
Amplitude solitons in systems with a spin-density wave 
S. A. Brazovskiiand S. I. Matveenko 

L. D. Landau Institute of Theoretical Physics, Academy of Sciences of the USSR, Moscow 
(Submitted 28 October 1988) 
Zh. Eksp. Teor. Fiz. 95,1839-1843 (May 1989) 

Soliton states in systems with a spin density wave are considered. The profile, charge, and spin of 
solitons in a system with a linearly polarized spin-density wave are obtained. Possible types of 
solitons in systems with a helicoidal spin-density wave are described. 

There are many known compounds with the ground 
state in the form of a spin-density wave (for reviews see Refs. 
1-3). The experience gained in investigations of systems 
with charge-density waves (for a review see Ref. 4) shows 
that topological solitons with a split-off local electron level 
can be expected for systems with spin-density waves. The 
structure of solitons for systems with spin-density and 
charge-density waves may generally be different because of 
the difference between the spaces of degeneracy of the order 
parameter for these systems. For example, commensurate 
and incommensurate charge-density waves are character- 
ized by a double degeneracy of the real parameter f A and a 
phase degeneracy of the complex parameter A exp(iq,). On 
the other hand, in the case of a linearly polarized sinusoidal 
spin-density wave (SDW) the degeneracy space is a sphere 
of real vectors A and for a helicoidal SDW it is a set of or- 
thogonal pairs of vectors A , l A , :  A  = A ,  + iA2. 

The problem of solitons and soliton lattices in a model 
of the Peierls-Frohlich type in the case of SDWs is exactly 
soluble, as already found for charge-density waves. In view 
of the complexity of the task of investigating this problem 
completely, we shall limit ourselves to the determination of 
the possible types of solitons with one split-offelectron level. 
We can therefore consider analogs of kinks in charge-density 
waves, but we shall not discuss analogs of polarons. We shall 
show that in the case of a linearly polarized SDW the soliton 
profile is exactly the same as of a kink of a charge density 
wave. In the case of a helicoidal SDW the soliton profile may 
be more complex if the conditions for the existence of the 
SDW are satisfied. 

We shall consider the model of interacting electrons in a 
chain with a Fermi spectrum linearized near the surface. In 
the self-consistent field approximation a system of this kind 
is described by the effective Hamiltonian (see, for example, 
Ref. 4 )  

where $+ ,, + is the electron creation operator with a spin 
u = t, 1 and a wave vector which does not differ greatly from 
+ p , ;  g is the effective interaction constant. The case of an 
SDW corresponds to the selection A+ - = u A ,  
A  = A ,  + iA2, where A ,  and A ,  are three-dimensional real 
vectors. The arbitrary nature of the selection of the phase A 
corresponds to the possibility of a spatial shift of an SDW. In 
the case of a double commensurability (half-filled energy 

band) the phase is fixed. Two situations are possible: A ,  llA2 
or A11A2 .  The first case corresponds to a sinusoidal SDW 
and the second to a helicoidal one. It should be pointed out 
that the selection of the order parameter At -  in the form 
A = S,,,. A corresponds to a charge-density wave. 

Variation of the functional of Eq. ( 1 ) with respect to A 
yields the following self-consistency condition 

Variation of Eq. ( 1 ) with respect to the wave functions 
$ yields the equations for the eigenvalues: 

The order parameter A is found from the minimum con- 
dition of the energy of the system 

where ,LL is the chemical potential. 
In the grqund state (A = const) we find that the elec- 

tron spectrum is described by 

The spectrum of a helocoidal SDW consists of two 
branches corresponding to states with different polariza- 
tions. In the case when IA, 1 = A21 ,  one of the branches of 
the spectrum has a zero gap. We can easily see that the ener- 
gy of a state of an SDW with a linear polarization is less than 
the energy of a state with a helicoidal polarization, i.e., the 
ground state of the model under discussion is a linearly po- 
larized SDW. 

It is known that the model of Eq. (2 )  is exactly integra- 
ble in the class of finite-band potentials."he Bloch function 
$(E)  is meromorphic on a Riemann surface and has r + 3 
poles ( T  is a certain type of a four-sheet surface). The 
branching points of this surface are unrelated to the spec- 
trum of the periodic or antiperiodic problem. We shall find 
the soliton solution of the system by following the method of 
K r i ~ h e v e r . ~  The wave function $(E,x) of a one-soliton solu- 
tion is meromorphic on the algebraic Riemann surface de- 
scribed by 

4 4 
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where Z, and a, are parameters governed by the coupling 
and self-consistency conditions discussed below. In the case 
under discussion the wave function has four poles and four 
zeros, and can be written in the form 

( 6 )  

where i = 1,2 ,3 ,  and 4, the quasimomentum is 
4 

y, = const, and the coefficients C , ( x )  are found from the 
asymptotic form of $ in the limit E-- cc : 

exp (-ih,x) JJ (zi-yj) / n (2,-2,) 9 Ci(x)= z,-u,(x) j-, 
k#i  

The wave functions $, satisfy an additional condition 

where x and x' are found from the condition 
E ( x )  = E ( x ' )  = Eo (Eo is the energy of a local level). 

It follows from Eqs. ( 6 )  and ( 7 )  that 

x A  exp (-pox) -x' 
a, (x) = 

A ,  exp (-pox) -1 ' 
4 

In the limit x -  CC, we find from Eq. ( 8 )  that 

The Schrodinger equation ( 2 )  expanded in the vicinity 
of E- m, yields 

A comparison of the expansion of the wave function in 
the form of Eqs. ( 6 )  and ( 10) shows that 

Equations ( 6 ) - ( 8 )  and ( 1 1  ) considered allowing for the 
self-consistency solution of Eq. ( 3 )  define uniquely the na- 
ture of the wave function with the order parameter A ( x ) .  

We shall consider soliton states against the background 
of the ground state with a linearly polarized SDW. In the 
limit x -  + cc we select A, = A ,  =0 ,  A,#O, i.e., 
g, ,  = g,, = 0. It follows from Eq. ( 11 ) that in the limit 
x -  + cc we can expect the conditions a,(x)  - Z , ,  and 
a,(x)  -Z2  to be satisfied, or subject to Eq. ( 9 ) ,  we can ex- 
pect x' = Z I  = Z7. The last condition may not be true be- 
cause it follows from Eqs. ( 5 )  and ( 7 )  that E(x '  ) = Eo and 
E ( Z , )  = C C .  Therefore, in order to satisfy conditions of the 
g,,-0 type, we must ensure that the constant coefficient in 
front of Z ,  - a ,  ( x )  in Eq. ( 11 ) vanishes. Consequently, the 
requirement that 6, , -O or [23-0 in the limit x -  + cc 

yields the condition l , , ( x )  = 0 or l Z 3 ( x )  = 0 for all x. 
Therefore, in the case of a soliton against the background of 
a linearly polarized SDW we have the condition 
A, = A, = 0, i.e., the soliton is linearly polarized. 

In the linear-polarization case under discussion it is 
convenient to seek the form of the function 
A, ( x )  = A , + iA2 by applying directly Schrodinger equa- 
tions of the type described by Eq. ( 2 )  which in the 
A, = A, = 0 case split into equations for a = T and 1. For 
example, in the case of the a = T spin, we have 

In the variables U, V =  (I/+ + $-)/a, the system 
( 12) reduces to 

U'-A,U=i(E+ A,) V ,  

VT+A2V=i(E-Al)  U. 

In the case of the a = 1 spin we have to replace A with - A 
and then we find that U ,  = V, , and V, = U ,  . 

The system ( 13) was derived earlier7 for amplitude soli- 
tons in Peierls systems with charge-density waves. We can 
easily see that the self-consistency conditions for spin soli- 
tons are also identical with those obtained in Ref. 7. The 
order parameter is described by A, ( x )  = A,, tanh( A,,x). 
Moreover, other results obtained for a soliton in a Peierls 
insulator, particularly for the coupling of the spin to the 
charge, are retained. In the case of the 1 :2 commensurability, 
the mulitplicity (degree) of occupancy of a level at the cen- 
ter of the band gap can be v,, = 0, 1 ,  or 2. A soliton can have 
the charge q = - e, 0,  o r e  and its spin may be s = 0, i, or 0, 
respectively. In the incommensurate case, we have vO = 1, 
q = 0, and s = $. 

We shall nbw consider briefly solitons against the back- 
ground of a helicoidal SDW. An analysis similar to that giv- 
en above leads from the conditions A, -0, A, = A ,, 
A, =iA2, A+ = A ,  - A 2 ,  A- = A l  + A 2 ,  in the limit 
x -  + C C ,  to the requirement A, ( x )  = 0 for all values of x 
[if, moreover, A,  = A2 in the absence of a soliton, then in the 
presence of a soliton the condition A+ ( x )  = 0 is also satis- 
fied]. The Schrodinger equations ( 2 )  also split into equa- 
tions describing states with different polarizations. The or- 
der parameter is then described by 
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We have thus considered possible types of solitons in 
systems with an SDW. In the model described by Eq. ( 2 )  we 
demonstrated that the ground state is a linearly polarized 
SDW and the excited states are linearly polarized amplitude 
solitons of the same type as found in systems with charge- 
density waves. For a given type of the exchange energy the 
state with a helicoidal SDW is not theground state. Without 
specifying the nature of the exchange energy, we considered 
the general case and found possible profiles of a soliton 
against the background of a helicoidal SDW demonstrating 
that the parameters A ,  and A? in Eq. (14),  as well as the 
charge and magnetic properties of soliton excitations are 
found by minimization of the functional of the energy of the 
system. 

We can expect a simplified linearly polarized profile to 
be typical of periodic structures such as soliton lattices. We 
can then use the results of Ref. 8 and the discussion therein of 
incommensurate SDWs in chromium alloys. Structure and 
thermodynamic manifestations of soliton lattices are consid- 
ered in Refs. 8-10. It is worth noting that in systems with 
charge-density waves (such as polyacetylene) the main 
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methods for the investigation of soliton structures are opti- 
cal, electron magnetic resonance, and NMR (for reviews see 
Refs. 1 1 and 12). The case of an SDW does not require sepa- 
rate investigation in respect of its optical properties. 

The authors are grateful to I. M. Krichever for discuss- 
ing the methods developed by him and to V. V. Tugushev for 
valuable comments. 
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