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The Hamiltonian of the generalized Hubbard model is considered. With some reasonable 
assumptions regarding the energy parameters of the model, the magnetic subsystem of spins 
localized at the copper atoms can be described by an effective antiferromagnetic Hamiltonian. 
The free holes move along a zone formed as a result of hybridization of the copper ion levels and 
bonding orbitals of the closest oxygen ions. The quasiparticle (magnetic polaron) spectrum is 
found for the antiferromagnetic ordering of the magnetic subsystem. In a first approximation the 
bottom of the spectrum coincides with the boundary of the magnetic Brillouin zone. Possible 
mechanisms for formation of bound states of such quasiparticles are analyzed. 

1. INTRODUCTION 

Among the many experimental papers on the physical 
properties of high temperature superconductors, several fa- 
vor the idea of formation as a result of doping of the oxygen 
hole band. This is equivalent to the generally accepted idea 
of the absence of Cu3 + ions in the CuO, planes. According 
to this concept, in the absence of doping the fundamental 
state of the copper and oxygen ions is Cu2 + and 02- ; i.e., 
on each copper ion there is exactly one hole in a d-orbital, if 
we accept as the vacuum the state with filled orbitals 
(Cuf , 0 2 -  ). The crystal field of the tetragonal symmetry 
splits the copper d-orbital series, so that the energy of an 
electron on adx, - orbital is maximal and this state is singly 
occupied. In turn, the p, oxygen orbital, having a nearest- 
neighbor copper ion in the x-direction, has a lower energy in 
the crystal field than the nonbonding p,, and p, orbitals, 
which may favor the appearance of free holes on these orbi- 
tals. However, a sufficiently strong hybridization of the 
dx, - andp, states of copper and oxygen can form an elec- 
tronic level lying higher than the nonbonding ones; then the 
holes will occupy this level first. We can convince ourselves 
of this by examining the simplest two-site Hamiltonian, tak- 
ing account of the hybridization of dx, -Y2 and p, states and 
intrasite repulsion: 

where d g  ( d  +,p+ ) are annihilation (creation) operators for 
holes on copper and oxygen ions. The principal features of 
the basic hole state, enumerated above, in the presence and 
absence of doping impose the following conditions on the 
energy parameters: 

To answer the question of which orbitals form the hole 
band, we must compare this energy with the energy of two 
holes, one of which is in the hybridized state with energy 
E L", described by the Hamiltonian ( 1 ), and the second is on 
a nonbonding orbital with energy EL ,&I, < E, . In this case we 
have 

Here U; is the Coulomb repulsion of holes occupying differ- 
ent p-orbitals. 

Comparison of expressions ( 3 ) and (4)  shows that E i2,' 
can be less than E L2,'. In particular, if t - 4 ~  and Up = U ;  
= 0, this will happen if the inequality t > E ( E ~  - EL ) is ful- 

filled. When the real environment of a copper atom, sur- 
rounded by four oxygen atoms, is taken into account, the 
energy of the hh-state should be further reduced compared 
to the energy of the nh-state. 

We note that in the case t / E  4 1 (this is just the situation 
studied in the present work) the degree of hybridization is 
small. Our remarks about sufficiently strong hybridization 
need not be taken literally. They mean only that the band of 
hybridized states is much wider than the band formed by 
overlap of nonbonding orbitals. 

In Sec. 2 an effective Hamiltonian describing hopping 
of holes on oxygen among the hybridized bonds is obtained. 
In Sec. 3 it is shown that the character of the elementary 
excitations is connected with the ground state of the system, 
mainly with the spatial correlation functions in the ground 
state. In this work it is assumed that the ground state of the 
undoped system is antiferromagnetic (AFM). It is known 
that a particle inserted into a magnetic structure reorganizes 
the structure in its surroundings. But, in contrast to the 
Hubbard model, in the model considered the problem of a 

E = E ~ - E ~ > O ,  U P E .  (2)  "ferromagnetic pocket" does not arise (see Appendix A).  
We also assume that the parameter t / E  is not too small, so 

According to the values of Ref. 2, Ud $&,t, We that the free hole and its reorganized surroundings can be 
take Ud = co for simplicity. In this case the minimum ener- considered as a small polaron. 
gy of two holes in the hybridized (hh) states is: To determine the spectrum of elementary excitations 

we apply a variational method. In this work we use the ap- 
E$'=&~+E~+ ( E + u , ) / ~ -  [ ( ~ f  Up)2/4+2t2]'b. ( 3 )  proximation in which the ground state consists of two "rig- 
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id" NCel sublattices, and take into account the possibility of 
flipping of spins of the copper ions nearest to an oxygen site 
occupied by a hole. It is found that the bottom of the band is a 
line coinciding with the boundary of the two-dimensional 
magnetic Brillouin zone, and, as a consequence, the density 
of states at the lower edge of the band has a square-root 
singularity. Including zero-point spin oscillations weakly af- 
fects this result. 

It is obvious that if we expand the class of trial functions 
increasing the size of the polaron and including a larger 
number of reversed copper spins relative to the ground state, 
the hole spectrum found in the small-polaron approximation 
will be deformed on the scale t / E  and the quasi-one-dimen- 
sional character of the bottom of the band will be lost. It is 
natural that stabilization of the spectrum is ensured by the 
exchange interaction between copper spins, which makes a 
polaron with a large number of reversed spins energetically 
unfavorable. It will also be shown that for the model consid- 
ered, with comparatively small values of the exchange inter- 
action, anomalies in the density of states near the bottom of 
the hole band, found within the small-polaron model, are 
qualitativkly preserved with increase in the polaron dimen- 
sion. 

In Sec. 4 the possibility of forming bound hole states is 
analyzed. 

2. EFFECTIVE HAMlLTONlAN 

Under the assumptions taken in Sec. 1, the Hamiltonian 
describing the hole states is a simple generalization of ( 1) 
and has the form 

The indices r and R refer to 0 and Cu sites, respectively. 
The symbol (r,R) shows that the summation goes over near- 
est sites of oxygen and copper. The Coulomb repulsion Von 
neighboring sites is also introduced. 

In the usual Hubbard model for a half-filled band in the 
insulating phase ( U> t and Tid = 1 ) the effective exchange 
(antiferromagnetic) interaction of particles with amplitude 
a t / U  arises in second-order perturbation theory. In the 
problem considered here the exchange H ,  appears only in 
fourth-order in the kinetic energy t:  

In Fig. 1, two of the virtual processes leading to the expres- 
sion (6) are shown. 

It is known that the ground state of a spin system de- 
scribed by the Hamiltonian (6)  in the three-dimensional 
case is close to the AFM Ntel state, and in one dimension is 

FIG. 1. Two types of virtual processes contributing to the exchange inter- 
action ( 6 ) ;  the numbers denote the order of hole hops. 

an RVB-type state.3 In two dimensions the type of spin sys- 
tem ground state is unknown. In the present work, we will 
assume that it is a two-sublattice state. 

It is more important for our purposes to obtain the ef- 
fective Hamiltonian Hf describing hopping of free holes 
along the oxygen sublattice. It is obtained in second-order 
perturbation theory. In Fig. 2 the virtual processes are 
shown which lead to the expression 

H ,  = H ,  (R, a,, a,). H ,  (R, a,, a,) 
R,at.nz 

Here the Hubbard variables are used: X ?O(X yo) is the cre- 
ation (annihilation) operator for a hole with projected spin 
a on the oxygen site r, and the operator Z",'."? produces a 
spin change a, -+ a, at site R of the copper sublattice. 

Energies of the excitations described by the effective 
Hamiltonians (6)  and (7)  differ in their scale. Theoretical- 
ly, in setting the parameter t /& to zero, we arrive at the quan- 
tum-mechanical problem of particle (hole) motion super- 
posed on the magnetic ordering created by the hole itself. A 
similar situation is well known in the Hubbard model: for 
Ud = w a single hole tends to establish a ferromagnetic or- 
der in all space.4 It is also known5 that for U, % t, but 
Ud # W ,  spins order ferromagnetically in the neighborhood 
of a hole. The radius of such a polaron is a ( U / t )  in the 
two-dimensional case. Outside this neighborhood the order- 
ing is antiferromagnetic. It follows that one should consider 
that the dimension of the ferromagnetic neighborhood of a 
hole for real values of the parameter U / t  is not large (R - 1- 
2 for U / t  - 5 ) . A polaronic mechanism for high-temperature 
superconductivity is studied in detail in Ref. 6. An oxygen 
hold described by the Hamiltonian (7)  creates a polaronic 

FIG. 2. The contribution of virtual processes to the effective Hamiltonian 
(7 ) .  
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state in its surroundings also, but not of the ferromagnetic 
type. In Ref. 7 a variational approach was used to determine 
the ground state of a system of a hole on an oxygen + a 
copper ion spin, in the limiting case Ud = w and Up = 0. A 
tendency was observed toward formation of a nonmagnetic 
polaron, but it is possible to form a polaron with an unsatu- 
rated magnetization (compare with the results of Ref. 8) .  In 
Appendix A we show that a ferromagnetic polaron is also 
energetically unfavorable in the case Up #O. 

Our basic goal is to construct a realistic variational 
function which will reflect the fact that the polaron dimen- 
sion (even nonmagnetic!) R a ( E ~  / t2 ) 'I4, and for reasona- 
ble values of ~ / t  is of the order of one-two lattice constants. 

3. VARIATIONAL WAVE FUNCTION AND SINGLE-PARTICLE 
EXCITATION SPECTRUM 

The problem of an oxygen hole described by the Hamil- 
tonian (7) involves a single particle, aside from the fact that 
the occupation number nd (R)  = 1. The band structure is 
sensitive to the type of magnetic ordering of the copper sub- 
lattice. Here and below we take U, = oo , so the Hamiltonian 
(7) takes the form 

In Ref. 9 the case Ud = 2~ was studied, and it was 
shown that the effective hole Hamiltonian reduces to the 
usual Hubbard model, with a spectrum of elementary excita- 
tions corresponding to the strong-coupling approximation. 
The correctness of such an approximation depends on the 
choice of ground state. In the limit U, - cc examined below 
the Hamiltonian (7') clearly depends on the state of the spin 
system through the operator Z and, as will be shown below, 
the spectrum of elementary excitations turns out to be differ- 
ent. 

We note that it is energetically favorable to form a sing- 
let state of the spin belonging to the copper ion and the spin 
of the hole "smeared out" over the oxygen surroundings. If 
we consider the state of the copper spin subsystem to be 
antiferromagnetic, then particles (holes) having a given 
spin projection are localized near sites of the copper sublat- 
tice with the opposite magnetization. Effective particle hop- 
ping proceeds through just this sublattice. 

To construct a Bloch eigenfunction of the strong-cou- 
pling Hamiltonian, it is common to use a set of Wannier 
functions (see, for example, Ref. 9).  We will build Bloch 
functions in the subspace of a set of site functions which are 
not necessarily orthogonal: 

where / G ) is the wave function of the spin system ground 
state, and a is the vector connecting nearest Cu and 0 ions. 
The function (8) ,  centered near site R, having a particle spin 
projection u and accounting for the possibility of copper ion 
spin flip, is the simplest realization of a magnetic polaron. 
The coefficients f and g in Eq. (8)  can be considered vari- 
ational. For a simple magnetic lattice, they must depend 
only on a. For different types of AFM states the set of coeffi- 
cients is doubled according to the number of magnetic sub- 

lattices: if+ ,g + and f - ,g _ ). 
On the Bloch function (k  belongs to the magnetic Bril- 

louin zone) 

we must impose orthonormality conditions, equivalent to 
the relationship 

Having chosen a = - 1/2 to fix the projected particle spin, 
we will rewrite Eq. ( 10) in the form: 

1=0,5NdIa{4(f+z+g+2Z++++f-z+g-2Z-++) 
+4cp (k) [2f+f-+g+g-((ZR+-ZRr-+)+<ZR-+~R'+-))] ), ) 

where R and R are nearest neighbors in the copper sublat- 
tice, Z + Z  1 - = 1 - Z + - - = (22 +), R belongs to 
the " + " sublattice, and p ( k )  = 0.5 (cos 2k, a 
+ cos 2k, a ) .  The particle spectrum 

will be found using the variational functions (8).  On the 
right-hand side of formula ( 12), the following matrix ele- 
ments differ from zero: 

Expressions for these are presented in Appendix B. We note 
that these matrix elements are determined through the spin 
correlation functions taken for the ground state of the anti- 
ferromagnet. 

Analysis of the spectrum ~ ( k )  is not difficult to carry 
out for a "rigid" AFM state of the Ising type, in which Z + 

= 1. Then 

e ( k )  ={T, [3f-Z+6f+g++6cp(k) ( f + + g + ) f - +  (4cp2 ( k )  - i)f+']  

The essential feature of expression ( 13 ) , which varies 
with f, , g+ and f- , is that the bottom of the bend corre- 
sponds to p ( k )  = 0, that is, to a line in k-space (Fig. 3) 
coinciding with the boundary of the magnetic Brillouin 
zone. Near this the spectrum has the form 

with O<p- 1, and E,, = E~ (7, ,Up)  as a function of Up is 
inside the limits 

FIG. 3. The boundary of the magnetic Brillouin zone, which coincides 
with the bottom of the hole spectrum. 
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In the direction perpendicular to the line p ( k )  = 0, the spec- 
trum is quadratic in Sk. This means that in the limit of exact- 
ly zero particle concentration, the boundary mentioned 
above is a Fermi surface near which the density of states has 
a quasi-one-dimensional character with a square-root singu- 
larity. This singularity can cause the appearance of instabili- 
ties, including superconductivity. A system with a similar 
excitation spectrum, but of a different nature, was studied in 
Ref. 10, where it was shown that the Coulomb interaction 
does not inhibit the superconducting channel. We note that 
near the bottom of the band the wave functions ( 8 )  are close 
to a spin singlet (f, = - g + ,  f _  = g  = O ) ,  in other 
words, the holes on the copper atom and in its oxygen sur- 
roundings almost form a singlet pair. 

The Heisenberg nature of the magnetic interaction 
leads to the appearance of "zero-point" fluctuations in the 
spin correlators, as a result of which expression ( 13) for the 
energy spectrum is, naturally, changed: the degeneracy 
along the whole line of minimal energy disappears, the bot- 
tom of the band becomes isolated equivalent points lying in 
the corners of the magnetic Brillouin zone. In this case the 
quasi-one-dimensional singularity in the density of states 
disappears, although the density of states itself remains large 
near the lower edge of the band on account of the small 
changes in excitation energy along the nesting line shown in 
Fig. 3. 

To clear up the question of the stability of the quasi-one- 
dimensional singularity in the density of statesp(E) in rela- 
tion to increased polaron size, we must broaden the class of 
trial functions relative to the functions JR,a)  in such a way 

as to allow the possibility of spin reversals on copper sites 
other than those nearest to holes. To  do this we simulta- 
neously take into account the exchange interaction of spins 
determined by the Hamiltonian (6) .  Such an analysis of 
spectral stability is difficult to carry out analytically. We 
present the results of a numerical calculation for the case of 
an Ising-type AFM ground state of the copper subsystem. 
We will also take U, = w,U,  = V = 0 in (6 ) ;  then the ef- 
fective exchange interaction differs from the hopping pa- 
rameter T = t 2  /& by the factor t 2  / E ~ ,  which must be less 
than unity. 

Expanding the basis of variational functions will be ac- 
complished by successive action of the operator Hf of ( 7 )  on 
the function IR,a). 

Here {V), is a class of orthonormal site functions which is 
formed by n-fold action of Hf on I R,a) : {V, ) allows n + 1 
reversed spins on copper ions relative to the ground state. 
For the cases n = 1,2,3, there are created 4, 15, and 46 site 
functions, respectively. Having built Bloch states out of 
these functions, we can find the spectrum and the density of 
statesp(E) of the lower hole band that interests us. 

In Fig. 4a,b plots of the densities of states p ( E )  are 
shown for n = 0 [one trial function (8 )  ] and n = 3 (46 trial 
functions) with a value t 2 / ~ 2  = 0.25, and in Fig. 4c,d, for 
t 2  / E ~  = 0.125 and 0.5 with a fixed number (46) of trial func- 
tions. It is evident that with = 0.25 the singularity in 
p ( E )  near the bottom of the band is qualitatively preserved 
for increase in the polaron dimension. Comparison of the 
traces in Fig. 4 implies that the description of the small- 
polaron energy spectrum is adequate if the exchange interac- 
tion is not too small. 

FIG. 4. The form of the density of statesp(E) of the lower band of 
the hole spectrum for different values of the number of trial func- 
tions and different values of the parameter x = t 2 / ~ 2 :  
(a)x  = 0.25 and one function of the form ( 8 ) ;  ( b )  0.25 and 46 
trial functions; (c)  0.125 and 46 functions; (d )  0.5 and 46 func- 
tions. Energy, along the abscissa, is measured in units oft  / E ;  the 
density of states is normalized to a constant. 
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4. TWO-PARTICLE EXCITATION SPECTRUM 

Here we will examine the two-particle singlet states cor- 
responding to a small polaron; we limit ourselves to the case 
Up = co . Unfortunately, an attempt to use the expanded ba- 
sis of functions {q), encounters major computational diffi- 
culties. Therefore, the chief goal of this part of our work is to 
demonstrate the dynamic mechanism of hole pairing at 
small distances. As a basis for describing particles spaced far 
apart, we will use single-particle hole states corresponding to 
small polarons. The contribution of large distances 
(IR - R'I ) a )  to the asymptotic form of the wave function 
is: 

@ I  G>=g (R-R') A+ (R) A- (R') I G>,, ( 1 4 )  

where the amplitude g ( R  - R')  must become exponentially 
small for IR - R'I )a in the case of a bound state. The sin- 
gle-particle wave functions A ,  ( R )  IG ) must coincide with 
IR,a) [see Eq. ( 8 )  1. According to the comment at the end of 
the preceding section, these functions must be approximate- 
ly of the form of a singlet state of two holes on a copper ion 
and its oxygen surroundings: 

where R  belongs to the " - a" sublattice. 
When IR - R'I becomes of the order of a lattice con- 

stant, the tw~-~ar t ic le  wave function Q, changes. Thus, 
where both holes are localized near one copper ion, the func- 
tion Q, takes the form 

3 

where the function A '1'- ( R )  describes the formation of a 
complex of three holes: one on the copper ion at R  and two 
on the four oxygen ions at R  + a. The index j numbers the 
three degenerate ground states of this complex with energy 
E, = 3r1 and with spin projection + 1/2 (the sign depends 
on the "sign" of the magnetic sublattice R ) .  We give an 
expression for one of the representations of the degenerate 
set of functions A $!'- ( R ) :  

3 

where R  belongs to the " - " sublattice. 
Configurations with two free holes localized near two 

neighboring copper ions are described by wave functions 

A+- (R, R+24) =6-I" (x::. t2&---~&@. &+-) 

where R  belongs to the " - " sublattice. The energy of such a 
configuration is E,  = - 4 7 , .  The amplitude corresponding 
to this function will be designated asp(R,R + 2a, ). We note 
that the energy of the asymptotic state ( 14) is equal to 2&, 
= - 67,. The increase in energy of the two-particle states 

with decrease in the interparticle distances ( E ,  > E ,  > 2-5, ) 
can be treated as an effective repulsion between holes on the 
oxygen. Together with this, mechanisms exist for formation 
of a bound state. One of these is the increased amplitude for 
particle hops when they come closer to each other. The ma- 
trix element for "decay" of the state A + ( R )  and the state 
A + - ( R , R  + 2a, ) is equal to ( 2 / 5 )  " 2 ~ , ,  while a free-parti- 
cle hop has the amplitude 7 ,  /8 .  A similar situation for the 
standard Hubbard model was discussed in Ref. 11, and for 
the present model with an RVB-type magnetic state, in Ref. 
12. 

Another important mechanism" of attraction results 
from the Coulomb interaction of a hole on oxygen with holes 
localized on copper sites. In our model [see the Hamiltonian 
(5)  ] this energy is denoted by V. The role ofan interaction of 
this type in binding holes into pairs is indicated in Ref. 14. If 
two holes on an oxygen are next to one copper ion, as shown 
in Fig. 5a, then in second-order perturbation theory a term 
exists which lowers the energy E ~ .  The hole hopping process, 
drawn in Fig. 5a, has the amplitude t 2  / ( E  - V )  = 7, '; as a 
result we get E~ = - 37, '. One more term from second-or- 
der perturbation theory is shown in Fig. 5b and is connected 
only with virtual hopping of a copper hole. For any configu- 
ration of the type shown in Fig. Sb, it is equal to 
- 2 7 , ' + 6 r l  - 4 r ,  ", where r , "  = t 2 / ( & +  V ) ,  and be- 

comes negative for V >  ~ / 3 .  Too large valves V >  ~ / 2  lead to 
formation of large hole clusters on oxygens and to demixing. 
The configurations shown in Fig. 5c and d, corresponding to 
the latter situation, are in resonance with each other. 

To find the two-particle spectrum E"' (q )  we will solve 
the variational problem with the Schroedinger equation with 
the wave function 

FIG. 5. Copper ions and their oxygen environ- 
ment; explanation in the text. 
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Thus, the problem is reduced to the solution of a simulta- 
neous system of equations for the coefficients g, 6, and f. 
Because of the awkwardness of this system, it was solved for 
the special cases q(q,  + q ) ,  q = (a /2a ,0)  and equivalent 
points. The  dispersion equation has the form 

= N c l  ~ f i ( k ) / [ ~ q ' 2 ' - ~  (k+q/Z) -E (k-qi2)  ] ( 19) 
k 

where 

4 sin2[ (k,+k,)a]sin2[ (k,-k,)a] for q,=*q,=q, 

2 cosZ 2k,a for g,=n/2a, q.=O. 

Here El, describes the  renormalization of the energy E ,  due 
to hybridization with the states A + ( R ) .  T h e  energy de- 
nominator on the right side of Eq.  ( 19) corresponds to  mo- 
tion of two noninteracting particles with total momentum q. 
It  is not difficult to  see that Eq. (19)  always has a solution 
corresponding to free motion of a n  unbound pair. 

We are interested in the other type of solution, which 
describes bound states of particles. The  right side of Eq. ( 19) 
has a logarithmic singularity in E: at  the point E: 

= 2 ~ ,  - 8r, ,  corresponding t o  the bottom of the  band for 
two free particles, which in our  model d o  not depend on the 
total wave vector. For  a decrease E'" < E~ ' ' I  t he  right side 
of Eq. ( 19) tends t o  zero, remaining negative. From this it is 
easy to  see that the condition for existence of a bound state is 
determined by the inequality 

In  the case we examine we always have f ,  (q,q)  >O. This  
means that when condition (20)  is fulfilled the bottom of the 
band for a bound state must lie at q, = a/2a,  q,, = 0 and 
equivalent points, and not in the center of the zone. This fact 
is connected with the form of the single-particle spectrum. 

For  the energy parameters of the model presented 
above (energies and matrix elements r ,  ,r, ' )  one can per- 
suade oneself that fulfillment of the inequality ( 2 0 )  is equiv- 
alent to  imposing the condition V > E / ~ .  

5. CONCLUSION 

We will try t o  summarize the results obtained above. 
T h e  Hamiltonian considered here in describing the CuOz 
planes is quite realistic, although it contains several param- 
eters ( U,,,U,,,U,',,E, E,, ~ i , t )  affecting the electronic and 
magnetic properties of the system. It seems most realistic to  
assume that all quantities U and E are larger than the 
"width" of the band t, and also, that U,, is the largest energy 
parameter. Reasonable quantum-chemical estimates show 
that the nonhybridized level E,: lies below the hybridized 
level E,, . However, a careful analysis of two-hole hybridiza- 
tion demonstrates the reality of the reverse idea, according 
to which transport occurs through the hybridized oxygen 
band. In this case, the real dependence of the hole spectrum 
on the magnetic structure of the copper sublattice is of inter- 

est. In  this paper we have limited ourselves to  considering 
the A F M  state. 

Calculation is somewhat simpler for the limit U,, - m : 

most of our  results correspond to this situation, although the 
case of final U,, comparable to  E is doubtless also of interest. 
In  Appendix A we briefly consider this question. W e  intend 
to study this case and, in particular, to  analyze the assertion 
in Ref. 9 that the generalized and standard Hubbard models 
are  equivalent for U, - E .  This statement seems to us to  be 
mistaken. In Ref. 9 it was shown that the motion of a hole in 
a plane can be described as  motion of a particle among the 
sitesof asquare  lattice, with the hopping amplitude for near- 
est-neighbor sites large compared with the hopping ampli- 
tude for non-neighboring sites. O n  this basis. they neglect 
the  latter amplitudes, which leads t o  the standard Hubbard 
model. However, we recall that hopping of a hole from one 
sublattice to  the other is forbidden ( in  the case of a "rigid" 
A F M  state) o r  significantly inhibited ( in  the case of an 
A F M  state with zero-point oscillations o r  states of the RVB 
type). This makes hops across sites of the "other" sublattice 
the chief means of hole motion, which is demonstrated in the 
present work. 

The  singularities in the single-particle spectrum found 
here, in particular its quasi-one-dimensional character, 
show the importance of analysis of the pairing mechanism 
because of the  strong singularity in the density of states at  the 
edge of the magnetic Brillouin zone. Other  mechanisms a re  
connected with formation of a pair of small radius from the 
quasiparticles-magnetic polarons. This  is the situation ex- 
amined in Sec. 4. 

There is another very important question on the form of 
the hole spectrum in the magnetic RVB state, which is at- 
tracting a great deal of interest a t  present due to  the work of 
A n d e r s ~ n . ~ . "  T h e  method used here to  construct the vari- 
ational wave function leads to  a universal dependence of its 
characteristics on the correlators of the magnetic subsystem. 
We think that the information available on RVB states is still 
insufficient for calculation of the singularities in the hole 
spectrum. Nonetheless, according to recent estimates"' of 
the RVB and Nee1 state energies, their difference AE is small 
compared to their own exchange energies. T h e  idea of a mag- 
netic polaron relates also to  an RVB structure of the hole 
environment, the dimension of which, because of the demon- 
strated small value of At-, can significantly exceed a lattice 
constant. Then,  for an increase in the free hole concentration 
the flow of charge through the RVB phase, which should 
automatically include the Anderson superconductivity 
m e ~ h a n i s m , ' ~  will become important.  

A preliminary study of the one- and two-particle excita- 
tions in the RVB phase in the framework o f  the present mod- 
el has been carried out in Ref. 12. 

The  authors wish to  thank Yu. M. Kagan for useful 
discussions and R.  0. Kuzyan for carrying out some of the 
numerical calculations. 

APPENDIX A 

Here, we carry out the simplest analysis of a possible 
magnetic structure arising in the copper sublattice sur- 
rounding an oxygen hole. Following Ref. 7, we will neglect 
the small ( - t 4 / & '  ) exchange interaction of the copper spins 
and will consider only the Hamiltonian ( 7 ) .  This  way is 
analogous to  the approach used by Nagaokai in determining 
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the spectrum of a single-hole state in the standard Hubbard 
model. Note that we will not neglect the part of ( 7 )  which 
contains r ,  = t' (U, ,  - E - 2 V) '. 

Analysis of the spectrum can easily be carried out for a 
state of maximal spin. 

where N,, is the number of copper ions. The corresponding 
wave function has the form 

where / F , ) is the wave function of the ferromagnetic state 
of the copper cublattice. The function TI, satisfies the 
Schroedinger equation, which can be written for the ampli- 
tudes g,, and g, relating to the horizontal and vertical 
Cu- 0-Cu bonds respectively: 

The equation for the amplitudeg,, is obtained from ( A 2 )  by 
the substitutions u-h and x-y. We will sometimes drop the 
indices (h,11), as in Eq. ( A 2 ) ,  where the omitted indices can 
be unambiguously restored. 

Fourier-transforming Eq. (A2) ,  we get: 

( E - ~ T ~ + ~ T ~ - - / ~ T ~  cosZ k,a) g , , - 4 ~ , g ,  cos k,a.cos k,a=O, 

(A31 

(E-2.t2+2al-4r, COS' kya)  9 , -  / f ~ ] g ~  cos k,(l cos kya=O. 

The energy spectrum determined by the system ( A 3 )  is: 

E l = - 2  ( t l - t z )  + 4 t ,  (COS' kra+cos2 k ,a) ,  (A4)  

E 2 - - ? ( T ' - T ~ ) .  - (A51 

Only in the corners ( k  = ( t .ir/2a, ~ / 2 a ) )  of the mag- 
netic Brillouin zone do the excitations E , become compara- 
ble in magnitude to the dispersionless branch E ,  . 

We will now examine the situation with a nonsaturated 
magnetic moment: 

S=S,,,- 1. 

This spin deflection can be associated with a spin flip either 
on a hole on oxygen, or on one of the copper ions. We seek a 
corresponding wave function in the form 

F l = ~ ( r p ( r ) ~ . - @ + ~ g ( q ~ ) ~ r + o ~ , - + ) ~ F + > .  (A61 
I R 

The analogs of the equations (A2)  for the amplitudesg(r,R) 
look like this: 

Egh(r, R )  = T I , ~ I , ( ~ ,  R )  +6 ( r ,  K-a,) [Vh- ( R )  -Gh-(R)]  
+6(r,  R-taxi  [Vh+ ( R )  -Gh+ ( R )  I ,  (A7)  

Eg,(r ,  R )  = T b g I ( r ,  R ) + 6  (r, R-a,) [ V , - ( R )  -Gz-(R)l  
+6 ( r ,  K+a,) [V,+ ( R )  -Gv+ ( R )  I .  (A8)  

Vh- ( R )  = ( T ( + T ~ )  cp (R+ a) - ( 9 - r r )  cph (R-..), 

The remaining expressions for Vand G are easily obtained by 
an obvious redesignation of indices. 

A Fourier transform of the function g in the first vari- 
able 

g ( r ,  R )  =No-' z ,q (k;  R )  erp  ikr, 

applied to Eqs. (A7) ,  (A8)  gives 

( 8 - 4 t l  cosZ k,a) gh ( k ;  R )  - 4 t 1 g ~  ( k ;  R )  cos kxa.cos kua 
= { e x p ( i k a )  [Vh- ( R )  -Gh- ( R )  1 +esp(- ik=a) [Vh+ ( R )  

-Gh+(R)I )  e x ~ ( i k R ) ,  (A9)  

( E - 4 %  cosZ k,a) g,(k; R )  - 4 r 1 g h ( k ;  R )  cos kxa.cos kua 
= {exp (ik,a) [ V,- ( R )  -G,- ( R ) ]  

+exp (- ik ,a)  [V ,  ( R )  -G,+ ( R )  1 ) exp ( i k R )  . (A10) 

The quantity E = E + 2 ( r ,  - 7, ) is introduced here. The 
right-hand side of Eqs. (A9)  and (A10) contains the ampli- 
tudesg ,,,,,, ( R  + a, v,,, ,R) ,  which allows us to write the self- 
consistency conditions on them as 

where 

The structure of the system of four equations (A1 1)  is such 
that we must look for a solution in the form 

g,, ( W a x ,  R )  =AT ,, (R+a,) +B(p/, ( R  -a,) 
+c [cc, ( R  ta , , )  CT, ( R - a , )  1. (A121 

The three remaining functions are obtained from (A12) by 
an appropriate change of indices. 

It is not difficult to determine the coefficients A ,  B, and 
C, calculating the sums over a for g ( R  -+ a ,R) ,  g,, 
( R + a , , R )  - g , , ( R - a , & ) ,  and g , , ( R + a , . R )  +g,, 
x ( R - a , , R )  - g , . ( R  +a,. ,R) - g , . ( R  - a , , R )  accord- 
ing to equations ( A  1 1 ) and ( A  12).  As a result of these cal- 
culations we get 

where 
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T o  obtain a closed system of equations to determine the ei- 
gen-energies. we need to add the equations for the ampli- 
tudes (r: 

Using the local relation ( A  12) of the amplitudesg and (r and 
applying a Fourier transformation to equation 
( A 1 3 ) ( ( r ( r )  a q e x p  iQ-r ) ,  we obtain an equation that de- 
termines the hole band spectrum of the state ( A 6 )  in the 
form 

\vhere the 2 x 2 matrix M has the following matrix elements: 

. M l , , , , , = l e l + 2  ( T ' - T ? )  + 4  cosL [ ( A + B + )  ( T ,  
7.~3) - 1 3 1  -2 ( T I - T J )  (il+B COS 2 Q x ( y ) a ) ,  

- T ~ - - C ( T ~ - T ~ ) ] C O : :  (),a cos Qua. 

Analysis of the spectrum determined by equation ( A 1 4 )  is 
rather awkward. Here we will present results for the corners 
and for the center of the Brillouin zone. 

1 )  Q = (;r/2u,;r/2u). In this case the matrix elements 
satisfy .V ,, = M ? ,  = 0 and we have 

Theonly solution to thisequation is E = 0, which coincides 
with the energy of the hole state ( A l )  at this point (see 
formulas A4 and A 5  ) .  

2 )  Q = (0 .0 ) .  The  solution of equation ( A 1 4 )  has the 
following form: 

For  values of the parameters r ,  having a physical signifi- 
cance ( T~ >T? .T ,  > O), this equation has at  least one solution 
which splits in two for sufficiently larger ,  [under  the condi- 
tion 7, > ( 7 ,  - T? ) /4 ] .  This last fact underscores the neces- 
sity of a thorough study of the reconstruction of the magnet- 
ic environment of a hole and the hole spectrum in the region 
of r ,  indicated. We recall once again that in Ref. 9 the case 
r :  = T ,  was considered. 

APPENDIX B 

The quasiparticle spectrum, calculated according to 
formula ( 9 ) ,  is determined, as  already shown in Sec. 3, by 

the followtng correlators: 

( R - ( H , I R - > = ~ ~ T ,  ( / n 2 ( Z R - - ) + 0 J n g ~ ( Z ~ -  ) )  
f 4 T L [ f ~ ' ( ( z n - - > + ( Z n ' - - ) )  + f n g n  ( ? ( Z n  ' ) 

+ ( Z n - - Z n , - * > + < Z n - - Z n  * - ) ) + g R L < Z n 7  'ZR * > I  ( B I  ) 

(here, as in the following formulas. R a n d  R '  signify a pair of 
the nearest copper sites); 

In the last matrix element the "path" was considered by 
which a hole goes from site R across R '  to  R" .  

For  an Ising A F M  state the matrix elements ( B 3 ) ,  with 
vectors R "  equal to  R + 2a, + 2a,, and R + 4 a , ,  are  identi- 
cal. In the case of a Heisenberg state their magnitudes differ 
slightly, which is the reason for the removal of degeneracy in ' 
the energy spectrum along the nesting line. 

Below, we produce the values of the magnetic correla- 
tors that are needed to calculate the single-particle spectrum 
for a Heisenberg ground state of the copper sublattice. They 
have been calculated with the aid of a method applied in Ref. 
16 to  find the energy of a Heisenberg two-sublattice state. 
T h e  method consists of using a variational wave function in 
combination with a Monte-Carlo method, which allows esti- 
mation of energy and calculation of the correlator with great 
accuracy for such essentially quantum systems as  the Hei- 
senberg antiferromagnet with spin 1/2. In qualitatively ana- 
lyzing the hole spectrum it was sufficient to  use a single- 
parameter variational function; we then find ( Z ,  ' ) 
= 0.9181 ( R  belongs to  the"  + " sublattice); ( Z  ,'. Z, ' 
+Z, .  ' Z ;  ) = - 0 . 2 5 9 2 ; ( Z , ' . ' , Z , '  ' ) = 0 . 0 5 9 4 .  

T o  calculate numerical values of the correlator 

we must distinguish four cases: 
a )  R '  belongs to  the " + " sublattice, but R and R "  are  

next-nearest copper sites; for instance R "  = R + 2a, + 2a,; 
K = 0.0499; 

b )  R'  belongs t o  the " - " sublattice, R and R "  are  the 
same as in ( a ) ;  K = 0.0371; 

c )  R'  belongs to  the" + " sublattice, R a n d  R "  are next- 
nearest sites, but horizontally o r  vertically, for example, 
R "  = R + 4a, ; K = 0.0206; 

d )  R'  belongs to  the " - " sublattice, R and R "  are  the 
same as  in ( c ) ;  K = 0.0371. 

The  result of a numerical calculation shows that the 
degree of splitting of the energy level along the  nesting line is 
very small and  amounts to  -0 .5X 10 'r, ; the minima a re  
distributed in the corners of the magnetic Brillouin zone. 
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