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The alteration of the Lamb shift in the levels of a Rydberg atom in a cavity due to resonance 
between the atomic transition and an eigenmode of the cavity is investigated. The Lamb shift in 
the cavity is spatially modulated. The magnitude of the Lamb shift can be controlled by changing 
the parameters of the cavity or by electron beam scanning near the electric field antinodes. The 
dependence of the shift on the quantum numbers and nuclear charge can vary significantly, and in 
some cases a restructuring of the levels of the whole Coulomb multiplet can occur. The effective 
Hamiltonian and density of states for a Rydberg atom interacting via image forces with a plane 
metallic surface are found. 

1. INTRODUCTION 

In a number of recent papers'"' the variation of the 
probability of spontaneous emission of a Rydberg atom in a 
cavity has been investigated. This effect is due to the vari- 
ation of the density of photon states in the cavity in the re- 
gion of frequencies at which transitions occur, in compari- 
son with the case of free space. In this case, if the transition 
frequency is close to an eigenmode of the cavity, there arises 
a pronounced amplification of the spontaneous emission. If 
the transition frequency lies below the fundamental mode of 
the cavity, a strong suppression of spontaneous emission is 
observed. ( In  the case of an ideal cavity the spontaneous 
emission is completely suppressed. ) 

More recently theoretical5.' and experimental7 confir- 
mation have appeared that in the cavity (confocal or Fabry- 
Perot) an observable (of the order of 1 MHz) change in the 
Lamb shift (for 2s-2p-states of the hdyrogen atom) takes 
place. I t  is our aim to examine the effect of the cavity on the 
Lamb shift (LS) of the Rydberg states of atoms. 

Alteration of the Lamb shift is most pronounced in 
cases of confocal or closed cavities. We will investigate the 
latter case on account of its simplicity and easy visualizabi- 
lity. Generalization to the case of a confocal cavity does not 
introduce any fundamental difficulties. In a closed cavity 
with a sufficiently high Q factor the density of photon states 
consists of a set of quite sharp peaks. ( In  waveguides the 
density of states has root singularities, which correspond to 
the thresholds of propagation of the various modes. In an 
open cavity the density of states passes through a discontin- 
uity at each threshold frequency for the appearance of a new 
mode. ) 

The most noteworthy effect occurs in the case which 
obtains when the eigenfrequency of the cavity is close to the 
frequency of an atomic transition. In what follows we will 
restrict the discussion to the case of a rectangular cavity. 

I t  should be noted that in the radio frequency region, 
which is the region we will be considering, the effect is sub- 
stantially less than in the optical range. But, thanks to the 
high Q factor of radio frequency cavities, the effect neverthe- 
less can become observable. In contrast with, say, a confocal 
cavity, where the density of photon modes is changed only in 
a small solid angle Af l ,  in comparison with free space,' in a 
closed cavity the density of photon states changes radically. 
As a result, for atomic states whose virtual transitions are in 
resonance with a mode (which can be degenerate) of the 

cavity, the LS is changed in an extraordinarily strong way. 
In particular, it can exceed the fine structure splitting. As a 
consequence, the character of the dependence of the LS on 
the quantum numbers and the nuclear charge Z is changed 
in an essential way. Here the magnitude of the Lamb shift 
depends on the detuning of the frequency of the virtual tran- 
sition w,, ' from the cavity frequency k, which is close to 
w n n  - 
2. SHIFT IN FREE SPACE 

As is well known,' the LS in free space can be represent- 
ed as a sum of two contributions due to the high- and the low- 
frequency virtual transitions. The high-frequency contribu- 
tion for the Rydberg states is of the order of 

( In  this article we will use the system of units f i  = c = 1.) 
The low-frequency part of the LS E '  can be separated into 
two components to which the virtual transitions contribute, 
specifically, to levels lying either above or below the given 
level. Both components are of the order of 

but they enter into E <  with opposite signs, and in the case of 
Rydberg states they almost completely cancel, so that the 
total contribution is approximately n times smaller: 
E' -m,Z %'/n6. This is especially pronounced for those 
states which are close to circular ( n  - I - 1 g n ) .  In ths case 
for E' we have 

E'- (I-'/, In 2 )  m,Z4a5/n6. ( 1  

The correction E' in the case of almost circular states is 
equal to 

I E>l =m,Z4a5/4nn5. ( 2  

Thus we see that in free space the LS is determined mainly by 
the high-frequency correction ( 2 )  : 

lE</E>l-Iln. (3 )  

In a number of recent articles"'-" relatively simple theoreti- 
cal schemes have been proposed to describe the LS, which 
use the apparatus of nonrelativistic quantum mechanics. We 
also will adhere to this approach, which is entirely adequate 
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for the problem under consideration. In fact, as will be 
shown below, the main effect consists in a modification of 
the low-energy part of the LS. 

3. MODIFICATION OFTHE SHIFTOF THE LEVELS OF A 
RYDBERG ATOM 

Let us consider the effect of the cavity on the LS of 
Rydberg atoms located in it. In  the first place, the effect of 
the cavity is manifested in an alteration of the boundary con- 
ditions for the electromagnetic field (in comparison with 
free space). In  the cavity the density of states p ( k )  of the 
electromagnetic field has S-function-like singularities at the 
eigenfrequencies. 

The effect under discussion involves the resonance of 
one of the virtual transitions with an  eigenmode of the cav- 
ity. For a high Q factor of the cavity the resonant contribu- 
tion E ,? to the low-frequency part of the shift can substan- 
tially exceed not only the value of E <  in free space, but also 
the low-frequency part of the shift E' . 

In the cavity also changed are the fine structure levels, 
the polarization of the vacuum, and the boundary conditions 
on the Coulomb wave function of the electron in the atom. 
All these effects are exponentially small (of the order of 
exp( - a, /'L), where L is characteristic dimension of the 
cavity and a, = n2/m,Za is the radius of an orbit of the 
Rydberg atom). Thus, the main part of the modification of 
the levels is associated with the contribution of the resonant 
transition. 

Let us consider the Hamiltonian of the system consist- 
ing of atom + electromagnetic field in the cavity: 

1 
H=-  (p+eA) '-em (r) + kdk,+bkA, 

2me 
k,A 

where A is the vector potential of the electromagnetic field of 
the cavity, @ ( r )  = Ze/r is the nuclear potential, 
k = n( v,/L, ,vy/LY ,v,/L, ) are the eigenmodes of the cav- 
ity (Y, are positive integers), and A indicates the polariza- 
tion states, but in the case of a cubic cavity-also the various 
spatial configurations of the degenerate mode with wave- 
number k. 

The operator of the vector potential in the cavity can be 
expanded in a complete set of standng waves: 

where the functions u,, are orthonormal: 

and satisfy boundary conditions which correspond to the 
cavity walls being perfectly conducting. We impose the 
transverse gauge V-A = 0 on the vector potential. 

In our analysis of the spectrum of the Hamiltonian ( 4 )  
we will make a number of simplifying assumptions. First, we 
assume that the frequency of one of the electronic transitions 
w,, ' is close to the frequency of one of the eigenmodes of the 
cavity k. We will call the quantity A = a,,,. - k the mis- 
match. In this case it is sufficient in Hamiltonian (4 )  to keep 
only the contribution of the resonant mode with the given 
wave vector k. For definiteness let us assume that the transi- 
t i o n n - + n 1 = n - Y  (v-1) istheresonant one. 

Second, we require that the condition of the applicabili- 
ty of the dipole approximation be fulfilled: ka, < 1, enabling 

us to consider the electromagnetic field to be constant inside 
the orbit of the atom. The interaction Hamiltonian in the 
dipole approxmation can be represented in the equivalent 
form: V,,, = dE. 

Third, we will assume that the cavity is ideal. (For  a 
superconducting resonator in the microwave range the Q 
factor can reach values in the range - 10'-lo9). For cavities 
with a finite Q factor Q = k /2y, where y is the damping, it is 
possible to take the damping into account by introducing 
into all the formulas an "effective detuning" 

= ( y  + A2)"*. In  addition, the entire treatment will be 
carried out for zero temperature, or, more accurately, in the 
absence of real photons in the cavity. Generalization to the 
case in which real photons are present in the cavity does not 
introduce any fundamental difficulties. 

With the aim of enhancing the interesting effect, we 
assume that the atom is located in an antinode of the electric 
field E (for definiteness we assume that the atom is located 
in the center of the cavity). 

The virtual transition n -n - v turns out to be in the 
radio frequency microwave region only for Rydberg atoms. 
To  describe them we can use the quasiclassical approxima- 
tion. Three limiting cases are possible. 

ajsharptuning: A g o f ,  whereof = m,Z4a4/n312isthe 
characteristic scale of the fine structure. In this case the 
problem reduces to a two-level problem. 

b) Relatively coarse tuning: w, < A <  w,/n, where 
w, = m,Z2ar2/n3 is the Rydberg frequency, and w,/n is the 
characteristic scale of the anharmonicity of the nonrelativis- 
tic Coulomb spectrum. In this case it is necessary to allow for 
virtual transitions between the two Coulomb multiplets (n- 
layers). This case is somewhat more complicated since it 
requires the solution of the secular equation for a multiply 
(approximately) degenerate system. We will consider this in 
more detail below. 

c) Coarse tuning: w, $A 2 w,/n. In this case in some 
neighborhood of the given n-layer the nonrelativistic Cou- 
lomb spectrum can be considered as almost equidistant 
(with accuracy A).  Some of the Coulomb n-layers fall into 
resonance at once. The magnitude of the effect in this case is 
substantially less in comparison with the two previous cases. 

4. THE CASE OF RELATIVELY COARSE TUNING: REDUCTION 
OF THE SECULAR EQUATION 

In the transition from the state lnlm) to the state 
ln'l 'm') the electron radiates a virtual photon in the state 
/ I,, ), which is then reabsorbed by the same electron. Thus, 
the initial ( = final) state and the intermediate states of the 
atom + field system have the form 10) Jnlm) and 

1 1,, ) In'l 'm'), respectively. 
We assume that the condition of relatively course tun- 

ing w,. 5 A < w, /n is fulfilled, i.e., the states of the Coulomb 
multiplet can be taken to be degenerate with the same or 
greater accuracy than the states which are coupled by the 
virtual photon transition. There is thus a subspace of almost 
degenerate states with dimension D = n' + q(nl)' ,  where q 
is the multiplicity of the degeneracy of the resonant photon 
mode. When the perturbation is turned on a strong mixing of 
states from the indicated subspace takes place, which leads 
to the necessity of constructing a valid wave function in the 
zeroth approximation: 

313 Sov. Phys. JETP 69 (2), August 1989 Belov et a/. 31 3 



After substituting Eq. ( 7 )  into Eq. ( 4 ) ,  we obtain the follow- 
ing system of equations for the coefficients C,, and C,.,., : 

E r C l . = z  i~:rA~I...A, 
I'm'.% liii ( 8  

where 

The system of equation ( 8 ) ,  which is of dimension 
D = n2 + q(n ' )2 ,  can be reduced to a system of order n2  by 
eliminating the coefficients C,.,., : 

E J :  clrn = W;EC~*. (9) 
liii 

Here w:," are the matrix elements of the operator 

The operators P,, and P,.,, project onto the subspace of the 
states of the form 10) Inlm) and ( I,, ) In'l 'm ' ) ,  respectively. 

P s ,  the secular equation for the effective Hamilto- 
nian W, acting within the n-layer, is given by 

In what follows, for definiteness we will cgnsider only a rec- 
tangular cavity. In this case the operator Wis diagonal in m. 

The Lamb shift E, can be expressekin terms of the 
corresponding eigenvalue of the operator W: 

E, (n,  m, s)  =sign A( (A2/4+W (n,  m, s) ) '"- 1 A 1/2), ( 10) 

where s is a new "good" quantum number, which orders the 
levels with given n and m in energy. In the limit 

1 A1 g W(n,m,s) we find 

which gives an upper bound for the effect. 
We note that in the case of sharp tuning ( A  & w f )  there 

is no mixing and the correction is determined bxthe diagonal 
matrix elements of the effective Hamiltonian W: 

C,, = 16na 

For a cubic cavity there are, generally speaking, some 
degenerate modes with various directions k. After summing 
over all the degenerate modes, we obtain an isotropic effec- 
tive Hamiltonian 

3 

j-1 

where 

Here k, is one of the components of the vector k and ?t is a 
numerical constant. For example, when an antinode of the 
electric field is located at  the center of the cavity, two compo- 
nents of the vector N = ( v ,  ,vy ,v, ) should be even, and one, 
say v,, should be odd. Then k, = ~ v , / 2  and the constant ?c is 
equal to unity if the remaining components of N coincide, 
and equal to two in the opposite case. 

From Eq. ( 14) in the case L, - L, - L, and Eq. ( 1 5 )  it 
follows thzt for almost circular states the eigenvalues of the 
operator Ware on the order of 

from which we obtain the following estimate for the Lamb 
shift: 

which is n/Za3I2 times greater than the Lamb shift in free 
space. Of course, the upper bound ( 16) is not attainable in 
practice. However, this estimate gives a proper account of 
the character of the dependence of the modified LS on n and 
z. 

In the case of coarse tuning ( A  - w,  / n )  no increase like 
expression ( 16), takes place in the LS in comparison with its 
value in free space. The dependence of the LS on n and Z in 
this case is the same as in free space. 

To  investigate the quasiclassical asymptotic behavior of 
the spectrum of operators ( 14) and ( 1 5 ) ,  we make use of the 
quasiclassical formula for the reduced matrix elements 
(nl llilln'l') (see Ref. 14). Transforming to action-angle 
variables 1-0, we obtain 

In  the opposite limiting case, W(n,m,s) < 1 Al, Eq. ( 10) 
takes the form of a second-order perturbation theory correc- 
tion: 

E, (n,  m, l )=W(n,  m, s) lh,  IAIBW(n, m, s ) .  (13) 

5. QUASICLASSICAL ASYMPTOTIC BEHAVIOR OF THE 
SPECTRUM OFTHE EFFECTIVE HAMlLTONlAN 

Let us consider the case of a rectangular cavity with 
sides L, , L, , and L, . Let us assume that the electric field of 
the resonant mode is directed along the z axis. The effective 
Hamiltonian takes the form 

where 

FIG. 1. Curves of the quasipotential bounding the region accessible to 
classical trajectories (qualitative picture): a )  the case of a cubic cavity 
E ,  = E ~ ,  i E ~ ,  b)  the case of a rectangular cavity 
E +  = ( E ~ , + E ~ ) ( ~  - ( m / l ) ' ) .  
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where the functions E ~ , ~  ( I )  are expressed in terms of the 
Bessel function whose argument is the eccentricity 
a = (1  - ( I  /n)') ' I 2  multiplied by v=n  - n' 

1 2  
eo ( 1 )  = F ( J v - i  ( va)  -212 (va)  +Iv:, (va)  ) , 

1 (19) 
e2 ( 1 )  = -(2JvZ(va) -2J"-, (va)  (va)  ). vZ 

It is customary to refer to the functions W,, (6) and 
W,,, ( 8 )  as qua~ipotentials '~ since they bound the region of 
classically permissible trajectories. We will call the points 
where the energy level intersect the quasipotential curves 
turning points. The form of the quasipotential curves is 
shown (in dimensionless units) in Fig. 1. For the quasiclas- 
sical quantization of Hamiltonians ( 17) and (18) we apply 
the Bohr-Sommerfeld rule 

where S is the new quantum number and y is a numerical 
constant of order unity. We reorder the resulting levels in 
increasing energy and transform to the new quantum num- 
ber S-s, where we assume that stakes on values in the inter- 
val Iml <s<n - 1. The quantization (20) can be carried out 
by numerical methods, and the results of such calculations 
are presented in Figs. 2 and 3. In the case of sufficiently 
sharp tuning, the LS in the cavity grows rapidly with in- 
creasing I, whereas in free space, on the other hand, the LS 
decays as I//'. The same trends are also found in the case of 

FIG. 2. Spectrum of the operator W,,, for v = 1 as a function of the new 
quantum number s in  the classical limit ( a ) ,  and spectrum of the operator 
W,, for v = 1 as a function of the new quantum numbers is the classical 
limit for m/n = 0.3 (b) .  

FIG. 3. Dependence of Er on s in the limit A & W for v = 1 in the case of a 
cubic cavity ( a ) ,  and in the limit A >  W for v = 1 in the caseofa rectangu- 
lar cavity for m / n  = 0.3 ( b ) .  

relatively coarse tuning. Here it is necessary to take into ac- 
count the fact that I is not a good quantum number. 

In the case of sharp tuning the dependence of the LS ons  
is changed in another respect. For the most part both compo- 
nents are shifted in one direction (which depends on the sign 
of A),  and the Lamb splitting of the doublet (in the case of 
almost circular states) is approximately n times smaller than 
the shift of the doublet as a whole. We note that the Lamb 
shift in the cavity can be controlled either by varying A by 
changing the parameters of the cavity or by scanning the 
atomic beam close to an antinode of the electric field. As was 
already noted, E, depends on the location of the atom in the 
cavity with respect to an antinode of the resonant mode. In 
the adiabatic approximation of the LS E, (R)  plays the role 
of a potential energy. Thus there appears a weak force 
F = - VE, tending to localize the atoms at the nodes or 
antinodes of the resonant mode. 

6. A RYDBERG ATOM CLOSE TO A METAL SURFACE 

Here we consider the van der Waals interaction of a 
Rydberg atom with a flat metallic surface. An experimental 
study of the interaction of a Rydberg atom with the walls of 
the cavity via van der Waab forces was recently carried 
out.Ih 

We consider the problem of the interaction of a Ryd- 
berg atom with a flat conducting surface located a distancez, 
from the nucleus of the atom. The Hamiltonian of the system 
can be easily written down if we introduce image charges 
which create an electric field in free space which coincides 
with the field of the charge induced by the atom on the con- 
ducting surface. 
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We represent the Hamiltonian in the form H = H, + V, 
where 

Ho=p2/2me-alr, (21) 
V=a/ (4zo(zo+z) +rz)'h-a/4z0-a/4 (zO+z). 

Here r = (x,y,z) is the radius vector of the electron with 
respect to the nucleus, and r = Ir 1 .  

We will investigate the case in which the Rydberg atom 
is located far enough away from the surface: zo% n2ao, where 
a, = l/m,a is the Bohr radius. We expand the perturbation 
operator Vin the small parameter a,n2/z,. The first nonvan- 
ishing correction to H, corresponds to the dipole approxi- 
mately and is equal to 

To calculate the effective Hamiltonian of the dipole ap- 
proximation (i.e., to order n4/z,3), it suffices to average 
Hamiltonian (22) over the rapid phase p, which is conjugate 
to n. Using the Coulomb parameterization 

where 
A 

xo (rp) =n2(cos t-Aln) , yo ( c p )  =nl sin E, cp=E - -sin E, 
n 

6 is the eccentric anomaly, and B = [ l A ] ,  we find 

Substituting the quasiclassical representation of the Runge- 
Lentz vector in parabolic coordinates 

A,='/2 (n2- (m+k)2)'1 '~~s (x+$) 

in Eq. (23), wherex and tC, are the angular variables conju- 
gate to the action variables k and m, we obtain the following 
expression for ( V, ), : 

where 
E=-6k2+f (n, m, k)cos 2x, 

p(n,  m, k)=n4+m4+k4-2(nzm2+ n2k2+k2mz). 
The density of s t a t e sp (~ )  was found in Ref. 17 for a Hamil- 
tonian of this type with the help of the Bohr-Sommerfeld 
quantization. An analogous quantum Hamiltonian, arising 
in the problem of an atom in a magnetic field, was introduced 
by Solov'ev and Braun. l8 

Following Ref. 17, we obtain forp(e) 

I K ( [  
'> 1'" ) , region I 

3t (Q> + 1 q< 1)'" 9> + l q< I 
P ( E ) =  1 1 - - K ( [ '> iqc I"') , region 11 

3t 4) (I 
where q, (q, ) is the greater (lesser) root of the equation 

Region I corresponds to the case q, < 0 < q, , whereas in 
region I1 we have 0 < q , < q, . Region I obtains for I E  I < E, , 
and region I1 for I E I  > E,, where E, = n2 - m2. Region I1 
exists only for m (m, = m n .  In this region the classical 
trajectories are asymmetric and the states possess a sponta- 
neous dipole moment whose magnitude is inversely propor- 
tional to the density of s ta tesp(~1.  

At the point ( E (  = E, the density of states p ( ~ )  has a 
logarithmic singularity, which is connected with the topo- 
logical restructuring of the classical trajectories upon pass- 
ing through a saddle point. 

The correction to the energy levels which is caused by 
the image forces under resonance conditions w, - k  has the 
same order-of-magnitude estimate m, Z 4a"n5 as the high- 
frequency part of the shift in free space. However, in contrast 
with &, the given correction does not have a resonant char- 
acter and can be easily isolated by varying the parameters of 
the cavity. 
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