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I t  is shown that the energy levels oflow lying states in the Heisenberg model with weak anisotropy 
can be found as eigenvalues of a paramagnetic Hamiltonian whose anisotropy constants have 
been renormalized relative to the original ones and whose spin is proportional to the number of 
particles. The spectrum of such a system is rigorously described with the help of a simple effective 
potential permitting the use of familiar quantum-mechanical methods. Using instanton 
techniques, the splitting ofthe ground state energy due to tunneling is calculated and found to be 
quite sensitive to all parameters in the problem except the isotropic exchange constant. 

These days investigation of tunneling effects is of con- We consider a spin system described by the Hamilto- 
siderable interest in various areas of condensed matter phys- nian 
ics. As a rule one studies the interaction with the reservoir of A = a  )'sni'- F ~ S . U ' +  h Z s n x -  J C S . S . + ~ .  
a particle in a double-well potential (the resultant splitting 

i--4 n II n n ,  6 
of the ground states due to tunneling is described by an effec- 1 1 )  
tive spin 4). Recently investigation of tunneling effects of a 
different kind has been undertaken, connected to the quan- 
tum nature of spin in magnetic systems. ( A  description of 
tunneling in such systems was already attempted in Ref. 7. 
Since, however, the interaction Hamiltonian commutes with 
the Hamiltonian of the quantum top considered there, no 
tunneling transitions are possible in that model. ) Moreover, 
only one-particle Hamiltonians were considered. At the 
same time more realistic cases are of special interest, when 
interaction between spins plays a substantial role. 

In this paper we calculate the energy splitting of the 
ground state due to tunneling in the Heisenberg model. This 
becomes possible because the system under consideration, as 
will be shown below, reduces in a well-defined sense to a one- 
particle system, whose parameters are renormalized relative 
to the original ones. 

An important separate question involves the develop- 
ment of special methods for the description of quantum-me- 
chanical properties of spin systems, in particular tunneling. 
Thus, instanton techniques for calculations in spin systems 
were developed in Ref. 4, but the corresponding method is 
rather complicated and difficult to control, involving, for 
example, the use of an exponential phase operator (for a 
discussion of the difficulties associated with this see Ref. 8) .  
In Ref. 5 use was made in the main approximation of the 
WKB method, which is only one applicable, strictly speak- 
ing, to the analysis of excited states. (We note that an analog 
of the WKB method with account of the main quantum cor- 
rection was developed for spin Hamiltonians of a general 
form in Ref. 9.) We emphasize that the point is the need for 
taking into account very subtle effects, since the sharp expo- 
nential dependence of tunneling on the spin L means that the 
difference between, say, L and L + 1 may turn out to be sig- 
nificant even for L $1. Notwithstanding the special atten- 
tion paid to this circumstance in Ref. 3, the corresponding 
resultsL4 are not free of this shortcoming. 

Here we shall exploit the possibility, discovered in Refs. 
10-12, of reducing certain spin systems to the motion of a 
particle in an effective potential field, thus permitting the use 
of familiar methods of quantum mechanics and providing at 
the same time a clear picture of the process. 

\ - I  

Here the exchange constant J >  0 (the ferromagnetic case), 
S' is the operator for the ith component of the spin S, a > O  
and 6 2 0  are single-ion anisotropy constants, h is the mag- 
netic field strength in corresponding units, and 6 labels near- 
est neighbors. 

The investigation of the energy spectrum of such a 
Hamiltonian (and, in particular, of tunneling, if the classical 
ground state is degenerate) is in general fraught with diffi- 
culties. We shall confine ourselves to the case of weak anisot- 
ropy of a ando ,  and small values of the field h /S, when the 
single-ion part of the Hamiltonian may be treated as a per- 
turbation in comparison with the exchange part. 

As is well-known,13 the ground state of an isotropic fer- 
romagnet corresponds to the value L = NSof the total angu- 
lar momentum (where N is the number of nodes) and is 
(2L + 1 )-fold degenerate in one of its components (say L' ) . 
Therefore in the leading approximation the correction to the 
energy levels is determined from the secular equation, and to 
zeroth order the wave functions are constructed as 

L 

The only nonvanishing matrix elements are the diag- 
onal ones and the off-diagonal ones for the transitions 
a-a & 2. Taking it into account that 

where L + = Lx + iLY is the lowering operator, and apply- 
ing the commutation rules for components of spin, we find 
for the diagonal matrix elements 

the recurrence relation 

Its solution has the form 
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The off-diagonal elements are evaluated analogously. 
As a result it turns out that the sought-for corrections, 

corresponding to the splitting of the original multiplet, are 
found as eigenvalues of the Hamiltonian 

which describes a paramagnet with spin L = NSand anisot- 
ropy constants 

Thus it can be said that the exchange interaction creates 
the resulting spin and leads to a renormalization of the ani- 
sotropy constants, but otherwise is not directly manifested in 
the dynamic properties of the system in this approximation 
for the low-lying states. 

We consider first the case of uniaxial anisotropy of the 
"easy axis" type, when a = 0, f l> 0. Then, as was shown in 
Refs. 10 and 11 (and thereafter in Ref. 5 ) ,  the energy spec- 
trum of such a system coincides with the 2L + 1 low-lying 
levels of a particle moving in a potential 

Here the role of the Planck constant f i  is played by 
(L  + ;)-I, and that of the mass m by A - I .  For h < h, 

the potential has two minima and the corresponding classi- 
cal ground state is twofold degenerate. 

At this point one may employ directly the instanton 
method.14.1' The energy splitting of the ground state equals 

AEo= ( t io /n ) ' "M exp (-  Wlh) . (10) 

Here Wis the Euclidean action along the trajectory connect- 
ing the two minima and w is the frequency of small oscilla- 
tions in them. We note that at the same time the concept of 
an instanton in a spin system acquires a simple and clear 
meaning (compare with Ref. 4) .  The asymptotic form of the 
instanton trajectory (say, going from the left minimum x- 
to the right x+ ) permits the determination of the value of the 
coefficient of the exponential: 

x ( T )  =x+ - 

for Euclidean time T-  CC. The instanton trajectory for the 
case under consideration has the form 

whence we obtain, with Eqs. (7)-( 11 ) taken into account, 

The effective potential method permits the determina- 
tion of not only the size of the tunneling splitting for the 
ferromagnet, but also the actual value of the energy of the 
ground state, similarly to what has been done for the para- 
magnet in Ref. 10. We give, as an example, this value [accu- 
rate up to the exchange term and the c-number part in (6)  ] 

for the critical value of the magnetic field, when the double 
minimum disappears, and the potential reduces (for large 
values of the effective spin) to a pure quartic oscillator: 

AE, = - 
2g (NS+'12) ( 2 s -  1 )  

2NS-1 

The characteristic change in the magnetic susceptibility oc- 
curs in the neighborhood of the critical field 

h-h, 1 " 
1 7 1 - 1 ,  7 = T ( ~ ~ + T )  , 

where it can be found with the help of numerical methods, 
and is substantially different from the classical step-like be- 
havior (calculational details and the corresponding figure 
are given in Ref. 10). 

It should be pointed out that for N$1 the conditions for 
applicability of perturbation theory to the energy values 
themselves-smallness of matrix elements of the perturba- 
tion compared to differences in energy levels-are violated. 
However, for the size of the splitting AE, the results remain 
valid, as in the evaluation of the gap in the theory of super- 
conductivity. '' 

We consider now the case of biaxial anisotropy. In that 
case the Schrodinger equation that provides a realization of 
the spin-coordinate correspondence has the formI2 

( A i B )  + Y ( E - U )  =O, 
dxZ 

( 1 5 )  

h2 snZ x h ( L f  cn z 
U= (A+B)  - I [ -  - A B L ( L + I ) ]  - + 

4 dn2 x d n 2 x  ' 

with the modulus of the elliptic functions k = A ' I 2 /  

(A + B) and the spin levels corresponding to the edges of 
the band. 

Let us analyze first the case h = 0. If S is half-integer 
and N is odd then the effective spin L = NS is half-integer 
and the degeneracy is not removed. " We shall therefore con- 
sider NS to be integer (let us note that in this manner the 
structure of low-lying levels in the case of half-integer spin 
depends on the parity of their number even in the case of 
arbitrarily large N). Then, as was shown in Ref. 12, the 
ground state of the spin system corresponds to the lower 
edge of the first energy band, and the first excited state to the 
upper edge of the same band. The problem therefore reduces 
to the quasiclassical calculation of the width of the band, 
which can be done with the help of formulas of the type ( lo),  
which now have for the periodic case an additional factor 
2.14 The role of the Planck constant is now played by 
[NS(NS + I)'] - ' I 2 .  

The instanton trajectory is expressed in terms of elliptic 
functions: 

and the expression for the tunneling splitting has the form 
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Let us consider another special case: 
h = ~ ( A B )  ' I 2  (L (L  + 1 ) ) 'I2, so that the first term in the Po- 
tential ( 15) vanishes. The effective Planck constant now 
equals [NS(NS+ I ) ] ' ' ~  ( N S +  $ ) - ' I 2 .  Let f l>a ,  so that 
the potential has a double minimum in a cell (see Fig. 1, Ref. 
12). The ground spin state belongs to the first energy band, 
and the first excited state to the second band." 

As can be verified by direct calculation, the Euclidean 
action is larger for an instanton trajectory through a barrier 
between cells (which exists also in the absence of two mini- 
ma)  than for a trajectory between the two minima in the 
same cell. Therefore, in the quasiclassical case under consi- 
deration, the width of both energy bands is exponentially 
small to higher order than the distance between them. This 
means that one may ignore details of distribution of levels 
within a band, i.e., ignore the band nature of the spectrum 
connected with the periodicity of the potential. Then the 
difference between the energies of the first excited and 
ground spin states can be calculated as the splitting of a level 
in an isolated cell directly from formulas ( 10) and ( 1 1 ) . 

The formulas for the instanton trajectory and the size of 
the splitting have respectively the form 

I + cn x p"2-a"z th2( P-a ) '* 
-=- - a, 

(18) 
1 - cnx  p'"+al" p+a 

Finally, let us consider the general case. It is only possi- 
ble to find the instanton trajectory and to calculate the Eu- 
clidean action if one ignores in the potential ( 15) the differ- 
ence between L ( L  + 1)  and ( L  + i )2 ,  which does not affect 
substantially the exponential dependence. The double mini- 
mum exists if h < h,. 

We give right away the result (compare with Ref. 4) :  

s p ( , W + ~ ~ ~ ) ~ ~ ( ~ S - I )  ( 1 - ~ ~ ) ~ 4 ( 1 + b ) ~ ~  
AEo = 2- 

(2NS- 1 )  (b+a2)  "' 
( I + , )  ' iz-  (l-aZ) N S + ' h  

e i Z N s + i ) ~ ) .  (20) 
X( ( I + b )  "+ ( I -a ' )  '" 

a ( l + b ) ' "  h a a 
cp = arccos a = -  b = -  A=- 

(a2+b)'" ' h0 ' P '  bl/ ,  

We have been assuming throughout single-ion anisotro- 
py. Let us consider now the case of inter-ion anisotropy, 
when the perturbation Hamiltonian has the form (for sim- 
plicity we shall speak of one chain only) 

N-1 X - 1  

Proceeding in a manner analogous to the above within the 
framework of perturbation theory we find that the effective 
Hamiltonian has the same structure (6) ,  with the effective 
anisotropy constants expressed in terms of the constants of 
the anisotropic part of the exchange interaction as follows: 

[if both single-ion and inter-ion anisotropy is present, one 
should take the sum of the expressions ( 7  ) and (22) 1. 

The tunneling splitting is obtained from the formulas 
derived above by appropriate replacements of the effective 
anisotropy constants. Let us note that aside from a different 
character of the quantum renormalization connected with 
the individual spin of the particles, the effective anisotropy 
constant contains now an additional factor. I t  takes into ac- 
count edge effects for a finite open chain (in the case of a 
closed chain this factor becomes unity). 

We emphasize that all these factors-quantum renor- 
malization of the effective total angular momentum and ani- - 
sotropy constants, including those due to topology-are 
substantial as a result of the sharp exponential dependence in 
AE,; changing N by a finite number may give rise to the 
appearance of additional factors of the order of unity. There- 
fore, an experiment on the determination of the frequency of 
tunneling transitions AEi,/fi (for example, in studying small 
ferromagnetic particles7) should be very sensitive to the di- 
mensions of the interaction region, being in this sense mesos- 
copic. 

The results have no dependence whatsoever (in contra- 
diction with the assertions in Ref. 7)  on the exchange con- 
stant J. This circumstance is connected not so much with the 
approximation of weak anisotropy as with the fact that the 
~ a m i l t o n i a n  of the isotropic exchange part commutes with 
the total spin. It therefore does not contribute to the equa- 
tions of motion of the angular momentum as a whole and has 
no effect on the size of the Euclidean action for the corre- 
sponding instanton, if the problem is viewed in the spirit of 
Ref. 6. However, in comparison with the approach of Ref. 6, 
where equations of motion were solved for two angular vari- 
ables determining the direction of the magnetic moment, the 
method developed in this article has the advantage, due to 
the introduction of the effective potential, of working with a 
one-dimensional rather than two-dimensional system, not to 
mention the evaluation of the coefficient of the exponential 
and the automatic taking into account of the quantum renor- 
malization of the primary Hamiltonian. 

We note that since the tunneling exponential contains 
the product NS, the condition of being quasiclassical, needed 
for the validity of all the formulas, may in fact be already 
satisfied for systems of finite size and relatively small parti- 
cle spins S > 1. 
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