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A theoretical investigation is reported of the superconducting properties of a twin boundary 
allowing for its finite transparency to conduction electrons. The temperature dependence of the 
upper critical field H, ( T )  is calculated for the parallel orientation. The angular dependence of 
this field is considered in the range of small angles of inclination of the field to the boundary. A 
study is also made of the behavior of the magnetic moment and of the critical current near the 
H, ( T) curve. The finite transparency of a twin boundary gives rise to two phase transitions 
associated with the symmetry of a superconducting nucleus relative to the boundary. 

1. INTRODUCTION 

The surface superconductivity at twin boundaries was 
discovered by Khaikin and Khlyustikov in tin' and later the 
effect was confirmed in other metals (for reviews see Refs. 2 
and 3 ) .  

The influence of twin boundaries on the properties of 
high-temperature superconductors of the YBa2Cu,0, type 
is now attracting much interest. A transition from the tetra- 
gonal to the orthorhombic phase in these superconductors 
creates a system of parallel twin boundaries with a period 
from 100 to 1400 A (Refs. 4-7). Direct investigations of the 
influence of these boundaries on the superconducting prop- 
erties are so far impossible, because there are no methods for 
preparing single crystals with different densities of such 
boundaries. However, there have been many experiments 
which can be interpreted as a manifestation of a localized 
twin superconductivity in a small interval above the bulk 
superconducting transition temperature T,. . A square-root 
temperature dependence of the upper critical field 
[H,, a (To - T) "2] is reported in Ref. 7. It is attributed to 
the localization of the superconductivity near twin boundar- 
ies. The temperature dependence of the specific heatX exhib- 
its two discontinuities: a small one at 93 K and a large one at 
89 K. It is shown in Ref. 9 that the small discontinuity may 
be due to a superconducting transition at twin planes. The 
temperature dependence of the critical current in polycrys- 
talline YBa,Cu,O, samples is reported in Ref. 10. By analo- 
gy with twinned Nb crystals, in a small interval above T, 
there is a weak temperature dependence of the critical cur- 
rent. A resistive transition in single crystals broadens greatly 
in an external magnetic field (see, for example, Ref. 1 1 ) .  
This effect may be due to a twin superconductivity ( a  mag- 
netic field parallel to a twin boundary reduces the tempera- 
ture of the bulk transition more than the temperature of the 
surface superconductivity). There is therefore much indi- 
rect experimental evidence of an increase in the temperature 
of the superconducting transition near a twin boundary. On 
the other hand, a direct observation of a vortex lattice by the 
decoration method shows that at low temperatures the Abri- 
kosov vortices are attracted to twin boundaries. I' I11 a simple 
model allowing only for an increase in the superconducting 
coupling constant near a boundary, "-I5 the vortices should 
be repelled by the boundaries at all temperatures below T, .  
This model assumes continuity of the order parameter at a 
twin boundary, which corresponds to vanishing of the coeffi- 

cient of reflection of electrons by the boundary. The Ginz- 
burg-Landau equation is used in Ref. 16 to calculate the 
interaction between a vortex filament and a twin boundary 
allowing for an increase in the transition temperature near 
the boundary and for a finite reflection coefficient of the 
boundary. It is shown there that cooling transforms repul- 
sion of a vortex by a boundary into attraction. I t  therefore 
follows that attraction of vortices to twin boundaries at low 
temperatures does not exclude the possibility of existence of 
a localized twin superconductivity above T, . 

The main characteristics of the twin superconductivity 
have been calculated using a model with an order parameter 
continuous at a twin b ~ u n d a r ~ . ' , " . ' ~ - ' ~  Allowance for the 
finite reflection coefficient of electrons alters qualitatively 
the superconducting properties of a twin boundary. We shall 
calculate the temperature dependence of the upper critical 
field H,  (T) of a twin boundary in the Ginzburg-Landau 
range when a magnetic field is oriented parallel to the 
boundary. Thp finite reflection coefficient of the boundary is 
allowed for phenomenologically using an approach suggest- 
ed by Andreev. " In weak magnetic fields a superconducting 
nucleus is symmetric relative to the boundary and the order 
parameter is continuous, but on increase in the magnetic 
field the nucleus becomes asymmetric and a jump of the or- 
der parameter appears at the boundary. The change in the 
symmetry of the nucleus is due to a second-order phase tran- 
sition. A further increase in the magnetic field restores the 
symmetry of the nucleus as a result of a first-order phase 
transition. The angular dependence of the upper critical field 
is calculated for low angles of inclination of the field relative 
to a twin boundary. An analysis is also made of the behavior 
of the magnetic moment and of the critical current along the 
H, ( T )  curve. 

2. GINZBURG-LANDAU EQUATIONS AND BOUNDARY 
CONDITIONS 

We shall consider a type-I1 superconductor consisting 
of two twins separated by a plane boundary (assumed to be 
the z = 0 plane). We shall consider only the case when the 
boundary is a symmetry plane. It is shown in Ref. 16 that the 
free energy F o f  a superconductor with a plane inhomogene- 
ity can be represented by a sum of volume (F, ) and surface 
(F, ) parts: 
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where p is the radius vector parallel to the z = 0 plane; 
Y ( p )  = Y ( z =  +O,p); T =  ( T -  T,.)/T,; the indices 
+ of the tensor M,,, correspond to the regions z >  0 and 

z < o .  
The superconducting properties of a symmetric twin 

boundary are characterized by two phenomenological pa- 
rameters a and y which have a simple physical meaning. The 
parameter y is related to the change in the superconducting 
coupling constant near a twin boundary. If y > 0, we have an 
interval of a localized two-dimensional superconductivity. 
The superconducting transition temperature Td on a twin 
plane in zero magnetic field is then given by 

where 

is the tensor of the correlation lengths. The constant a repre- 
sents the superconducting coupling between neighboring 
twins and is governed by the transparency of the boundary 
between the twins. For example, if an insulating spacer is 
present between two identical isotropic superconductors, we 
havetx 

1 

when the transparency of the spacer is low, but 

a= 
"'" J 

cos3 0R (0) d cos 0 
28L(3)Tc 

when the transparency of the spacer is high [D(6') and R ( 6 ' )  
are, respectively, the transmission and reflection coefficients 
for electrons incident at an angle 6' on the spacer]. 

The following characteristic scales are used in an analy- 
sis of the twin superconductivity: the temperature scale 
T,, - T,.; the order parameter scale Y ,  = (a, ,r , /b)  I/'; the 
scales of thejth component of the coordinate c, (7 ,  ) - I / '  and 
of the jth component of the magnetic field 

H,'? (-G) = @ o ~ j ~ d / 2 n ~ l ~ 2 E ,  

(@,, is a flux quantum). For this reason it is convenient to 
adopt the following dimensionless variables: 

Since in the regions separated by a twin boundary the princi- 
pal axes of the tensor of the effective masses have different 
directions, it follows that in general the vectors h'+' and h'-' 
do not coincide. The transparency of the boundary will be 
described by a dimensionless parameter 

r=a ( ~ d )  '"/gzz. 

In the case of a boundary with the reflection coefficient R < 1 
this parameter is roc R ( r d  ) ' I 2  . When these substitutions are 
made in the functional of Eq. ( 1 ) and it is varied with respect 
to Y and a, we obtain the dimensionless Ginzburg-Landau 
equationsk': 

and the boundary conditions for the twin surface: 

where h ' * '  = cur l (a '* '  ); Y + = Y(u,,u,,u, = + 0) ;  K 
is the tensor of the Ginzburg-Landau constants (we shall 
assume that all the principal values of this tensor exceed 
2- 

3. UPPER CRITICAL FIELD IN AN ORIENTATION PARALLEL 
TO A TWIN BOUNDARY 

When a magnetic field is applied parallel to a twin 
boundary, the dimensionless magnetic fields on both sides of 
the boundary are the same: h+  = h--h.  We can find the 
temperature dependence of the upper critical field H ,  ( T )  if 
we know the maximum eigenvalue t ( h )  of Eq. (2a)  (in the 
approximation linear in Y )  subject to the boundary condi- 
tions of Eq. ( 3  ) . If we select the Landau gauge a = (hu, ,O,O) 
and represent the function Y ( u )  in the form 

then the equation for Y ( u ,  ) becomes the Schrodinger equa- 
tion for a linear oscillator: 

The superconducting transition temperature in a magnetic 
field t ( h )  is governed by the maximum, in respect of the 
coordinate Z of the center of the orbit, of the value of the 
function t(h,  Z). The solution of Eq. (4 )  decreasing for 
u, - cc is of the form 

C+U (t/2h, (2h) '" (u,-Z) ) for u,>O 
Y (u,) ={ 

C-U (t/2h, - (2h) '" (u,-2) ) for u.<O ' 

where U(a ,  x )  is a parabolic cylinder function.'" Matching 
the solutions at the point u, = 0 by means of the boundary 
conditions of Eq. (3) ,  we obtain the following equation for 
the determination of t(h, Z): 

d ( t ,  h, Z) =2hU+'U-'- (1-2/r) U+U- 
-2 (nh)'" (-l+l/r)lI '((t/h+1)/2) =0, ( 5 )  

where T ( x )  is the gamma function. For economy of space, 
we shall use the following notation 
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We shall also employ the following identity: 

At an extremum Z,, of the function t ( h ,  Z )  we have 
aA( t ,h ,Z ) /aZ  = 0. Differentiating Eq. ( 5 )  with respect to 
Z and using Eq. (4), we obtain 

In the interval 1 - 2/r  < t ( h )  < 1 the maximum of the func- 
tion t ( h ,  Z )  occurs at a point Z,, = 0.  In this case there is no 
discontinuity of the order parameter at  the twin boundary 
and Eq. ( 5 )  reduces to an equation derived in Ref. 14 for 
r = 0:  

where B ( x , y )  = r ( x )  r ( y ) / r ( x  + y )  is the beta function. 
If t  < 1 - 2/r, the solution becomes unstable, i.e., the point 
Z,, = 0  does not correspond to a maximum but to a mini- 
mum of the function t ( h ,  Z ) .  In fact, Eq. ( 5 )  yields the 
second derivative of t ( h ,  Z )  with respect to Z :  

If t ( h )  < 1 - 2/r, this derivative becomes positive. At such 
temperatures the maximum of the function t ( h ,  Z )  is ob- 
served at the points 

Zo=zt[ I-2/r-t ( h )  ]'"/h. 

The temperature t ,  , = 1 - 2/r corresponds to a second-or- 
der phase transition. Below this temperature a supercon- 
ducting nucleus becomes asymmetric relative to the twin 
boundary. Figures la  and l b  show schematically the shape 
of a nucleus above and below the temperature td , , respec- 
tively. A similar transition occurs also in a "sandwich" con- 
sisting of two superconducting films separated by a nonsu- 
perconducting spacer.20 Near the critical point we can use a 
valid expansion of t ( h ,  Z )  in powers of Z ,  similar to the 
Landau expansion in the theory of second-order phase tran- 
sitions: 

FIG. 1 .  Shape of a superconducting nucleus: a )  symmetric phase (in the 
interval t , , ,  < I <  1 ); b) asymmetric phase (in the interval t < t,, , ). 

Near the critical point the dependence t ( h )  is 

( to ( h )  
2 

for t ( h )  >I - 

I t  follows from Eq. ( 1 0 )  that the second derivative of the 
critical field with respect to temperature has a discontinuity 
at  the transition point. In dimensional units this discontin- 
uity can be represented as follows: 

where H,, is the bulk upper critical field along the applied 
magnetic field. 

The temperature T,, lies in the Ginzburg-Landau 
range if the characteristic reflection coefficient satisfies 
R > ( .Td  ) I 1 ? .  

In strong magnetic fields, it follows from Eqs. ( 5 )  and 
( 6 )  that 

H d ( T )  =Hcs  ( T )  (1-3.32. ( - - c~A+~rr /a )  /-c"'), ( 12) 

where H,., ( T) = 1.695H,., ( T )  is the upper critical field of a 
free surface. Equation ( 1 2 )  is valid at temperatures 
lo-'( - (T,)"' + {,,/a)'< Iri 1. The critical fields of a 
twin niobium crystal were investigated at T = 4.2 K and the 
results were reported in Ref. 21. It was found that the upper 
critical field for the twin superconductivity was indeed close 
to H,, . 

Only numerical methods can be used to find the H, ( T) 
dependences for arbitrary parameters and for any tempera- 
ture. Figure 2  shows these dependences in dimensionless 

FIG. 2. Temperature dependences of the upper critical field of a twin 
boundary calculated for different values of the parameter r :  1 ) 0; 2) 0.2; 3 )  
0.5; 4) 1; 5 )  5; 6 )  temperature dependence of the bulk upper critical field. 
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units (obtained for different values of the parameter r ) .  In 
the interval 1 - 2/r < t < 1 these dependences were obtained 
by numerical solution of the transcendental equation ( 7 ) ,  
whereas in the interval t < 1 - 2/r they were found by nu- 
merical integration of Eq. (4 ) .  

4. UPPER CRITICAL FIELD AT LOW ANGLES OF 
INCLINATION OF A MAGNETIC FIELD RELATIVE TO A TWIN 
BOUNDARY 

It is known that in the case of the surface superconduc- 
tivity the dependence of the upper critical field on the angle 
of inclination p (Fig. 3) is beak-shaped at low angles: 

In the present section we shall describe calculation of dH, / 
d lp I for a twin boundary. A general expression for this deriv- 
ative is obtained in Ref. 20 for the case of a superconductor 
with a planar inhomogeneity. In our case there is an addi- 
tional contribution to dH,/d /p / associated with different 
orientations of the anisotropy axes in neighboring twins. The 
ground state of the asymmetric phase is doubly degenerate. 
If the field is inclined, this degeneracy is lifted, since a nu- 
cleus tends to become localized in that twin with the lower 
bulk critical field. This gives rise to a correction to the transi- 
tion temperature and this correction is proportional to p. 
We shall assume that the u, axis is directed along the vector 
h = (h, + h _  ) /2  and the u, axis at right-angles to this vec- 
tor and parallel to the surface. Then the Ginzburg-Landau 
equations, accurate to the first order in p, become 

where 

d H c z  cp , Ah,=h, 2cp cos 08Hc,/acp 
Ahll=-  2 h - -  

3.9 Hc,  ( ( H $ ' ) ~  - (Hcz  cos 0)2f 'z  

and the boundary conditions are deduced from Eq. (3 )  by 
the substitutions 

FIG. 3. Orientations of thecoordinate axes relative to a twin boundary ( r ,  
is the anisotropy axes). 

where 

@=h ( 0 )  cp, h  ( 0 )  =H, , (o ,  0 )  H, ,  (n/2, o ) / H : ~ '  H:), 

Hi.:' and H :,:' the critical fields along the crystallographic 
axes which are not parallel to the surface (Fig. 3 ). The terms 
in the square brackets in Eq. ( 14) can be taken into account 
by perturbation theory and the small derivative d2Y/du', 
can be found by the method of adiabatic separation of the 
\lariables."' In this way we obtained the correction to t which 
is linear in p: 

1 d2t 
t  (cp) -t ( 0 )  = h  1 Ah, I ( I u ,  1 ( u , - - Z , )  ) - h ( 0 )  I---, 2  az, I 1 ' P I ,  

where (...) denotes averaging over the wave function of the 
ground state when p = 0. 

If T >  T, , , a nucleus is symmetric relative to the bound- 
ary and we have Z,, = 0, so that the first term in Eq. (15) 
vanishes. In this region we can use Eq. ( 8 )  and obtain the 
following expression for thederivativedH, / d  Ip / (in dimen- 
sional units) : 

If T- T,, , this derivative vanishes in accordance with a 
square-root law."' The asymmetric phase is described by the 
following expression near the transition point: 

It should be noted that the two terms in Eq. ( 17) have oppo- 
site signs, so that in the case of a sufficiently strong anisotro- 
py of the bulk field H,, the derivative dH, /d (p / can reverse 
sign at the transition point. 

In strong magnetic fields we can use the results of Ref. 
22 for superconductor-vacuum interfaces, which gives 

5. DIAMAGNETIC MOMENT IN A PARALLEL FIELD HCLOSE 
TO H, 

The upper critical field of the twin superconductivi~y is 
usually found by measuring the field dependence of the dia- 
magnetic moment. Near H, this dependence is linear. It 
would be of interest to determine the temperature depen- 
dence of the coefficient in the linear form. We shall confine 
ourselves toasuperconductor which is patently of type 11, so 
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that 7tS 1. The standard derivation (see, for example, Ref. 
23) of this temperature dependence gives the following 
expression for the magnetic moment M ( H )  per unit area of a 
twin boundary: 

where 

is the Abrikosov parameter, 

( b  is a unit vector in the direction of the magnetic field), and 
(...), denotes averaging over the coordinate u,. 

The temperature dependence of d M  /dH has the follow- 
ing asymptotes: 

The function dM/dH(T)  has an inflection at the tempera- 
ture T,, of the transition to the asymmetric phase. 

If T <  T,, , there is one other characteristic point at 
which the shape of a nucleus changes. In the asymmetric 
phase the ground state is doubly degenerate: there are there- 
fore two solutions ( T ,  and T 2 )  which correspond to the 
localization of a nucleus on either side of a twin boundary. 
This degeneracy is lifted if we allow for the nonlinear terms 
in the Ginzburg-Landau equations. The shape of a nucleus 
is described by a linear combination of the solutions 
T = C,Y,  + C2T2. If 2x2% 1, the coefficients in the linear 
combination are found by minimization of the Abrikosov 
parameter D,,, . A simple analysis shows that the selection of 
the coefficients is governed by a dimensionless parameter 

where a symmetric combination of the solutions (C ,  = C2) 
is obtained for a,, < 1/2, whereas for a,, > 1/2 one of the coef- 
ficients vanishes. We then have 

'(I I . Y ~ I ~ ~ ~ ~ / ( J  I Y , I ~ ~ U . ) ~  for ao>'/z 

( ( ao+ ' / , )  J I ~ ~ ~ ~ ~ u ~ / ( J J Y , ~ ' ~ ~ . ) '  for ao<i/2 

We note that a,, = 1 at T, , and that it decreases smoothly to 
zero as a result of cooling. The temperature T,, defined by 
a O ( T d 2  ) = 1/2 is a first-order phase-transition point. At 
this point the dependence d M  /dH( T) also has a kink. By 
way of example, Fig. 4 shows the temperature dependence of 

FIG. 4. Temperature dependence of the derivative d M / d H  calculated for 
r = 0.5 (in reduced units). 

d M  /dHin dimensionless coordinates on the assumption that 
r = 0.5. 

6. TEMPERATURE DEPENDENCE OF THE CRITICAL 
CURRENT 

In two-dimensional superconductivity the critical cur- 
rent is governed by the depairing effect and near T, it de- 
pends on temperature in accordance with the law 

j, cc (T, - T)3'2.  

A magnetic field applied parallel to a twin boundary does 
not alter the above law, but it has a strong influence on the 
coefficient in that law. The Ginzburg-Landau equations 
yield the following expressions for the critical-current com- 
ponents parallel and perpendicular to the field (when :I > 1 ): 

where 

a,, and b are the parameters of the Ginzburg-Landau func- 
tional, and i is a unit vector along the electric current. 

At the phase transition points the field dependences of 
the coefficients in the two-thirds law for the components of 
the critical current have singularities. In a magnetic field 
H = H, ( T, , ) the coefficient of the two-thirds law for j,, 
vanishes in accordance with the square-root relation ship 
and jC l  has a kink. In a magnetic field H = H, (Td2  ) both 
coefficients have kinks. 

7. CONCLUSIONS 

An investigation of the superconducting properties of a 
twin boundary in a parallel magnetic field near the H,, ( T )  
curve demonstrates that the surface superconductivity re- 
gion contains three phases differing in respect of the symme- 
try of the nucleus. At temperatures close to T, (weak fields) 
the order parameter is symmetric relative to the boundary 
and continuous (Fig. l a ) .  In view of the finite transparency 
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of the boundary, there is a critical temperature T,, below 
which this solution becomes inappropriate. A second-order 
phase transition makes the nucleus asymmetric and a dis- 
continuity of the order parameter appears at the boundary 
(Fig. lb) .  An analysis of the nonlinear terms of the Ginz- 
burg-Landau equation shows that further cooling (increase 
in the field) is characterized by one more critical tempera- 
ture T,, below which the shape of the nucleus is described by 
a symmetric combination of the solutions localized on differ- 
ent sides of the boundary. Since the shape of the nucleus 
changes abruptly, this point corresponds to a first-order 
phase transition. 

We thus investigated the characteristic features of the 
superconducting phase transitions typical of a twin bound- 
ary and affecting the magnetic moment, critical current, and 
angular dependence of the critical current. 

The author is grateful to L.I. Glazman for valuable dis- 
cussions. 
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