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The density of states in the vicinity of the Fermi level is investigated in a system of localized 
electrons at nonzero temperature. A self-consistent equation is proposed for the energy 
dependence of the density of states, and results of its numerical solution in the two- and three- 
dimensional cases are given. The kinetics of formation of the Coulomb gap in the density of states 
at zero temperature is also investigated. 

1. INTRODUCTION 

It was shown in Refs. 1 and 2 that the density of single- 
electron states in a system of localized electrons at zero tem- 
peratures ( T  = 0 )  vanishes at an energy equal to the Fermi 
energy. This behavior of the density of states (DOS) is due 
to Coulomb interaction of the localized electrons (Coulomb 
gap). For energies close to the Fermi energy, the DOS takes 
the form 

where d is the dimensionality of space, E is the energy mea- 
sured from the Fermi level, x is the dielectric constant, e is 
the electron charge, and a, and a, are dimensionless coeffi- 
cient:. 

Efros2 has proposed for the DOS in the vicinity of the 
Fermi level the self-consistent equations 

2ne6 
g(e) =g, exp - - g(E) 1, d=3. (2b) [ 3%' ( , E [ + E ) ~  

Here g _  is the DOS far from the Fermi level, where the 
Coulomb interaction is insignificant. The derivation of these 
equations is based on the following idea. At T = 0 the system 
is in the ground state. For the system energy to be a mini- 
mum it is necessary to satisfy for any pair of sites with ener- 
g i e s ~ ?  > 0 and E ,  < 0 separated by a distance r ,?  the condition 

where A, ,  is the work needed to transfer an electron from an 
occupied site 1 to an empty site 2. Consider an occupied site 
with energy E < 0. It  follows from condition (3)  that at any 
distance r<e2/xI&I from this site there are no empty sites 
with energies E < e2/xr - SIEI. The average number of such 
sites in an hemispherical layer (r, r + Sr) is equal to (for 
d = 3 ) "  

Their number in the entire hemisphere r < e2/x I E I  is corre- 
spondingly 

The probability of finding the chosen site occupied is propor- 
tional to exp( - N).  On the other hand, this probability is 
proportional to the sought DOS g ( ~ ) ,  from which in fact 
follows Eq. (2b). From Eqs. (2 )  we find that the numerical 
coefficients in ( 1 ) are a2 = 2.rr and a, = 3/r.  These values 
agree well with the values of a, and a, obtained in Ref. 4 by 
numerical modeling. 

In the one-dimensional case the self-consistent equation 
takes the form 

where EM is the Coulomb interaction energy of two sites at 
the mean distance between them. A solution of (5)  was ob- 
tained in Ref. 5: 

Clearly, in the case of nonzero temperature the Cou- 
lomb gap is filled at E- T. The behavior of the DOS in this 
case can be represented in the form 

where F, and F, are certain universal dimensionless func- 
tions, and for 1x1 B 1 we have F?(x)  ~~2lx l / . r r  and 
F, (x)  z 3x2/.rr. Expressions ( 7 ) can be used if T<  w, where 
w is the width of the Coulomb gap. We obtain the value of w 
by putting in ( 1 ) g ( & )  = g m  : 

The DOS at finite temperature was recently investigat- 
ed' by computer modeling of a disordered system. The re- 
sults have confirmed the universal character of the functions 
F2 and F3. It is of interest to obtain a self-cons?stent descrip- 
tion of the DOS at finite temperatures. The Efros equation 
cannot be used for finite temperatures for the following rea- 
son. For T = 0 the number N of "forbidden" sites included 
only those to which an electron transfer is energywise fa- 
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vored ( A  < 0 ) .  I t  was assumed that in the presence of such 
a forbidden site the electron will go over to it, with unity 
probability, from the site considered by us. If T f 0  an elec- 
tron can go over, with probability exp( - A , , / T ) ,  also to a 
site for which A,? > 0.  To calculate the probability of finding 
the site considered by us occupied, we must add to N the 
quantity 

OD Q 

I t  is easily seen that N ,  becomes infinite for any T #O. We 
obtain thus g ( ~ )  =O. The reason for this result is that in the 
arguments leading to Eq. ( 2 )  account is taken only of the 
possibility of decreasing the site population via electron- 
electron interaction, and the possibility of the inverse pro- 
cess is not considered, so that a self-consistent description of 
the DOS at finite temperatures requires in principle a differ- 
ent approach. Such an approach is proposed in the present 
paper. In Sec. 2  we derive for T = 0 an equation for the DOS 
and show that it leads to the same results as the Efros equa- 
tion. This equation is generalized in Sec. 3 to include the case 
of finite temperatures, and results of its numerical solution 
are given. 

2. ZEROTEMPERATURE*' 

I t  was shown in Ref. 2  that the ground state of the sys- 
tem is realized on satisfaction of a set of conditions requiring 
that the work to transfer any finite group of electrons from 
occupied to empty sites is positive. One of the main approxi- 
mations in the derivation of Eq. ( 2 )  is that only constraints 
connected with the transfer of one electron are taken into 
account (the condition A,, > 0 ) .  If the system is not in the 
ground state at the initial instant, the establishment of the 
ground state can be represented in the framework of this 
approximation by a sequence of transpositions of individual 
electrons within pairs of sites 1  and 2  for which A,, < 0. This 
is precisely how a search is made for the ground state in 
computer m ~ d e l i n g . ~  

Our approach to the description of the ground state is 
based on classifying the various transpositions by length. 
When a certain narrow energy band below the Fermi level is 
tracked, the concentration of sites with energies in this band 
will be altered by the transpositions. We introduce the den- 
sity f + ( r , ~ )  of the occupied states of energy E < 0  after all the 
transpositions with lengths shorter than r; for E > 0  we have 
f + ( r ,  E )  = 0. We define similarly the density f - ( r ,  E )  of 
empty states with energy E > O  after transpositions with 
lengths shorter than r. 

Let us see how these functions are altered by transposi- 
tions with lengths ranging from r  to r + Sr. From the elec- 
tron-hole symmetry we have 

We consider, to be specific, the three-dimensional case. The 
density of the occupied sites with energies in the band ( E ,  

E + SE) is n,, = f + ( r ,  & )S t .  After effective transpositions of 
lengths from r  to r  + Sr the electrons from this band will be 
transferred to empty sites with energies E in the interval 
0  < E < E + 1/r ,  since the work A  = E - E - l / r  for such 

transpositions is negative (we assume that E < l / r ,  see Fig. 
1 ) .  The change Sn,; produced in the density n,, by these 
transpositions is3' 

s+ilr 

8no-=-n0[2ni . lr  o J dEj- ( r ,  E ) ]  . ( 10) 

In addition, the transpositions will cause some of the empty 
sites to be occupied by electrons, and their energies will go 
over to the band ( E ,  E + SE)  from the energy band ( E  + l / r ,  
E + l / r  + SE)  Fig. 1 ). The corresponding change of the den- 
sity no is 

8n,+=f- ( r ,  e + I / r )  6e 
0 

x[2nr28r J dEj+ (r .  E )  I. 
The total change of the density n,, is 

6no=6no++8no-=6j+ ( r ,  E ) ~ E .  

Using ( 10)  and ( 1 1 ) we get 

- j -  ( r ,  e + I / r )  dEji ( r ,  E )  ] J: 
where 6 ( x )  = 0  for x  < 0 and 6 ( x )  = 1 for x  > 0. The elec- 
tron-hole symmetry condition (9)  makes it possible to ob- 
tain an equation in closed form for the function f +. For a 
space with dimensionality d we have 

= - vdp-l[ f +  ( r ,  6 )  J dEf+ ( r ,  E )  
dr -8-1Ir 

- +  E -  C d ~ j +  ( r ,  E ) I  ~ ( - & ) 0 ( & + 1 / 1 ) ,  (13) 

FIG. 1. Diagram illustrating the establishment of the ground state in a 
system by successive transposition of electrons, corresponding to depar- 
ture ofan electron from the band ( E ,  E + S E )  ( 1 ) and arrival ofan electron 
in band ( E ,  E + l / r +  S E )  ( 2 ) .  
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where 

The sought DOS g ( ~ )  in the ground state of the system cor- 
responds to the limit f + ( r ,  E )  as r -  m. 

Note that Eq. ( 13) leads to the relation 
0 

d  
- .f dEf+ (r, E)  =0, 
dr 

-m 

the meaning of which is obvious: the total number of occu- 
pied sites is not changed by the transpositions. 

Let us show that a solution of Eq. ( 13) leads to the same 
results ( 1 )  and ( 6 )  obtained by solving Eqs. ( 2 )  and ( 5 ) .  It 
is easiest to solve ( 13) in the one-dimensional case. With the 
aid of the substitutions 

1 = - e u / g =  = -EMe-"/g= , Q = f f l g m  ( 1 6 )  
EM 

and with allowance for the condition g ,  & 1 ( g ,  is mea- 
sured in units of x / e 2 )  it reduces to the equation 

the solution of which is 

I ( I + u )  u<v, 
Q  (v, u) = 

I ( v )  u>u. 

Substituting ( 1 6 )  in ( 1 8 )  we obtain 

As r-  m, Eq. ( 19) goes over into ( 6 ) .  
In the case d  = 2  or 3  Eq. ( 13) has a self-similar solu- 

tion in the form 

f' (r ,  E )  = I  eld-'K ( ~ r ) .  ( 2 0 )  

Substituting ( 2 0 )  in ( 13) we obtain an equation for the func- 
tion K ( z ) :  

0 

where z  = Er. For z  < - 1 we have dK /dz = 0 ,  so that 

We show now that from ( 1 ) we get K (  - 1 ) = d  /T. To 
this end we introduce, on the interval - 1 < z  < 0 ,  the func- 
tion 

0 

c p ( z ) = J  d t l t l d - ' ~ ( t ) ,  ( 2 3 )  
s 

so that K (  - 1 ) = - p  ' ( - 1 ) . The equation for the func- 
tion p ( z )  is 

From the fact that the DOS does not vanish at E = 0  if r is 
finite it follows that as z - 0  the function p ( z )  varies like Az, 
whereA is acertain constant. Substituting p ( z )  = Azin ( 14) 
and letting z  tend to zero, we obtain the relation 

On the other hand, putting z  = - 1 in ( 2 4 ) ,  we have 

From ( 2 5 )  and ( 2 6 )  we get 

We have thus shown that the solution of Eq. ( 13) de- 
scribes, as r-.  m, the Coulomb gap ( 1 ). For finite r, how- 
ever, the DOS differs from ( l  ) in the energy region / & I  < l / r :  

where the dimensionless function G ,  ( z )  is expressed in 
terms of the function p ( z )  : 

The functions Gd ( z )  with d = 2  and 3 were obtained by nu- 
merically solving Eq. ( 2 4 ) .  The results are shown in Fig. L4' 
The DOS for E = 0  were found to be 0.073/r for d  = 2  and 
0.0083/r2 for d  = 3 ,  i.e., to be anomalously small. For com- 
parison, we have solved the Efros equation, choosing the 
electron interaction in the form 

r<r,, 
V ( r )  = 

r>r,. 

The general form of the solution of the ~ f r o s  equation with 
the interaction ( 2 9 )  is 

Plots of g 2 ( z )  and G , ( z )  are also shown in Fig. 2. Their 
valuesat zero are G I ( )  = 0.145 and G , ( o )  = 0.028, i.e., are 
also small. In addition, the ~ f r o s  equation was solved in Ref. 
7 for the case of a screened Coulomb interaction: 

V ( r )  = (1Ir) exp (-rir,) for d=3. 

The DOS for E = 0  was found to be g ( 0 )  = O.l/rt .  
Note that the foregoing results permit a description of 

the kinetics of Coulomb-gap formation at T = 0 .  Assume 
that at the instant t = 0  the system was taken out of the 
ground state (say by illumination or by applying a voltage 
pulse). The return to the ground state will be via electron 
hops from occupied to empty sites, accompanied by phonon 
emission. The probability of a hop of given length r  per unit 
time is 

where T~ ' is the electron-phonon collision frequency and a 
is the wave-function radius of an electron localized on a site. 
After a time t ,  hops take place with lengths r  < r , ,  where 
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The time dependence of the DOS is given in this case by 

This expansion is valid for long enough times t ,  when 
l / r ,  4 w, where w is the Coulomb-gap width. 

3. FINITETEMPERATURES 

For nonzero temperatures, the assumption of an equi- 
librium state by the system can also be represented as succes- 
sive transpositions of individual electrons within site pairs. 
It must be recognized here that at T # 0  it is possible to have, 
in addition to transpositions with negative work A, , ,  also 
transpositions that require positive work A , ,  > 0 .  The proba- 
bility of such a rearrangement is exp( - A  , , / T ) .  

For T  # O  the density of occupied states differs from 
zero at positive energies. Similarly, the density f - ( r ,  E )  of 
empty states differs from zero at E < O .  The electron-hole 
symmetry property ( 9 )  remains naturally in force at T  # O .  

Generalization of the above self-consistent description 
of the DOS to include finite temperatures reduces to the fol- 
lowing. After transpositions with length from r  to r  + Sr, 
electrons go over with unity probability from band ( E ,  

E + S E )  to empty sites with energies E' < E + l / r ,  and with 
probability 

to empty sites with energies E' > E + l / r .  Entry of occupied 
sites into the band ( E ,  E + SE)  is similarly effected by elec- 
trons going over from occupied sites with energies E" to emp- 
ty sites in the band ( E  + l / r ,  E + l / r  + S E ) .  The probability 
of such transitions is unity for E" > E and exp[ - ( E  - E " ) /  
TI for E" < E .  AS a result we obtain the equation 

+ j deff+ ( r ,  E ' )  exp( - +))I 
-- 

FIG. 2. Dimensionless density of occupied states 
at T = 0, after transpositions with lengths r,  as a 
function of the energy (in units of l /r)  for the 
cases d = 2 ( a )  and d = 3 ( b ) .  The insets show 
the initial sections of these plots in larger scale, 
and also the result of solving the Efros equation 
for an electron-interaction law (29) .  

I t  is easy to see that as T - 0  Eq. ( 3 4 )  is transformed into 
( 1).  By analogy with the case T = 0 ,  this equation can be 
made closed with respect to the function f + ( r ,  E )  by using 
Eq. ( 9 ) .  

The sought DOS g ( ~ )  is expressed in terms of the func- 
tion f + as follows: 

As r -  cc the left-hand side of ( 3 4 )  tends to zero. The general 
form of the function f + ( CC, E ) ,  which makes the right-hand 
side equal to zero as r -  CC, is 

where A ( & )  is a certain even function of E .  Comparing ( 3 6 )  
and ( 3 5 )  we get A ( & )  = g ( ~ ) .  From ( 3 6 )  follows also the 
relation 

It is convenient to change in ( 3 4 )  to the dimensionless vari- 
ables 

R=rT, E = E / T ,  f+=Td-'Fd' ( R ,  E ) ,  ( 3 8 )  

in which it takes the form 

dFd+ -- - - vdRd-'[Fd+ (R ,  E )  Q d ( R ,  -E-IIR) 
d R  

where 

OD 

Q,(R,  E )  = J dEfFd+ ( R ,  E') ( 4 0 )  -.. 

The functions 

Fd(E) =Fd+ (m, E )  +Fd+ (m, - E )  

coincide here at  d = 2 and 3  with the functions F2 and F, that 
determine the form of the density of states in expressions 

(34) (7a) and ( 7 b ) .  
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FIG. 3. Dimensionless density of occupied 
states at nonzero temperature as a function of 
energy (in units of T) for the cases d = 2 ( a )  
and d = 3 ( b ) .  

Equation ( 3 9 )  was solved with a computer in the fol- 
lowing manner. As the zeroth approximation we chose the 
solution ( 2 7 )  of Eq. ( 1 3 )  for R  = Ri = 0.004. As R  was 
increased, the increment SF,+ ( R ,  E )  was obtained by multi- 
plying the right-hand side of ( 3 9 )  by 6R, with the condition 
SR < R  /500 preserved. The iteration procedure diverged for 
large SR. The final values of R  were Rf = 2 for d = 2 and 
Rf = 0.7 ford = 3. At these values, the functions F ;  ( R , E )  
ceased to depend on R. Equation ( 3 7 )  for R  = Rf was satis- 
fied accurate to 10%. The calculation results for the func- 
tions F,+ ( m, E )  are shown in Fig. 3. Figure 4  shows the 
dimensionless DOS Fd ( E )  ford = 2 and 3. The same figures 
show for comparison the numerical modeling results in Ref. 
6. 

Figure 4a shows for F, ( 0 )  a value 0.84, somewhat lower 
than the value 1.24 rt_ 0.16 given in Ref. 6.  On the whole, 
however, the F,(E)  curves obtained by modeling and by 
solving Eq. ( 3 9 )  are quite close. Numerical modeling of a 

two-dimensional system of localized electrons at finite tem- 
perature was carried out also in Ref. 8. The value of F 2 ( 0 )  
obtainable from the curves of Ref. 8  is 0.8, close to ours. 

An appreciable difference from the results of Ref. 6  oc- 
curs in the three-dimensional case. As seen from Fig. 4b, the 
solution of Eq. ( 3 9 )  give F3 ( 0 )  = 4.1, as against 10 in Ref. 6. 
The modeling error ford = 3  was not estimated in Ref. 6, for 
owing to the long program running time a DOS was obtained 
only for one realization of a random spread of the bare ener- 
gies of the sites. We call attention also to another9 numerical 
modeling of the DOS at finite temperatures at d = 3. The 
results of Ref. 9  give F,(O) ~ 2 ,  but the accuracy with which 
F 3 ( 0 )  can be obtained from the cuFves there is quite low. 

In conclusion, we thank A. L. Efros and B. I. Shklovskii 
for a number of very helpful suggestions and discussions, E. 
M. Levin for a discussion of the modeling errors in Ref. 6, 
and also V .  L. Nguen for taking part in initial stage of the 
study. 

FIG. 4. Dimensionless density of states determined 
by expressions (7a)  and (7b) versus energy (in 
units of T )  in the two-dimensional ( a )  and three- 
dimensional (b)  cases; dashed curves-the func- 
tions 214/7r ( a )  and 3.cZ/?i (b) ;  points-results of 
numerical modeling in Ref. 6.  
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"The reason why a hemispherical layer should be chosen rather than a 
spherical one discussed in detail in Ref. 3. 

"For convenience, we put herefter e2/x = 1. 
3'The numerical coefficient 257 is used in this expression in place of 47r for 

the same reason as in expression (4). Otherwise the transposition of an 
electron within one and the same pair of sites would be taken into ac- 
count twice. 

4'The asymptotic behavior of the functions Gd (2) as 2-0 can be found 
fromEq. (24): Gd(z) = Gd(0) [ l  - 2d(d- l )z] .  
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