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A statistical approach to the theory of nucleation is developed. The size distribution function of 
the nuclei is introduced on the basis of the concept of the most probable trajectory in the space of 
the order parameters-the smoothed concentrations of the particles. It is shown that in the limit 
oflarge sizes of the nuclei the results of an analysis of the trajectory equations coincide in form 
with the results of the classical theory of nucleation. As an illustration the dependence of the 
frequency of nucleus formation on the parameters of the system in nucleation near a critical point 
is considered. 

The classical theory of nucleation is applicable princi- 
pally to nuclei of a size such that the energy of formation of a 
nucleus can be divided into a volume part and a surface 
part.'.2 To calculate the latter in this case one uses macro- 
scopic concepts (surface tension, the chemical potentials of 
the homogeneous phases, etc). For small nuclear sizes this 
division of the energy is not justified, and the parameters of 
the nucleus are found by direct calculation of the partition 
function of many-particle complexes, without allowance, as 
a rule, for their interaction with the medium. ' In the general 
case the interaction of a nucleus with the medium can be 
taken into account for systems admitting the use of model 
Hamiltonians. Such an approach has been used, e.g., in Refs. 
3 and 6, in the description of the process of nucleation near a 
critical point. Lying at its basis are dynamical equations de- 
scribing the change of the order parameter with time with 
allowance for a random force. This approach, however, re- 
quires some refinement, since the manner in which the nu- 
clear-size distribution function is introduced in these papers 
is not sufficiently general. 

In the present paper we analyze the process of nuclea- 
tion of spherical nuclei in application to first-order phase 
transitions of the gas-liquid type. The starting point is the 
Fokker-Planck equation for the distribution function p of a 
defined subsystem with a nucleus with respect to the order 
parameters 

n , = ~ - *  J d3r n (r) exp ikr, 

where n ( r )  is the local density at the point r, Vis the volume 
of the subsystem, and k < k, ( k c  ' is the characteristic 
length scale of the smoothing7). The size distribution func- 
tion of the nuclei is introduced on the basis of the concept of 
the most probable trajectory, in the space of the parameters 
n,, along which the transition of the subsystem from the 
initial unstable state of the old phase to the more stable new 
phase can occur. From analysis of the equation of the trajec- 
tory in the limit of large nuclear sizes we obtain expressions 
for the energy of formation of the nucleus and for the other 
parameters determining the nucleation process. As an exam- 
ple we consider the dependence of the frequency of nucleus 
formation on the parameters of the system in nucleation near 
a critical point. 

1. THE STARTING EQUATIONS 

In the local approximation in n, the Fokker-Planck 
equation for the distribution function p({nk 1) can be repre- 
sented in the form2.* 

where r,,, is the matrix of the kinetic coefficients (depen- 
dent, in the general case, on n, ), p, = exp( - B H )  is the 
equilibrium distribution, fi - is the temperature, and 
H = H({n, )) is the Hamiltonian. In the framework of the 
squared-gradient approximation of the thermodynamics of 
inhomogeneous systems the Hamiltonian H is determined 
by the expression9 

where n = n ( r ) ,  cis  the influence parameter, w(n)  is the free 
energy of the homogeneous liquid, and p is the specified 
chemical potential of the particles in the system. For simpli- 
city we shall suppose that the function W(n) has one local 
maximum at n = n, and two local minima at n = n, and 
n = n, (n, < n, < n, ), corresponding to the homogeneous 
states of the old phase and the new phase. 

Using the given expression for H, we shall consider the 
consistency of the solution of ( 1 ) in application to a subsys- 
tem consisting of old phase and a nucleus of the new phase. 
We introduce a set of parametersx = x ,  , ..., x,  by which the 
state of the nucleus can be characterized, and the corre- 
sponding phase functions X = X , ,  ..., X,, which depend on 
the n, . The solution of ( 1 ) can then be sought in the form 

wherep ( x )  andp, ( x )  are certain functions ofx, and the n, 
are linear combinations of the parameters n, (not expressa- 
ble in terms of X).  Confining ourselves in (2 )  to those terms 
of the expansion in n, that have been written out and deter- 
miningp ( x )  andp, ( x )  from the condition for synchroniza- 
tion of first moments-the distribution function f ( x )  of the 
nuclei with respect to the parameters x,  and the distribution 
n,  (XI :  
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j ( x )  = ( 6  ( x - X )  )', nu ( x )  = f-l ( x )  ( 6  ( x - X )  n,),  

where 

and the angular brackets denote averages over p, it is not 
difficult to obtain from ( 1 ) a closed system of equations for 
f (x)  and n, (x) .  Neglecting terms associated with fluctu- 
ation of the kinetic coefficients, we can write these equations 
in the form 

where 

u, ( 5 )  = - C Li. ( x )  Ppa (') 

6Q ( x )  
, na ( x )  = - ----- 

6 ~ .  (x) ' 

and the kinetic coefficients L,,, (x),  La, (x) = Lia (x) ,  and 
Lij (x) are determined as averages over f - (x)S(x - X ) p  of 
the expressions 

k,k' 

k,k' 

respectively. The terms 

omitted in (3)  are important only for large deviations of 
pa (x) and dp, (x)/dxi from zero, and will not be consid- 
ered henceforth. An analogous remark also applies to (4).  

Introducing the formal parameter E determining the 
relative order of magnitude of the kinetic coefficients and 
replacing 

we shall seek the solution of (3) ,  (4)  in the form of a series in 
powers of E - I. Taking into account only the first nonvanish- 
ing terms of the expansion in E - I, we obtain the following 
equations for f (x) and p, (x) : 

where 

Here L a,! (x) is the inverse of the matrix La,, (x),  and the 
parameter E is not written out explicitly. The kinetic coeffi- 
cients in ( 5 ) ,  ( 6 )  are calculated in the zeroth approximation 
in p, (x).  The given equations describe the nucleation pro- 
cess in conditions of slow relaxation of the distribution f (x)  
and fast relaxation of n, (x).  

2. NUCLEATION OF SPHERICAL NUCLEI 

The basic parameters xi  by which the state of the nu- 
cleus is characterized are the sizes. To introduce the phase 
functions Xi = Xi ({n, )) corresponding to these parameters 
we shall consider the most probable trajectory, in the space 
of the parameters n,, along which the subsystem can un- 
dergo a transition from the initial unstable state of the old 
phase to the more stable new phase. This trajectory passes 
through a saddle point of the function H in the direction of 
steepest descent, and can be found from the condition that 
the vectors dn, and d H  /an: be collinear, i.e., from the equa- 
tion 

where T is a real parameter. Using the solution n ( r , ~ )  of (7) ,  
we can construct a set of vectors orthogonal to the trajec- 
tory, and also the tangent vector dn ( r , r ) / d~ ,  and use these 
to determine the required set of phase functions. 

Henceforth we shall confine ourselves to analyzing the 
process of nucleation of spherical nuclei. In this case the 
connection beiween the parameter T and the radius x ,  = a of 
the nucleus, and also the dependence of the phase function 
XI = R on n, , can be determined by the relations 

( R )  - h r  an(r' R,  [ n  ( r ,  R )  -n ( r )  ] -0. 
a R  

where n ( r , ~ )  is a spherically symmetric solution of (7) ,  de- 
scribing the subsystem with the nucleus, n(r,a) 
= n(r , r(a)  ), and ~ ( a )  is the solution of (8) .  In accordance 

with ( 9 ) ,  for F(x)  = F(a )  we shall then have the expression 

F ( a )  =-p-l In 5 d{nkJG(a-R)exp(-pH) 

The integral in ( 10) is determined principally by the value of 
the factor ld@(a)/dal exp( - PH) at the point ofthe condi- 
tional extremum of H, which can be found from the equa- 
tions 

6  H -- ha, ( a )  ci - = 0, ( a )  =0, 
6 n ( r )  6 n ( r )  

where a is a Lagrange multiplier. The solution ( 11 ) has the 
form a = da/dr and n ( r )  = n (r,a) , since, by definition, the 
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trajectory n ( r , a )  minimizes Hin  the plane orthogonal to the 
vector an ( r,a ) /da .  Consequently, 

where H ( a  ) is the value of H for n ( r )  = n ( r , a )  . This ap- 
proximation corresponds to the mean-field approximation. 
We note that, in accordance with ( 7 ) ,  H ( a )  can be repre- 
sented in the form 

We now consider the expression for the size-diffusion 
coefficient D l ,  ( x )  = D ( a )  of the nucleus, which appears in 
the equation for f ( x )  = f ( a ) :  

wherefl, ( a )  = exp [ - f lF(a )  1. We shall define the param- 
eters n ,  by the relations 

where 9, ( r , a )  is the set of all unit vectors orthogonal to the 
vector 

9 (r ,  a )  = h  ( a )  -'" an ( r ,  a )  , h  ( a )  = J d3r I 
dn d a 

In addition, we shall use operator notation for the projector 

the matrix T ( r , r l )  in ( 1 ), and 

D (r ,  rr,  a )  =D ( a )  P ( r ,  r ' )  , 

using bold print for the operators. By analogy with the 
above, the averages over S(a  - R)exp f l [ F ( a )  - HI that 
appear in D ( a )  can be replaced in this case by their values at 
the point n ( r )  = n(r ,a ) ,  and, with allowance for the equali- 
ties 

6na 6R 
--- = .p. ( r ,  R )  + - J d3rin ( r r )  89-  (r', R )  
6n ( r )  6n (r) d~ 

D ( a )  can be represented in the form 

D ( a )  = A - 1  [r-r (I-*a:) 

~ Q ( ~ ~ ' Q ) - ~ Q  ( 1 - 6 a P ) r  ]P, 
ga ( 1 5 )  

where 

6a-h-I ( a )  d3r n ( r ,  a )  
dn(r ,  a )  

da 

and Q = 1 - P .  Using the operator equality 

Q(QFQ)-~Q="~-'-F-~~(~F~~)-~~F-~, 

we transform ( 15) to the form 

dP -* 
D a = h l  ( a )  ( l a )  P ( P i - ' P )  - 'P(  1-6, E) da -' P, 

and then, by direct expansion in powers of Sa, to the follow- 
ing expression: 

Calculating the matrix elements (in the basis p ( a , r )  ) of the 
latter expression, we obtain 

where r - (r , r f  ) is the inverse of the matrix T ( r , r l ) ,  and 

In the following we shall use the approximation 

r ~ k ' = 8 ~ , k , k ~ r ~ V - ' ,  

where r, = const, and, consequently, in ( 17) we shall set 

l7-I ( r ,  r f )  = (4nr0) - '  1 r-rr 1-l. 

3. THE FREQUENCY OF NUCLEUS FORMATION 

We shall consider approximate solutions of ( 7 )  that 
have as a + ~  the form of a travelling wave 
n ( r , a )  = n ( r  - a ) .  Assuming the parameter c to be inde- 
pendent of n ( r ) ,  we represent ( 7 )  in the form 

where \V(n)  = d W ( n ) / d n ,  and rewrite dn(r ,a ) /da  as fol- 
lows: 

We shall treat the term in the square brackets in ( 19) as a 
perturbation. Then for n ( r , a )  in the zeroth approximation 
in the perturbation we obtain from ( 18) the equation 

The boundary conditions for ( 2 0 )  are determined by the 
expressions 

= 0, n (r ,  a )  -+ ng, 
1- 03 

and Eq. ( 8 )  serves to determine the dependence of a on a .  
The values of F ( a )  and D ( a )  in the given approximation are 
calculated using the formulas ( 12) ,  ( 13) ,  and ( 17) after the 
replacement of dn ( r , a ) / d a  by - dn ( r , a )  /dr.  More accurate 
expressions for F ( a )  and D ( a )  can be obtained directly from 
the solution of ( 18) with initial conditions that can be found 
from an analysis of the dependence of H on n, near the sad- 
dle point. 
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Equation (20) is simplified considerably for d<a ,  
where d is the characteristic size of the interphase region. In 
this case we can introduce the variable z = r - a and, omit- 
ting terms -d /a, represent Eq. (20) in the form 

where v = c i  + 2c/a. The boundary conditions and Eq. (8 )  
for (21) can be written in the form - 

n (4 z+-m nl, n (z) ,,C n,, n (0) = n,, 

and the parameter u is considered as an eigenvalue. Substi- 
tuting the solution of (21 ) into the expressions for F (a )  and 
D(a) ,  to the same accuracy in d /a we shall have 

4xa3 
F (a) = - - AP+4naza-P-' In 4naz, 

3 (22) 
6a -' 

D (a) = (4xa3) -' (n,-n8) -' (I - -) ro, (23) 

where AP = W(n, ) - W(n, ) is the difference of the pres- 
sures of the new and the old phase, a = v - 'CAP is the sur- 
face-tension coefficient, and 6a = (2a)  - 'c(n? - ni ). In the 
general case, Eq. (21 ) can have several eigenvalues v .  They 
are all positive, i.e., according to (21 ), 

and, by definition, AP> 0. Obviously, into (22) and (23) we 
must substitute the largest eigenvalue, since in this case the 
energy of formation of a nucleus of critical size will be a 
minimum. 

Approximating T ( n )  in (21) by the third-degree poly- 
nomial 

Y (n) =B(n-n,) (n-n,) (n-n,), 

we obtain the familiar (from diffusion theory) solution de- 
scribing the profile of a travelling wave with a concentration 
drop'": 

and the following expressions for the parameters in (22) and 
(23): 

where 

The expressions (22), (23), and (25) differ from the corre- 
sponding expressions of the classical theory of nucleation in 
two respects: first, in the dependence, albeit weakly ex- 
pressed, of the surface tension on the supersaturation, and 
second, in the different dependence of D ( a )  on a from that 
adopted in the theory of nucleation in Ref. 1. For 6a < a  our 
dependence D(a )  coincides with that cited in Ref. 3. 

We shall use the given expressions to calculate the de- 
pendence of the frequency Jof  nucleus formation onp  andp  
near a critical point. The frequency J is determined by the 
stationary solution of ( 14) with the boundary conditions 

f (a) TZ Cnlfe (a), f (a) a,C 0, 

which leads to' 

4pa '" 
~ n , l n a " ~  (a*) ( -) . n exp ( - P A P ) ,  

where Cis  a parameter having the meaning of the number 
density of nuclei of zero size, a* = 2a/AP, and 
A F  = 4 ~ a * ~ u / 3 .  The dependence of the parameters in (26) 
on p and p is determined from the expansion 7.9 

where n,, and PC, are the values of n and at the critical 
point, Ap = p - p, , and p, is the equilibrium value of the 
chemical potential (for a planar interphase boundary). Rep- 
resenting (in accordance with this expansion) the param- 
eters in (26) in the form of series in powers of Ap, and con- 
fining ourselves to the first terms of the series, we shall have 

where 

The expression (27) differs from the corresponding expres- 
sion for J in  Ref. 3 only in the pre-exponential factor (in Ref. 3 
the pre-exponential factor is - Ap3 ( 1 - /3 IDcr ) - 
Basically, this difference is connected with the fact that in 
( 12) we took the logarithmic term into account. The region of 
applicability of (27) is limited by the conditions imposed on 
the chemical potential [Ap4  (4AB/3) 
X nf, ( 1 - fl - 'p,, )'/*I and on the size of the interphase re- 
gion [d<a*]. 

Thus, introduction of the concept of the most probable 
trajectory in the space of the order parameters n, makes it 
possible to introduce the concept of the sizes a of the nuclei 
and the size distribution function f (a)  of the nuclei, and to 
obtain from ( 1 ) the equation ( 14) without resorting to a mac- 
roscopic analysis of the nucleation process. The results of an 
analysis of the equation of the trajectory in the limit of large 
sizes of the nuclei agree in form with the results of the classical 
theory of nucleation. In the limit of small sizes of the nuclei, in 
accordance with the structure of Eq. (18) we should expect 
deviations from the results of the classical theory. In this case 
it is also necessary to make more consistent allowance (i.e., 
going beyond the framework of the mean-field approxima- 
tion) for the influence of fluctuations on the character of the 
dependence of F (a )  on a. 
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