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The onset and development of the nondissipative shock wave (NSW) formed as the result of the 
"breaking" of a nonlinear wave is investigated by the method of modulation equations. The 
situation when the wave is passing through an unperturbed medium is studied, and in this case 
two Riemann variables are sufficient for the description of the NSW. Both a monotonically 
increasing and a nonmonotonic (localized) initial perturbation are considered. In both cases the 
general solution is found by linearizing the modulation equations by the hodograph method. The 
asymptotic behavior of the resulting solution at largex and t is investigated and these results are 
compared with the corresponding quasiclassical formulas of the method of the inverse scattering 
problem. 

1. INTRODUCTION 

In dispersive hydrodynamics the breaking of the wave 
front of a simple Riemann wave' leads to the appearance of a 
nondissipative shock wave (NSW)-a region filled with 
nonlinear fine-scale oscillations that expands continuously 
with time. The onset of the NSW and its structure in the case 
of weak nonlinearity, when the Korteweg-de Vries (KdV) 
equation is valid, have been investigated in Refs. 2 and 3 (see 
also Ref. 4).  Here the use of the modulation equations of 
Whitham5 proved to be very effective. An important proper- 
ty of these equations for dispersive KdV hydrodynamics is 
that they can be represented in a symmetric "Riemann" 
form. The number of Riemann variables here is equal to 
three. If the physical conditions of the problem make it pos- 
sible to fix two of them, the modulaton equations have analy- 
tical solutions in the form of simple waves. It was solutions 
of this type, obtained in Ref. 2, that made it possible to study 
the NSW structure that arises in conditions of a sharp initial 
shock. At the same time, one can also distinguish a much 
more general class of nonlinear waves, when only one of the 
Riemann variables turns out to be fixed, and the generation 
and propagation of the waves are described by the variation 
of the other two.6 Such waves are called quasisimple. In par- 
ticular, any wave traveling through a stationary uniform me- 
dium is quasisimple. The present paper is devoted to the 
theory of quasisimple waves. The study of a quasisimple 
wave, as we shall see below, makes it possible to study the 
onset and development of the oscillatory structure of a NSW 
not only for a sharp discontinuity but also for a monotonical- 
ly growing one, and also for a nonmonotonic initial pertur- 
bation. The latter case is especially interesting, since it per- 
mits one to study a spatially bounded (integrable) initial 
perturbation and thereby perform a direct comparison of the 
asymptotic solutions (of the KdV equations) obtained by 
two different methods-the method of modulated waves, 
and the method of the inverse scattering problem. 

We shall formulate the problem and recall those prop- 
erties of the modulation equations that we shall need. We 
consider the solution of the KdV equation 

au du a9u 
- + u - + ~ ~ - =  
dt dx dx3 0, 

that satisfies the initial condition 

u ( x ,  0) =ro (x) 2 0, 

where the dimensionless parameter ~4 1, and r,, is a suffi- 
ciently slowly varying function of x: r,,/ldr,,/dxl 2 1. It is 
obvious that in Eq. ( 1 ) we can at first neglect the dispersion 
term 3u/6'x3, so that u (x,t) -- r(x,t), where 

r=ro (x-rt) . (2)  

The important point is that if the function r,,(x) describing 
the initial perturbation has a decreasing part, the front of the 
wave (2)  will become steeper with time and, at a certain 
moment, the derivatives of the function r(x,t) will become 
infinite (breaking of the front). Close to and after this time it 
is no longer possible to neglect the dispersion in Eq. ( 1 ). 

It is well known that in the region of breaking the solu- 
tion of Eq. ( 1 ) has an oscillatory character, and, more pre- 
cisely, is a quasistationary wave.2 The stationary wave for 
Eq. ( 1 ) has the form 

where f = x - Ut, m = s2 (S is the modulus of the Jacobi 
elliptic function dnl ) ,  and U is the phase velocity of the 
wave; the parameters m, 6,  and U are arbitrary. The ampli- 
tude of the oscillations is a = t(u,,, - u,,, ) = mb. If the 
parameters m, 6, and U of the wave ( 3 )  are assumed to be 
slowly varying functions ofx and t (a  quasistationary wave) 
their variation is described by the modulation equations of 
Refs. 2-4. Introducing in place of m, 6,  and U the Riemann 
variables r, (j = 1,2,3), with r ,  <r,<r,, we can represent 
these equations in the very simple form 

Here the "group velocities" are equal to 

[m, = 1 - m, and p = E(m)/K(m),  where K and E are 
complete elliptic integrals of the first and second kinds], and 
the original variables can be expressed in terms of the Rie- 
mann variables in the form 
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b=r3-rl, r - r )  I - r )  U=lI3 (rl+r2f r3).  

Oscillations whose parameters are described by Eqs. 
(4 )  occupy on thex axis the NSW region.'," The left bound- 
ary of the NSW is the point x = x - ( t ) ,  where m = 0 (the 
trailing edge), and the right boundary is the point 
x = x +  ( t ) ,  where m = 1 (the leading front). On these boun- 
daries the solution of the system ( 4 )  should satisfy the con- 
ditions" (Ref. 2)  

The functions x-  ( t )  and x +  ( t ) ,  together with the r, (x,t), 
are to be determined. 

An important advantage of the Riemann form (4 )  is the 
possibility of considering the reduced systems that are ob- 
tained from (4 )  when one of the variables r, takes a constant 
value; such solutions are called quasisimple waves. In the 
more general case it is possible to fix more than one variable 
rj (Ref. 6).  In the present paper we consider a wave propa- 
gating through a stationary gas, to which correspond 

r,(x)=O for x>O, r,,(x)>O for x<O. 

It follows then from the condition (6)  on the leading front 
that r ,  -0, i.e., we are dealing with a quasisimple wave. For 
the variables r2 and r, we obtain from (4 )  the system of 
equations 

where 

supplemented by the condition (5 )  on the trailing edge. 
We shall consider in more detail the initial condition on 

rO(x)  f o r x ~ 0 .  In the present paper we have investigated two 
characteristic cases (see Fig. 1 ) : 

a )  a monotonically decreasing function r,,(x); 
b )  a function r,(x) with one maximum with 

rO( - 00 ) = 0 ( a  localized perturbation). 
We assume that the derivative r; is a minimum on the 

leading front of the initial perturbation, i.e., at the point 
x = 0. Then the breaking of the front will occur, according 
to (2) ,  precisely at this point. Therefore, with no loss of 
generality we can assume that r;, ( - 0 )  = - CC, so that the 
breaking occurs at the initial time t = 0 at the point x = 0. In 
order that there be no other breaking points, we shall assume 
that r,(x) is convex in the region of decrease (the presence of 
more than one breaking point will lead, generally speaking, 
to a more complicated, many-phase modulation theory). 

The calculation is carried out for the degenerate case as 
well (case c in Fig. 1 ) . 

2.THE GENERAL SOLUTION 

The quasilinear homogeneous system (7 ) ,  consisting of 
two equations, can be linearized by means of a hodograph 

FIG. 1. Types of initial perturbation: a )  monotonically increasing; b)  
nomonotonic (localized); c )  a perturbation of constant magnitude, local- 
ized in a bounded region. 

transformation. If we take r, and r, as the independent vari- 
ables, andx  and t as the functions to be determined, from (7)  
we obtain 

The unknown boundaries x = x -  ( t )  and x = x +  ( t )  corre- 
spond in the hodograph plane to known boundaries r2 = 0 
and r, = r,. The condition ( 5 )  takes the form 

where x = c ( r )  is the inverse of the function r = r,,(x). 
Taking into account the form of the coefficients of the 

system (81, it is convenient to go over from the hodograph 
plane to the variables m = r2/r3 and b = r,. The (8 )  and (9 )  
are transformed into 

The system ( l o ) ,  ( 11) admits a Mellin transformation, i.e., 
we can seek its solution in the form 

c + i m  - 
1 

r (b) = - J bq@ ( g )  dn, m (9) = J b-9-iT (b) dk 
2nic-im 0 

where p ( b )  = [x(m,b) ,  bt(m,b) 1. The Mellin transforma- 
tion is equivalent to the possibility of separating the variables 
and of finding a basis of solutions 

where q are arbitrary numbers and the functions X,  ( m )  and 
T, ( m )  satisfy the linear system 

We note that the solutions ( 12), when inverted to express m 
and b in terms of x and t, are generalized self-similar solu- 
tions of the scaling type: 

The system (13) reduces to a single first-order (Ric- 
cati) equation for the function {, = X, / T ,  : 
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The function T, ( m )  is determined from <, ( m )  by quadra- 
ture from the equation 

after which it is easy to find Xq = gq T,. Typical phase por- 
traits of Eq. ( 14) are given in Figs. 2a and 2b. 

We note that the point x -  ( t )  of the trailing edge of the 
quasisimple wave can be determined in explicit form before 
the problem of the variation of the modulation parameters 
inside the wave is completely solved. In fact, we introduce 
for the functionsx and ton the boundary m = 0 the notation 
x(O,b)=x,,(b) and t(O,b)=t,,(b). The equations 
x = x,,(b) and t = t,,(b) in parametric form determine the 
law of motion of the trailing front x = x- ( I ) .  From the first 
equation ( 10) for m -0 we obtain the relation 

[which is equivalent to the differential equation dx-/ 
dx = - b(x-,211. The boundary m = 0 is a characteristic 
curve of the system ( 10). The meaning ofthe relation ( 16) is 
that only when the boundary values of the functions x and t 
satisfy this condition does the system ( 10) have a solution. 

From the boundary condition (10) it follows that 

comparing this with the characteristic condition (16), we 
obtain the condition 

from which one can determine to(b) by quadrature, and 
then, with the aid of ( 1 1 ), determine x,(b) as well: 

where 

~ ( b )  - - b-lhcf ( b )  db. (18) 
2 

The question of the choice of the constant of integration in 
( 18) is solved in a manner which depends on whether or not 
the function ro(x) is monotonic; in the monotonic case, ob- 
viously, F (0)  = 0. For a nonmonotonic function ro(x) there 
are two branches of the inverse function: c l (b)  and cl'(b) 
(c" <c l ) .  The initial part of the curve x = x-(I)  is deter- 
mined by the formulas (17) and (18) with c = c1 and 
F' (0)  = 0, with the parameter b increasing from zero to a 
maximum value b . . The subsequent behavior of the trailing 
edge is described by the same formulas with c = cl' and 
F1' (6.  ) = F1 (b ,  ), giving 

*. 
1 

FI1(b)  =F1(b.)+ - J b , - ' h [c l l (b , )  1' db,; 
2 b  

here the parameter b decreases from b . to zero. 

3. A MONOTONIC INITIAL PERTURBATION 

We shall assume that the function r,(x) decreases 
monotonically in the region x <O, i.e., the function c (b)  is 
single-valued. In view of the power-law character of the de- 
pendence of the basis solutions xq and t ,  ( 1 7 )  on b, it is 
necessary to represent the function c(b)  in the form of a 
combination of powers: 

We note that, in the case under consideration, only terms 
with q > 1 can appear in this sum (or series). The solution of 
the problem ( lo ) ,  ( 11 ), owing to the linearity, can be sought 
in the form of an expansion in the basis ( 12): 

P P 

In the preceding section we found (uniquely) for the 
functionsx(m,b) and t(m,b) on the boundary m = 0 values 
that are compatible with the boundary condition ( 11) and 
the characteristic condition ( 16). A solution of the system 
( 10) with these given values on the boundary exists, but is 
not unique, because m = 0 is a characteristic curve. In (20) 
there is a corresponding arbitrariness in the choice of the 
solutions of the system ( 13) for each q. In reality, however, 

FIG. 2. Family ofintegral curves ofEq. ( 14): a )  
for the case q> 1 (for the example of q = 2);  b )  
for the case q < 0 (for the example of q = - 1 ); 
c )  bounded solution of the system (13)  for 
q = 2. 
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in the sum (20) each solution X,, T, should correspond to 
the separatrix (see Fib. 2a) that passes from the node at 
m = 0 to the saddle point at m = 1 (the NS separatrix). For 
all the other solutions, as can be shown, the domain in which 
the functions x and t in (20) are defined does not include the 
neighborhood of the boundary m = 1. Such solutions are not 
applicable to the description of the NSW, since joining with 
the outer solution r(x,t)  is possible only at the values m = 0 
and m = 1 (Ref. 2).  

We shall normalize the solution X 7 ,  T yS correspond- 
ing to the NS separatrix by the condition 

(for q > 1 this is possible). Then X yS(0) = ( 1 - q)/q, and 
the condition (1  1 ), which, with allowance for ( 19) and 
(20), takes the form 

gives the possibility of finding the coefficients a , .  Finally, 
for the case of a monotonic initial perturbation we have 

where the summation is performed over the same values of 
q( > 1 ) as in the expansion ( 19) of the function c (b ) .  

The solution X F ,  T y  can be found numerically; the 
calculation is stable if one first integrates ( 14) from m = 1 
[& ( 1 ) = (2/3) ( q  - 1 )qP ' ] ,  and then integrates ( 15) 
from m = 0 using (21) .  

We note that XyS, T t S  is (apart from the normaliza- 
tion) the only solution of the system (13) that has a finite 
limit as m - 1. Setting m = 1 in (22) ,  we obtain a parametric 
representation of the motion of the leading front of the 
NSW, the velocity of which is x+ = 2b(x+,  t)/3. 

As a simple example we shall consider the problem of a 
quasisimple wave developing from the initial profile 

FIG. 3. Form of the NSW region in the x,t plane for the example of 
r { , ( x )  = ( - X )  'IZ for - 1 < X  < 0, r ,> (x )  = 1 for x < - 1. Lines of con- 
stant value of the function m ( x , t )  are also shown. 
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r o ( x )  =O for xBO, r , (x)  = (-x)'" for - 1 < ~ < 0 ,  

r , ( x ) = l  for x<-1. 

The solution of this problem is described by different 
formulas in different regions of the x,t plane (see Fig. 3).  In 
the region I external to the NSW it is determined by the 
relation (2 ) .  In region I1 the solution is given by the formu- 
las (22) ,  in which only the term with q = 2 (c, = - 1) is 
kept. The law of motion of the trailing front is 

~ - = - ~ / , t '  for t<2/3,  x-='13-t for t>,/& 

The line r, which is the boundary between the regions I1 and 
111, is given by the equations x = 2 X y ( m ) / 3  and 
2TyS(m)/3.  Graphs of the functions X FS(m) and TyS(m)  
are illustrated in Fig. 2c. In region I11 the solution is a simple 
wave and cannot be found on the hodograph plane. In this 
wave b- 1, and function m = r, satisfies the equation 

the general solution of which has the form 

m=M[x-V , (m)  t ] .  

The function M for the given example is determined by a 
condition on r: 

m=M( 2 /sXzNS ( m )  -2/3V2 ( m )  T,NS ( m )  1. 

It is obvious that m keeps a constant value on the straight- 
line characteristics 

For largex and t the solution described above is transformed 
into a centered simple wave 

The expressions obtained now fully determine in im- 
plicit form the variation of the parameters m = r,/r, and 
b = r, as functions of x and t .  Using them in (3) ,  we can 
construct a quasistationary wave that displays the oscilla- 
tory structure of the NSW. It has the usual form-it begins 
as a soliton with maximum amplitude and gradually degen- 
erates into sinusoidal oscillations. In the example considered 
with q = 2 the amplitude of the head soliton near the break- 
ing point grows with time: a/ ,  = , = b + = 3at/2,  where 
a = [ T y S ( l )  ] - '  ~ 0 . 4 2 .  The velocity of the head soliton is 
i+ - - a t ,  and the trailing edge moves away into the region 

x < 0 with velocity x- = - 3t /2, so that the region occupied 
by the NSW expands with time as 

The amplitude of the head soliton reaches its maximum val- 
ue b + = 1 at t = 2a- ' /3  = 1.59. After this the growthofthe 
head soliton ceases. Asymptotically at large t the distance 
between neighboring solitons near the leading front in- 
creases logarithmically: A = 2 r k  - ' =.&@ In t. The general 
pattern of the oscillations gradually approaches the pattern 
obtained in Ref. 2 in the solution of the problem of the decay 
of an initial discontinuity. 

We note that in the case of cubic breaking considered in 
Ref. 2 the amplitude b + grew as t ' I 2 ,  and the regionoccupied 
by the NSW expanded as t 3'2. 
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4. A LOCALIZED INITIAL PERTURBATION 

The aspect that is new in comparison with the monoton- 
ic case is that the function c (b )  is two-valued, and, as a con- 
sequence, the hodograph transformation (x,t)  - (m,b) is 
two-sheeted. The independent variables m and b vary on two 
sheets; O<m( 1,0<b<b. [b ,  = r,(x, ) is the maximum val- 
ue of r,,(x) ] : Sheet I corresponds to the "nose" part of the 
initial perturbation (the part to the right of the maximum), 
while sheet I1 corresponds to the "tail" region. The charac- 
teristics on both sheets have the same equations: b = const 
and mb = const (corresponding to r, = const, j = 2,3), but 
the semicharacteristics, specifying the basins of influence, 
are different (see Fig. 4 ) .  

The plan for obtaining the desired solution is natural: 
First we find the solution on sheet I and then we find the 
solution on sheet 11, using continuous splicing with the solu- 
tion on sheet I at b = b.. Because the system (10) is hyper- 
bolic and the splicing line is a characteristic, this procedure 
is correct.' The formulas ( 12)-( 15 ) used in the construction 
of the solution apply equally to both sheets, but the bound- 
ary-value problems are formulated differently. The branches 
of the function c (b )  are specified by distinct expressions on 
each sheet: 

As a model, below we consider the particular case when the 
sums in (23) contain only one term each: 

The extension to the general case reduces to summing the 
solutions over q, and note is made of this at the appropriate 
points in the subsequent text. Without loss of generality, we 
set b . = 1; then the coefficients c, and c _ , are the same, but 
it is convenient to retain different notation for them. 

1 .The solution on sheets I and I1 

The solution on sheet I is obtained in precisely the same 
way as in the monotonic case, and has the form 

FIG. 4. Regions of dependence in the problems on sheets I and I1 for the 
system ( 10). The thick lines show those parts ofthe boundary from which 
the data are "carried over." 
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S 
x r ( m ,  b ) =  - c,bSXIYC ( m )  , 

1-2s 

In the general case (23.1) it is necessary to sum (24) overs 
[cf. (22)] .  

The solution on sheet I1 requires a more detailed study 
of the system (13),  the results of which are given in the 
Appendix. The conditions that single out the desired solu- 
tionsare (11) wi thc(b)  = c n ( b )  = ~ - , b - ~ ,  and 

xn(m, l ) = x l ( m ,  I ) ,  t l I (m,  I ) = t r ( m ,  I ) ,  (25 

where the values of x '  and t' for b = 1 are taken from (24).  
In order to satisfy both these conditions it is necessary to use 
both the solutions X :", T i ' '  and Xi2 ' ,  T i Z '  from the funda- 
mental system (A1 ), (A2) .  The boundary condition ( 11) is 
satisfied by the following solution of the system ( 10): 

P X ( 2 )  = - c - ~ ~ - ~ X - ~  (2) ( m )  , 
1+2p 

P t(2) = - - C - ~ ~ - ~ - ' T $  ( m )  
I+Zp 

[see (A3)-(A6) 1. To (26) we must add the solutionx"', t ' I '  

satisfying the homogeneous condition ( 1 1 ) [when 
c(b)  = 01, in order that for 

(25) be fulfilled. The general form of the solution satisfying 
the homogeneous condition ( 1 1 ) is as follows: 

[see (A5)  1. The condition (25),  with allowance for (24),  
(27), and (26), gives 

Using (A7)  and (A8)  to represent the right-hand side here 
in the form of combinations of the solutions ( X : ' ) ,  T i ' ) )  
(taking into account that c, = c -, ), we find from (28) the 
coefficients a;'). Finally, the solution on sheet I1 has the 
form 

S +- r I c , b s ~ : O  ( m )  + a::?ixb*''12~:~l,2 ( m )  , 
1-2s k=O 

c - p b - ~ - i ~ $ '  ( m )  t l I  ( m ,  b )  = - - 
1+2p 

OD 

S + - y . S b a - l ~ : O  ( m )  + a : ~ ~ / 2 b k - ' " ~ : ? t , ~ ( m ) ,  
1-2s k= o (29) 
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where 

and the coefficients y, and h,, are defined in the Appendix 
(Secs. B and C). In the general case (23) it is necessary to 
sum (29) and (30) over thoses = q which appear in the sum 
(23.I), and overp = - q, where q appears in (23.11). 

As an example we shall consider the solution (24),  (29) 
in the case s = 2, p = 1. The corresponding solution of Eq. 
( 1) at time t = 0.5, when it has an already sufficiently devel- 
oped NSW zone, is represented in Fig. 5; the corresponding 
picture in the x,  t plane is depicted in Fig. 6b, in which the 
trailing and leading fronts and lines b(x,t)  = const are 
shown. Sheet I of the hodograph lane corresponds to region 
I, and sheet I1 corresponds to region 11. The curve MNcorre- 
sponds to the line of splicing of the sheets, and on it b(x,t) is 
a maximum. At the time t, = 2/3 the tail of the rapidly 
oscillating wave reaches the maxium r = 1 of the "outer" 
solution ( 2 )  (the point M o n  Fig. 6b),  and the amplitude b + 

of the head soliton is equal at this time to 0.42 (the height of 
the soliton is equal to 2b + ) .  At time t ,  = 1.59 the head 
soliton achieves its greatest amplitude: b + = 1 (the point N 
on Fig. 6b). After this it does not grow, and it moves with a 
constant velocity. The distance between the solitons near the 
leading front increases here linearly with time. The corre- 
sponding straight-line segment of the boundary of the NSW 
region in the x, t plane is carried over by the hodograph 
transformation to the point m = 1, b = 1 on sheet 11. The 
other points of the right boundary of the sheet (m = 1, 
b < 1 ) are not reached at finite x and t-these are solitons of 
smaller amplitude that are realized only asymptotically 
(this asymptotic form is studied in detail below, in Sec. 2) .  
Because of their low velocities they never move out to the 
leading front, on which the largest and fastest soliton is mov- 
ing. 

We shall consider an initial perturbation of constant 
magnitude r, = 1, concentrated in the interval from - c to 0 
(Fig. l c ) .  The outer solution on the trailing-edge side obvi- 
ously has the form r(x,t)  = 0 for x <  - c, 
r(x,t) = ( x  + c ) t  -' for - c g x g t  - c, and r(x,t)  = 1 for 
t - cgxg t .  The trailing edge moves in accordance with the 
law x- ( t )  = - t for tgc/2 and x-  ( t )  = - c + c2t I for 
t>c/2 [in accordance with Sec. 2, or directly from dx- /  
dt = - r(x-, t) ,  X-(0)  = 01. That part of the initial pertur- 
bation where r,, = 1 corresponds to a self-similar simple 
wave with b(x,t) = 1 and m (x,t) : 

FIG. 6.  Region of the NSW in the x,t plane (Fig. a corresponds to Fig. lc, 
and Fig. b corresponds to Fig. lb) .  

xl t=  V ,  (m) (31) 

(region I on Fig. 6a).  The boundary of region I and region 
11, where b < 1, is determined by the equation 

and by Eq. (3  1 ) with the initial condition x = - c / 2 ,  t = c/ 
2 at m = 0. It is found in the parametric form 

The quadrature here is calculated in explicit form in terms of 
,u = E K - ' ;  we have ( m ,  = 1 - m )  

FIG. 5. Nondissipative shock wave (curve 2 )  that has devel- 
oped (by the time t = 0.5) from the initial perturbation given 
by r , , (x )  = 0 for x>O, r,,(x) = ( - x)'12 for - 1 <x<O,  
r0(x) = - x - I  for X <  - 1 (curve 1 ) ;  E = 2.10-'. 
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1 (m+l)  p- (3m- t l )  m, 
x, ( m )  = - cm, 

2 (m+l)  p-ml 7 

In region I1 the solution is found by the hodograph method. 
The boundary conditions ( 1 1 ) and (25) have in the given 
case the form 

x (m,  1) '5' ( m )  , t (m ,  I )  =t, ( m )  . (33) 

From (32) we find that Xi2 '  and T;" do not participate in 
the solution sought [see (A6)  1. Using (33) and the expan- 
sion o f t .  in powers of m, 

we find the solution in region I1 in the hodograph represen- 
tation: 

m m 

D ( m ,  b )  = rah h k + i 1 ~ , ! 8 h  ( m )  , t (m,  b) =x a,bk-"'~::)v,, 
k=O k-0 

where a ,  = co,, and the ul, are determined from (A12). 
The first coefficients a ,  are a,, = c/2, a ,  = 3c/16, and 
a,  = 15c/128. 

2. Approach of the solution to a soliton wave 

We shall investigate the behavior of the solution (29) as 
m - 1. The phase trajectories of all those solutions of the 
system (13) that participate in (29) approach the node 
Cy ( 1 ) = 2/3 as m - 1. These solutions are not bounded as 
m - 1; their asymptotic forms are 

where A = - ;ln ( 1 - m ) + In 4, and A,  and C, are certain 
constants that are uniquely determined for each solution X,  , 
T, appearing in (29).  It is clear that for a given b and m - 1 
the solutions x = x" (m,b) and t = t"  (m,b) go off to infin- 
ity. If we substitute (34) and (35) into (29),  neglecting cor- 
rections of order ( 1 - m) A, after the elimination of A we 
obtain 

~ = ~ / ~ b t + x ~  (b)  . (36) 

where 

[a ,  are the coefficients of the basis solutions ( 12) in (29) 1. 
The relation (36) gives the asymptotic form of the function 
b(x,t) for x,t- W .  It is a soliton wave-a chain of solitons 
with amplitude increasing in the direction of their motion (it 
follows that these are asymptotically noninteracting soli- 
tons). The soliton wave is a solution of the system of modu- 

lation equations (7 )  with r, = r, (i.e., with m = l ) ,  when 
( 7 )  degenerates into the single equation 

the general solution of which is given by the relation (36) 
with an arbitrary function x,,(b). The straight lines (36) are 
lines of constant value of the function b(x,t)  for x,t- co. To 
elucidate the character of the approach to the asymptotes it 
is necessary to take corrections to (34) and (35) into ac- 
count. This gives 

where 

We shall estimate the behavior of m as t- co (for a 
given b)  by confining ourselves in (35) to the leading term 
T, = A ,  A. Then 

whence m =: 1 - 16e -- "". 

3. Comparison with the quasiclassical solution 

We shall compare the soliton asymptotic form (studied 
in Sec. 2 )  of the solution in the case of a localized initial 
perturbation with the formulas obtained by KarpmanX (see 
also Ref. 4, p. 598) by the method of the inverse scattering 
problem in the framework of the quasiclassical approxima- 
tion: For t- w the coordinate of a soliton of amplitude b is 
equal to 

and the wave number (soliton density) is 

where 

[x ,  < x ,  are the roots of the equation r,,(x) = b]. Making 
here the replacement r = r,,(x) we obtain for the quantity 
p ( b )  characterizing the soliton wave that the solution ap- 
proaches as t-  w a linear expression in terms of the differ- 
e n c e ~ '  - c" describing the width of the initial perturbation: 

The linear transformation (40) is none other than an Abel 
transformation" 

Y 

relating the functions 
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6 ' 1 3  and the solution regular at the origin 
f (y) = -LC' (b.-y) -cN(b.-y) 1, 

8 

The inverse transformation 

u 

does not permit one to recover the initial perturbation r,(x) 
uniquely from p ( b )  (i.e., from the t -  oo asymptotic 
form)-only the difference c' ( 6 )  - c" (b )  is recovered. 
The reason is that we are dealing not with the exact formulas 
of the method of the inverse scattering problem, but wth the 
quasiclassical approximation of this problem. The degree of 
arbitrariness with which r,,(x) is recovered in this approxi- 
mation is in full agreement with the formulation indicated in 
the Introduction: Up to the breaking the evolution is de- 
scribed by Eq. (2) ,  according to which each point of the 
wave profile moves with a constant velocity r, so that the 
difference c' ( r )  - cl' ( r )  does not change with time. 

Comparison of the formulas (38) and (39) with (36) 
(in which for t -  co we neglect x,,) and (37) with allowance 
for the expression for the wave number in terms of the pa- 
rameters m and b 

n 
, K(m)mA for m+I, 

leads to the relation 
b. 

Analysis of this relation for the examples of the function 
ro(x) considered above in Sec. I shows that the expansions of 
the right- and left-hand sides of (41 ) contain the same pow- 
ers of b, and comparison of the coefficients makes it possible 
to find the constants A,  in the leading terms of the expan- 
sions (34) and (35):  

Here the al, are determined from ( A  12). 
The authors thank L. P. Pitaevskiifor useful discussion. 

(the coefficients of the m3 terms are already different). We 
remark that the fundamental system (A1 ), (A2)  cannot be 
used for q = 1/2, + 3/2, f 5/2 ,... : If q = 1/2, (A1 ) and 
(A2)  coincide, and for q = + 3/2, f 5/2, ... one of them 
does not exist. For q = k + ; (k>,O) the solution ( A l )  is 
regular. 

Substituting the solution of the system ( 10) of the gen- 
eral form (on each sheet) 

z (m, b) = ~ b q [ o ~ O ~ ~ "  (m) + ~ " x ~ "  (m) 1, 

t(m, b) = bq-'[a;'' T:" (m) +a:' T:" (m) 1 

into ( 1 1 ) and taking (23) into account, we obtain 

a,"' [ x i i '  (0) -T:" (0)  ]+aJ2' [x i "  (0) -2,:' (0) ] =cq. 

(A41 

From ( A l )  and (A2)  it follows that2) 

xi1' (0) -T,"' (0) =O for q>-3/Z. 

Then from (A4)  we find 

and a:') remains arbitrary. 

B. Thesolution bounded asm- 1 

This solution, corresponding on the phase portraits 
(Fig. 2)  to the NS separatrix, can be expanded in the funda- 
mental system (A1 ), (A2) :  

X NS x;~) 
( T!s )=( 21; ) + yq ( T(l)  ) (A7)  

APPENDIX: ON THE SOLUTIONS OFTHE SYSTEM OF 
EQUATIONS (18) where the coefficient y, is determined numerically by tri- 
A. The fundamental system of solutions gonal inversion from m = 0 to m = 1 and back. The unit 

Of greatest convenience for the use of the condition coefficient in the first term agrees with the normalization 

( 11 ) is the system consisting of the solution (21). 

X '"=mq-'" 3 
a [ l + % m +  (32 32 2q-1)m2+...], 2q+3 C. Expansion of the regular solution in solutions with half- 

integer q 
3 ~d"=mq-'" I + - m +  -+-- [ 8 

2q-i) m2+. , .] For q = k + 1, k>O the series ( A l )  contain integer 
(32 32 2q+3 powers mv with v>k. Because of this, we can re-expand the 

solution (A2)  with q#3/2 ,  5/2, ... in the solutions ( A l )  
( A l )  with q = 1/2, 3/2, 5/1, ... as follows: 
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The coefficients h,, are calculated using the recursion for- 
mula 

I-1 

where T,, and S,, are the coefficients of mn in the expan- 
sions of T F' ( m  ) and T ! ( m ) .  The latter, in their turn, are 
determined by the recursions 

where 

in which xn and A, can be obtained from the expansions 

Calculations using the formulas ( A 9 ) - ( A l l )  give 

In general it can be shown that 

where a, is determined from the system of equations 

in which 4, is obtained from the expansion 

' On the trailing edge the "outer solution" r ( x , t )  is the largest of the three 
roots of Eq. (2) ,  while on the leading front it is the smallest of the three. 

"The solution X:", T:" for q( - 3/2 is not used anywhere in the fol- 
lowing. 
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