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A relation is established between the fractal structure of turbulent vortices (their fractal 
dimensions) and the observable characteristics of turbulence (characteristic scales, spectral 
energy density) for different mechanism of the inverse cascade, both virtual and real. A 
correspondence with the experimental data is established. 

Some turbulent motions are characterized by an inverse 
cascade, i.e., an energy transfer from small-scale motions to 
large-scale motions. These are two-dimensional turbulence, 
turbulence in a rotating fluid, and magnetohydrodynamic 
turbulence.' One also assumes that the general circulation of 
the atmosphere may be fed by the energy of cyclones on 
account of an inverse cascade. A virtual inverse cascade is 
utilized in the model of virtual static equilibrium in order to 
balance the direct cascade (fragmentation of vortices) .' 

The physical mechanism of the inverse cascade may be 
the fusion of small-scale vortices into larger-scale coherent 
structures-peculiar cluster-vortices.' The mean statistical 
structure of such cluster-vortices must depend both on the 
way in which they associate, and on the dimension of space 
in which this association occurs. Such vortex clusters have 
been repeatedly observed in natural and numerical experi- 
ments (see, e.g., Refs. 3-7). 

The homogeneity property in a hierarchic picture of 
fusion of small vortices into larger ones may be replaced by 
the condition of scale self-similarity, similar to the one oc- 
curring in the case of fractal  cluster^.^ In general, in spite of 
the dynamical (moving) character of vortex clusters, their 
fractal properties should, on the average, be analogous to the 
one of clusters with fixed elements. This refers to the fractal 
dimension and to the dynamics of growth of the average size 
of the cluster. 

One must, of course, keep in mind that the fractal char- 
acter of the cluster-vortices is a phenomenon radically dif- 
ferent from the fractal character of the trajectories of the 
motion of the fluid particles in turbulent motion (Refs. 9, 
10). However, fractal properties of the trajectories of the 
motion have an essential influence on the properties of the 
clusters created as a result of such a motion.' In particular, 
the fractal dimension of the trajectories of the motion deter- 
mines the fractal dimension of the cluster-vortices. 

A fractal cluster-vortex realizes an intermittent motion. 
In those cases when the inverse cascade is a real phenome- 
non the fractal vortices which are formed are also real. In the 
case of a virtual inverse c a ~ c a d e , ~  the virtual cluster-vortices 
may model intermittency phenomena in turbulence with a 
direct cascade. Indeed, a fractal cluster-vortex has a 
"porous" (roughx) structure, whose fractal dimension can 
be considerably lower than the dimension of the space in 
which this cluster is formed. Essentially, models of the type 
of infinite fractal clusters for intermittent turbulence have 
been encountered already in the work of Novikov, Stewart, 
Yaglom, and others, although explicitly the notion of fractal 
dimension was not used in these papers.'' 

1. The cluster-vortices may be formed by an element- 
wise aggregation of "elementary" vortices (i.e., vortices 
which have no cluster structure) to the cluster. Another re- 
sult of the association is a vortex-cluster consisting of clus- 
ters of smaller sizes, which in turn have been formed through 
the aggregation of even smaller clusters. 

We start from a situation when the vortex-clusters are 
aggregated element-wise, with the elementary vortices mov- 
ing along trajectories with fractal dimension close to the 
Brownian ( a  motion of the diffusion type). In this case the 
fractal dimension of the cluster-vortices which are formed is 
D--,5/3 for aggregation in two-dimensional space and 
D--, 2.5 for aggregation in three-dimensional space. For such 
a character of the aggregation one can easily find a scaling 
law of growth of the mean size of a cluster, L as function of 
the time t(Ref. 8):  

where d is the dimension of the space in which the aggrega- 
tion process occurs. Thus, for two-dimensional space it fol- 
lows from Eq. ( 1 ) that 

~ o c t ~ ' ~ .  ( 2 )  

This dependence can be tested experimentally (see below). 
If one considers that the energy Pof the cluster-vortex is 

proportional to the number N of elementary vortices which 
comprise it, taking into account that in the scaling rangeX 

as well as the estimate for the energy of a vortexi2 

Poc k E ( k ) ,  

where k is the wave number and E ( k )  is the spectral energy 
density, we obtain 

Pa N a  k -  a k E ( k ) .  
From this it follows that in the scaling range 

For the type of aggregation considered we obtain from Eq. 
(4 )  for two-dimensional space 

Reference 7 describes a numerical experiment which models 
a two-dimensional turbulent motion by means of a system 
formed of 100 identical point vortices. The dynamics of the 
characteristic size was investigated and a spectral analysis 
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was carried out. The following characteristic size was adopt- 
ed 

where 

and x, ,y, are the dimensionless coordinates of the vortex 
with label a. 

Figure 1 shows as dots (in a doubly logarithmic arbi- 
trary scale) the data for L ( t )  from Ref. 7. For a comparison 
with Eq. (2 )  Fig. 1 exhibits the straight line corresponding 
to a power law with exponent 3/5. Figure 2 shows the data 
(from the same paper, Ref. 7)  for the spectral energy density 
[more precisely, for kE(  k )  1. The straight lines in the figure 

correspond to Eq. ( 5 ) . 
2. If the association of vortices is realized by an element- 

wise aggregation (as discussed in the preceding section), but 
the trajectories of the motion of elementary vortices have a 
fractal dimension different from the Brownian one, then the 
fractal dimension of the cluster-vortex will be different. 

If the mean free path of an elementary vortex is large 
compared to the characteristic size of the aggregation re- 
gion, one may assume that this vortex moves along a rectilin- 
ear trajectory. In  this case the fractal dimension of the clus- 
ter-vortex coincides with the dimension of the space in 
which it is formed. The same happens for rectilinear trajec- 
tories of the motion of elementary vortices. From equations 
( 1)  and (4)  we obtain for two-dimensional space 

One should note that a " - 3" law for the energy spectral 
density in two-dimensional turbulence is widely known (see, 
for instance, Ref. 1 ) . 

In the experiment described in Ref. 13 two-dimensional 
turbulence was created behind a grid (perforated plate) by 
superimposing on the motion of mercury a strong transverse 
magnetic field (B = 0.68 T ) .  In this situation the role of the 
magnetic field reduces to the creation and maintenance of 
two-dimensional motion (in a plane perpendicular to the 
induction vector), but on the two-dimensional motion itself 
the magnetic field has no influence.I4 Figure 3 shows the 
experimental data from Ref. 13, showing the variation of the 
integral (correlation) scale of two-dimensional turbulence 
as a function of the distance from the grid (the x coordi- 
nate). According to the Taylor hypothesis (Ref. 11 ), x a t ,  

FIG. 2. 

when the object is a verification of dependences of the type 
( 6 ) .  The scales in Fig. 3 are logarithmic, but arbitrary. Fig- 
ure 4 shows the experimental data of Ref. 13 for the verifica- 
tion of the spectral dependence (7) .  

3. We now consider cluster-vortices composed of clus- 
ters of smaller sizes, which in turn are formed from the fu- 
sion of smaller clusters. We first consider motion along tra- 
jectories of Brownian type. 

The L as a function o f t  in this case is given by 

If the diffusion coefficient of the cluster-vortices does 
not depend on their sizes, i.e., for two-dimensional turbu- 
lence it coincides with Eq. ( 1 ). The fractal dimension of the 
cluster-vortices in this situationS is D = 10/7 + 0.4 (two- 
dimensional case). Thus, in the case of diffusive cluster-vor- 
tex aggregation we have approximately for two-dimensional 
turbulence: 

E cc k ' 7 ' 7 .  (10) 
In  Ref. 4 two-dimensional turbulence was created by 

moving a comb through a liquid film. The enlarging of vor- 
tex structures was observed visually (unfortunately, no 
spectral analysis was carried out) .  Figure 5 shows the data 
taken from Ref. 4 ( the plots are logarithmic and the scales 
arbitrary). In order to verify the law (9 )  a straight line is 
drawn in the figure. 

4. By means of a virtual inverse cascade2 we shall model 
intermittency in turbulence in which the dominant process is 
the direct cascade, i.e., fragmentation of vortices. In the Ri- 
chardson-Kolmogorov model a cascade energy transport 
from large scales to smaller ones and so on is represented as 
successive fragmentation of vortices down to scales when the 
smallest (elementary) vortices disappear rapidly under the 
influence of viscosity. One assumes that energy dissipation, 
which closes this inertial process, is automatically built un- 

FIG. 1 

355 Sov. Phys. JETP 69 (2), August 1989 A. G. Bershadskil 355 



FIG. 4. 

der any energy flow which this process transfers. If this were 
not so, then the scaling exponent in the spectral law 

would be exactly equal to 5/3(the Kolmogorov-Obukhov 
law" ). The specific dissipation mechanism (viscosity) in- 
fluences the possibility of energy transport according to the 
Richardson-Kolmogorov inertial channel, which causes y to 
deviate from 5/3. Physically, this influence manifests itself 
through intermittency. Starting from the well-known re- 
mark of Landau" on the fluctuations of the rate of energy 
dissipation and the papers of Kolmogorov and Obukhov on 
intermittency," many attempts were made to take into ac- 
count the influence of intermittency on the scaling of the 
spectral energy density.15 Since it is viscosity that is respon- 
sible for small-scale intermittency, we attempt to take into 
account the balance of the energy transport via the direct 
cascade with viscous dissipation by means of the inverse cas- 
cade model.* 

In this model we propose to consider in addition to the 
real direct cascade (fragmentation), a virtual cascade which 
is statistically inverse to it, namely the fusion of vortices with 
fusion multiplicity inverse to the multiplicity of fragmenta- 
tion in the direct cascade. In the virtual cascade the elemen- 
tary (dissipative) vortices as a result of their diffusion 
(Brownian) motion will join into clusters (they will pair if 
the multiplicity of fragmentation in the direct cascade equals 
1/2). Further, these clusters join with one another into even 
larger clusters, etc. (a  hierarchical cascade). 

Thus, the disappearance of elementary (dissipative) 
vortices under the influence of viscosity is replaced in the 
model under discussion by clustering of these vortices. It is 
clear that the energy dissipated in a volume of characteristic 
size -I on vortices of size -I must be proportional to the 

2 

1 

"' 0 1 2  3 4 5Lgt 

FIG. 5 .  

number of elementary (dissipative) vortices in the fractal 
cluster-vortex of characteristic size- I.  Denoting this num- 
ber by N, and the dissipated power by W, we express this 
assertion in the form 

W1 z N 1 .  (11) 

If the energy is dissipated by the effect of viscosity, then 
for the isotropic case it can be estimated as follows" 

where MI denotes the fluid mass in a volume of characteris- 
tic size -I. Equation (12) can be rewritten in the form 

W ,  - ld 2's 'L  k2E ( k )  dk ,  
2-'1*/1 

where d is the dimension of the space in which the motion 
occurs. Assuming that the scale 1 ' belongs to the scaling 
range (where the relation E -  k -  is satisfied) we obtain 
from Eq. ( 13 ) 

For a fractal clusterX 

N ,  = I D .  (15) 

Thus, it follows from Eqs. ( 15), ( 14), and ( 1 1 ) that 

For three-dimensional turbulence it follows from Eq. ( 16) 
that 

i.e., the scaling exponent in the spectral law E- k p  for 
three-dimensional isotropic turbulence is equal to the fractal 
dimension of the virtual cluster-vortex. 

For the fractal dimensions of the clusters considered in 
the present section one may use the value derived theoreti- 
cally in Ref. 16 for a similar process of hierarchical clusteri- 
zation, D = 1.72 + 0.01. We then obtain for three-dimen- 
sional isotropic turbulence 

According to current experimental data the scaling expo- 
nent in the spectral law (taking intermittency into account) 
is y = 1.69-1.72(Ref. 15). Thus, viscous dissipation is satis- 
factorily balanced by the hierarchical energy cascade. 

5. In two-dimensional (quasi-two-dimensional) turbu- 
lence in addition to (or in place of) the real fragmentation of 
vortices an active role may be played by their real fusion (see 
above). In various ranges of the scale the relative contribu- 
tion of these processes may be different. Thus, for example, 
in the quasi-two-dimensional turbulence of oceans, on ac- 
count of the large value of the Reynolds number and the 
constant presence of hard-to-control perturbing factors, the 
direct cascade (fragmentation of vortices) must coexist with 
the (real) inverse cascade. In this case, if a real fusion of 
vortices is accomplished according to the cluster-cluster 
(hierarchical) mechanism (in the same way as for the vir- 
tual inverse cascade discussed above) then the geometry of 
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the cluster-vortices is defined as the intersection of two frac- 
tal systems, the virtual one and the real one. 

The fractal dimension of such an intersection is given by 
the equation" 

where d is the Euclidean dimension of space (in this case 
d = 2) and Dl and D, are the fractal dimensions of the inter- 
secting objects (in this case Dl = D, -- 10/7). Consequently, 
in the case of the intersection of the direct and inverse cas- 
cades in two-dimensional space 

6. If one introduces a passive admixture to turbulence, 
the growth in time of the fractal cluster-vortex also deter- 
mines the growth of the characteristic dimension of the 
cloud of admixture. If the motion of dissipative vortices has 
a diffusion character and the diffusion coefficients of the 
vortices does not depend on their sizes, then the growth of 
the characteristic size of the fractal cluster-vortex is given by 
the formulas 

Making use of the results of Sec. 4, one can rewrite Eq. 
( 19) in a form which does not involve d :  

If we consider the effective diffusion coefficient of an admix- 
ture" 

K='ledlZ ( t )  ldt,  

we obtain from Eq. ( 19) 

or (in a form which does not contain d )  

If one replaces y by 5/3 (the Kolmogorov-Obukhov spectral 
law), one obtains from Eq. (22) 

i.e., the well-known Richardson-Obukhov law." 
Since D = 1.72 f 0.01 (see Sec. 4) differs little from 

5/3, then the law 

differs insignificantly from Eq. (23) (current experiments 
seem unable to tell the difference). 

In oceanic quasi-two-dimensional turbulence one has to 
take d = 2, D z 6 / 7  (see Sec. 5), i.e., 

It is interesting to compare Eq. (25) with the experimental 
data from Ref. 18 (and also Ref. 19). In that paper one finds 
data obtained in the range 1 = lo4-10' cm in different re- 
gions of the ocean. This yields K - I '.' , in remarkable agree- 
ment with Eq. (25). 
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