $ , ~ f  ( x Y - I ) $ ,  y l ,  
the electromagnetic field by ;he formulas 

B, .=-B( x + Y ) - I [  ( X Y + ~ ) $ , Z + ( ~ - Y ~ ) $ .  ,dl7 
e,=f"'+A,, ~ ~ = f " ' - - 4 ~ .  ( 3  B,v=-B(~+~)-'[-(~Z-l)$,z+(~~+l)$,vl. 

The operators A and V are given by the expressions We choose the solution of Eq. ( 7 )  in the form 
1 x+l 

$=-In- 
2 x-1 '  

( 9 )  
Azk-2 ( ~ 2 -  yZ) - 1  "I) 

In this case, integrating (8)  we find 

where x, and yo are unit vectors. where cr and f l  are two real arbitrary constants. 
The metric coefficient y is found from the known E ,  and Consequently, for E ,  and E ,  we obtain the expressions 
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[ ~ ~ y ~ - a ~ ( x + I ) ~ ]  (x-1)"-  [ a ( x + y )  ( I - y )  + P  ( x - y )  ( I + y )  ] ( x + l ) ' "  
€ 2  = 

[ x " y " a p ( ~ - l ) ~ ]  ( x + l ) ' " + [ a ( x + y )  ( l + y )  + B ( x - y )  ( I - y )  ] ( x - I ) ' "  

by means of which, using the formulas ( 3 ) ,  we find f and A , :  ( x L l )  [ ( x + y )  2+ f i2 ( l - y2 )  l 2  
f = 

f = ( x 2 - I )  ~ ' b - ~ ,  A,=2cb-l ,  (12) [ ( . + I )  ( ~ + y ) ~ - ~ ~ ( x - 1 )  ( l - y ) 2 ] 2  ' 

where A ,  = ~ P ( X + Y ) ~  
a= [ xZ - y Z - a p ( x 2 - 1 )  ] 2 + ( l - y 2 )  [ a ( x + y )  (%+I )  ( ~ + y ) ~ - p ~ ( x - l )  ( I - Y ) ~  ' 

x B ( x - y ) I 2 ,  (13) 

b = ( + + l )  [ ~ 2 - ~ 2 - a ~ ( ~ - 1 ) 2 1 ~ ( x - l )  [a  ( x + y )  ( l + y )  

Taking ( 11 ) into account and integrating (5 ) ,  we also find 
the metric coefficient y: 

Thus, the formulas ( 12)-( 14) completely determine 
the metric ( 1 ). 

It follows from ( 12) and ( 13) that the total mass M and 
total charge Q of the source have the form 

k ( I - S a p )  nil = 
2k (a+B) (15) 

I-ap Q =  l-ap . 

It is easy to see that for a = f l  = 0 the solution obtained 
goes over into the Schwarzschild solution 

x- 1  x2- I  
f=- e ' T = -  

x + l '  x z -  y2 ' 

or, in the curvature coordinates, 

(here, we have taken into account that k = M in the case of a 
static vacuum gravitational field). 

Setting a = 0 in (12)-(14) we arrive at the solution 
found in Ref. 5: 

Finally, the case when the constants a and f l  are con- 
nected by the relation a = - f l  is of special interest. In this 
case, as can be seen from ( 15), the total charge Q vanishes 
and ( 12)-( 14) go over into the following formulas: 

8 a 3 2 y  ( x -  1 )  
A,  = (18) 

[ x 2 - y 2 + a 2  ( 2 - 1 )  2 ] 2 - 4 a 2 y 2  ( 2 - 1 )  ' 
x2-1 { [ x 2 - y Z + a Z  ( x 2 - I )  ] 2 + 4 a z x Z ( l - y f ) ) '  

e?7 = - 
x2- y2 ( l+a"  )" (x"-y" 

The expressions ( 18) describe the external gravitation- 
al field of a massive electric dipole with dipole moment p 
equal to 

On the other hand, in the case when a# - f i  the metric 
coefficients f and y calculated from the formulas ( 12)-( 14) 
determine the metric of the axially symmetric gravitational 
field of a star endowed, in accordance with ( 15), with charge 
Q. 
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