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The long-term evolution of wave packets consisting of highly excited states of quantum systems 
executing regular periodic motion in the classical limit is considered. It is shown that after a 
certain stage of the dynamics, in accordance with the correspondence principle, the wave function 
of the packet evolves according to a universal scenario (independent of the actual nature of the 
system) involving the formation of symmetric structures which replace each other in a definite 
sequence. Each structure is a set of correlated packets, i.e., fractions which repeat the shape of the 
initial packet and move along a classical trajectory with a time shift (equal to a fractional part of 
the classical period) with respect to each other. The structures are coherent superpositions of 
macroscopically distinguishable quantum states resembling, for example, the generalized 
coherent states in quantum optics. The manifestation of the effect in the radiation from Rydberg 
atoms is discussed in connection with the experimental feasibility (which has only recently 
appeared) of the generation and detection of wave packets of highly excited atomic states by short 
laser pulses. 

The question of the relation between the quantum and 
classical descriptions of the dynamics of physical systems, 
already posed at the dawn of quantum mechanics, continues 
to attract the attention of researchers. Recently, this ques- 
tion has been intensively studied in connection with the 
problem of the semiclassical quantization of highly excited 
multidimensional quantum systems,' the analysis of the 
quantum dynamics of systems which are chaotic in the clas- 
sical limit,293 and the recent emergence of the experimental 
possibility of creating electron wave packets from the Ryd- 
berg states of highly excited atoms by short laser 
The question of the transition from the quantum description 
to the classical one as f i-0 requires very careful considera- 
tion in the case of systems executing bounded motion and 
whose spectra are discrete. As fi  -. 0 (in the region of energies 
E corresponding to large quantum numbers n ), the energy 
spectrum of systems executing regular periodic motion in 
the classical limit is quasi-equidistant, and the frequency dis- 
tance w, + ,,, between neighboring levels is equal to the in- 
verse period of the classical motion Tcl : an  + 

z w , ,  = 27~/T,, . 8  However, it is well k n o ~ n ~ ~ ' ~  that a large 
quantum number of a stationary state of the system does not 
in general imply its classicity. The transition to the classical 
description requires a consideration of the evolution of the 
wave packets (the superposition of quantum stationary 
states with different n). To ensure that the packet remain 
localized in space, the number An of states which form the 
packet must be quite large (An -+ cx ). Note that packets 
which are composed of a moderate number of states exhibit 
nonclassical behavior even at large n." 

For times much shorter than the period of oscillations, 
the discreteness of the spectrum is unimportant and the 
packet moves along a classical trajectory, generally speak- 
ing, spreading as it propagates. However, such spreading is 
not irreversible as in the case of free motion, and the packet 
completely recovers its original shape after one period as a 
result of the equidistant character of the energy spectrum of 
the states of which it is composed. In this sense the dynamics 
of the packet can be interpreted in terms of quantum beats 

between a large number of states. " Such a correspondence 
between the quantum description and the classical descrip- 
tion is maintained for as long as desired only in the case of a 
strictly equidistant spectrum, which obtains, for example, 
for a harmonic oscillator. 

In general, during the long-term evolution of the pack- 
et, in the region of highly excited states, the levels are inevita- 
bly nonequidistant is a result of the dependence of w,, on 
energy: 

do,, 
mn+i ,n-~n,n- imh~, l  - 

dE ' 
( 1 )  

The quantum dephasing of the contributions of the station- 
ary states that arises as a result of this and leads to the disin- 
tegration of the packet after many periods limits the dura- 
tion of the "classical" evolution of the packet (see, e.g., Refs. 
1 and 3):  

In a number of numerical investigations of the long- 
term evolution of Rydberg wave and of the evolu- 
tion of coherent states in model nonlinear systems,I3-'" it has 
been discovered that the indicated dephasing is not com- 
pletely irreversible and at t z  T,.,, the wave packet recovers 
its initial shape and again evolves according to "classical" 
laws. In Refs. 13-16 it was shown that also for t < T,.,, com- 
plete localization in phase space does not always take place, 
and some regular, strongly localized structures have been 
discovered that occur already at intermediate times. 

In the present paper we will show that the appearance of 
such structures in various nonlinear quantum systems is not 
random. It will be shown that the long-term evolution of 
quantum wave packets in systems executing regular periodic 
motion in the classical limit develops according to a single 
universal scenario, reversing itself after the dynamic stage of 
the packet according to the correspondence principle. In the 
course of this scenario the wave function of the system un- 
dergoes a determinate sequence of changes which corre- 
spond to the onset of regularly organized structures-concen- 

464 Sov. Phys. JETP 69 (3), September 1989 0038-5646/89/090464-06$04.00 @ 1990 American Institute of Physics 464 



trations of the probability density with high degrees of 
localization. Since (as will be shown below) the shape of 
each such concentration is uniquely determined by the shape 
of the initial wave packet, we call this phenomenon "frac- 
tional regeneration." The structures discovered in Refs. 13- 
16 in concrete systems are particular episodes in the course 
of such a general scenario. 

Let us consider a wave packet which consists of highly 
excited discrete states of a quantum system executing 
bounded motion in the energy region EzE, ( i i s  1) ,  in 
which the classical dynamics corresponds to regular period- 
ic motion: 

E n  

~p (r, t )  = c.q. (r) exp (-i t ) ; 
n 

here p,, ( r )  are the wave functions corresponding to the sta- 
tionary states with energies E,, and the quantities c,, are con- 
stants. We assume that at the initial instant of time t = 0 the 
wave packet is strongly localized in space (its spatial dimen- 
sion AX is many times smaller than the characteristic dimen- 
sion L of the classical orbit corresponding to EzE, ). It 
follows from the uncertainty relation that the energetic 
width of the packet AE is of the order of 

where v and Ap are characteristic values of the velocity and 
of the momentum uncertainty. This means that the /c,, 1 '  
distribution, which has a sharp maximum at n z E ,  has a 
width An a L /Ax. For example, for systems which are close 
to a harmonic oscillator with mass M and frequency w, we 
have 

L a ( E / M ~ ' )  'I2, ~n a E"' [ (FZ/MU) ' l z / ~ ~ ] .  

For a coherent state of the oscillator Ax a (fi/Mu) "' and 
An a n-'l"Ti. 

Thus the condition L /Ax$l,  necessary for the transi- 
tion to the classical limit, implies that A n s l .  The values of 
E,, for n close to Ti (in the interval An) can be written in the 
form 

In order that the packet evolution correspond to the motion 
of a classical particle for times t >  Tcl = 2r/w,, (i.e., in or- 
der that the correspondence principle be fulfilled), it is nec- 
essary to satisfy the inequality 

which imposes an upper bound on the energetic width of the 
packet. Here a necessary condition on the dynamics, accord- 
ing to the correspondence principle, is 

As has already been mentioned, with the passage of 
time the dephasing due to the terms in Eq. ( 5 )  which are 
quadratic in (n - E) begins to play a major role. If 

the influence of the subsequent terms in expansion ( 5 )  can 
be neglected. Below we will concentrate our attention on the 

long-term evolution in the indicated time interval. 
The indicated dephasing for a wave packet with pre- 

scribed An leads to a distortion of its shape at 

i.e., when the additional phase shift between the different 
energetic components in Eq. (3 )  within the width of the 
packet is of the order of unity. However, at T = T,.,, the 
additional phases due to the terms in Eq. ( 5 )  which are non- 
linear in (n - E) are exact multiples of 27r, which means 
complete recovery of the shape of the initial packet. For 
t 2 T,.,, the classical evolution of the packet recommences 
anew. This circumstance, which was mentioned in Ref. 4, 
was called the regeneration of the wave packet (see also Ref. 
17).  

Let us consider the evolution of the packet during times 
o < t < T,,, . We rewrite Eq. ( 3 )  in the form 

Here and below, the energy is reckoned from E,. Let us 
consider the sum ( 10) at t z  m T,.,, /n, where m and n are 
mutually prime integers. The additional phase shifts due to 
the terms a k ' in Eq. ( 10) are equal to 2778,, where 

0, ={: k'}. 

where the braces denote the fractional part of the argument. 
It is easy to see that the quantities 8, form periodic se- 
quences. Indeed, 

kz+2krn+rnn}= {$ k'} = 0,, (12) 

i.e., the sequence el, is obviously periodic in k with period n. 
Let us see if there exists in this sequence a period 1 which is 
less than n. Let 8, = 8, , , for arbitrary k. Then 

Conditions which are necessary and sufficient for the satis- 
faction of Eq. ( 13 ) are 

For n odd, conditions ( 14) and ( 15) are satisfied for 1 = n. 
For even n (and, correspondingly, odd m )  the first condi- 
tion can be satisfied also for 1 = n/2. Substituting the value 
1 = n/2 into Eq. ( 15), we obtain the condition 

{mn/4) = 0. 

Thus, I = n/2 for n divisible by 4, and I = n in all remaining 
cases. 

Thus, near t = mT,,,/n the terms in Eq. ( 10) that are 
quadratic in k lead to additional (in comparison with the 
situation at time t = 0 )  phase factors which are 1-periodic in 
k. Note that phase factors with the same periodicity in k 
arise in the spectral expansion of packets which execute mo- 
tion according to the correspondence principle (neglecting 
nonlinear terms) with a time shift with respect to the initial 
packet which is a multiple of T,, /I. This suggests that close 
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t o t  = m T,,, /n the wave function of the system can be repre- 
sented in the form 

1 - 1  

where 
+ m 

describes the evolving packet in a "classical" way, and a, are 
constants. Expression ( 16) follows directly from the possi- 
bility of representing the I-periodic sequence exp( - 2ri6, ) 
in the form of an expansion in I fundamental sequences 

which have the same periodicity: 

S 
exp (-2niok) =z a,  exp ( - 2 n i -  k )  

a - 0  
1 

Multiplying expansion ( 18) by e x p ( 2 ~ i q k  /I), where q 
is an integer, and summing both parts of the equality over all 
k, we find 

1-1 

1 kq 
aq = --z exp (-2ni0.+2ni -) 

l  k-0  
I ' 

Using the explicit form of 6, and the I-periodicity of these 
quantities and shifting the summation index in Eq. ( 19) by 
1, we obtain the relation 

q'= (q+2mlln) (mod 1). 

If n is odd, then I = n and an n-fold application of relation 
(20) shows that all of the quantities a, are equal in modulus. 
For n divisible by 4, the quantity I = n/2m is odd and rela- 
tion (20) again interrelates quantities a,, likewise causing 
them to be equal in modulus. For n even, but not divisible by 
4, relation (20) relates differently the quantities a, with 
even and odd q. All the coefficients with even q turn out in 
this case to be zero. Indeed, let us consider the quantity a,,, 
which belongs to this group. Using expression (19) with 
q = 0, we shift the summation index by the whole number n/ 
2 : 

m 
exp ( -2ni  - k') 

a0 = t k = o  n 

= 'z exP [ - 2 3 ~ i ~  (k' + +)'I 
k r = o  

n 

1 
=- 

I exp ( - i n  F) k ' = O  n (21) 

Thus, a,, equals zero, as do all the remaining a, with even q. 
We find the modulus of the r nonzero coefficients a, ( r  = n/ 
2 for even n and r = n for odd n )  with the help of the rela- 
tions 

Thus, for m/n an arbitrary irreducible rational number 
close to t = m T,,, /n the initial packet divides into r spatially 
separated packet-fractions undergoing a periodic evolution 
according to the correspondence principle and time-shifted 
by the r-th part of the classical period with respect to each 
other ( r  = n/2 for even n and r = n for odd n ) .  We call such 
a structure a fractional regeneration of the initial packet of 
order m/n. Naturally, it will be well pronounced if these 
fractions do not overlap, i.e., for r < L /Ax- An. The better 
the semiclassical conditions are satisfied, the higher the or- 
der of splitting that it will be possible to observe. 

Let us consider some actual structures. 
1. Let tz(1/2)Tr , ,  (here n = 1 ,  1 = 2 ,  r = 1 ,  and 

m = l ) , a O = l , a n d a , = l , i . e . ,  

which is the initial packet shifted in time by half the classical 
period. Note that precisely this regeneration (of order 1/2 
according to our classification) was in fact discovered in 
Refs. 4 and 5. 

2. Let tz(1/4)Tr , ,  (here l = r = n / 2  and m =  1). 
Then 

1 
$ ( r ,  t )  = 2% l [ e - i n h $ c r  ( r ,  t )  +e"'4$cl(r ,  t  + - T . , ) ]  . (24) 

2 

Expression (24) describes an essentially nonclassical object 
that is a superposition of two correlated, localized packets, 
macroscopically separated by lengths of the order of the di- 
mension of the classical orbit. In the case in which g,, (r , t)  is 
a coherent state of the oscillator, such objects (which have 
acquired the name of generalized coherent states) have been 
studied in Ref. 18. The question of the generation of such 
states in nonlinear optical systems, with the goal of observ- 
ing macroscopic quantum optical effects, was considered in 
Ref. 15. 

Note that an analogous structure arises for t = (3/  
4)Tr,, ( I = r = n / 2 = 2 , m = 3 ) .  

3. Let t=. (1/3)Tr,, (here 1 = r = 3 and m = 1) .  Then 

$ ( r ,  t )  =1/3 (l+2e-'ni/3) {Qel ( r ,  t )  

+eZniI3 [$,I ( r ,  t+IlsTei) +$c[  ( r ,  t+'/sTCr) I ). (25) 

Structures of such kind, consisting of three packets, also 
arise for t /T,,, =. 1/6, 2/3, and 5/6. 

4. Let t z  (1/8) T,.,, (here I = r = n/2 = 4 and m = 1 ) .  

Then 

+ ( r ,  t )  =i/ze-in'4 {[$CI ( r ,  t )  - $ E l  ( r ,  t+'lzT,i) I 
+ein'" ( r ,  t + ' l ~ T ~ 1 )  ( r ,  t+3 / ITe l )  I). (26) 

Such structures, consisting of four packets, were discovered 
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in the course of the numerical investigation of nonlinear 
model problems in Ref. 13. 

Let us illustrate the above-described general regulari- 
ties by examples of concrete physical systems. We will first 
consider an anharmonic oscillator with potential energy of 
the form 

V ( x )  = ' /2M02x2+rx4 .  (27)  

The eigenstates and the energy spectrum of such an oscilla- 
tor have been studied in detail. We will limit ourselves to the 
case of weak anharmonicity ( E  + 0),  ill which case the fol- 
lowing expression is correctI9 

E , x f i o [  (n+' / , )  + 3 / 2 ~  (n+'/ ,)  2 + 3 / s ~ ] ,  
f i  ~ = r  - 

M Z o 3  ' 
(28) 

The most lucid representation of the evolution of the 
wave packets under semiclassical conditions can be had with 
the help of the Wigner distribution function, which is de- 
fined in the phase space ( x g )  by the expressionx' 

Specifying the initial wave packet in the form of a coherent 
state of an unperturbed harmonic oscillator"' 

an 
$ (x.0) = ( x  1 a)= exp ( - i / 2  1 a 1 ' )  E- ( 2  / n> ( n ! )  'I2 

we obtain with the help of Eqs. (28)-(30), to leading order 
in E 

(a')  .arn P , ( x , ~ ,  t )  = 2 C (-1)me-1a12------ 2n-m cos [ ( n - m )  q 
n=l.rn<n 

n!  

Here L : ; ( z )  are associated Laguerre polynomials. 
Figure 1 shows the results of numerical calculations 

which depict the distribution P, at the initial time, and also 
at times corresponding to the fractional regeneration of var- 
ious orders. The smooth humps of the distribution function 
correspond to the split initial packet, while the localized 
strongly oscillating spikes on the phase plane arise as a result 
of the interference between the various packet-fractions and 
do not have classical analogs. 

Electron wave packets of highly excited Rydberg states, 
which arise in the excitation of the respective atoms by short 
laser pulses, can serve as an interesting object of study in the 
observation of the phenomenon of fractional regenerations. 
This object has been studied recently both experimentally 

and theoretically.'-' One means of observation of the dy- 
namics of such packets is afforded by recording the radiation 
of such atoms. At the stage of "classical" motion of the pack- 
et about a Kepler orbit, the radiation consists of regularly 
repeating (with the period of the classical motion) spikes, 
which correspond to the passage of the pocket through its 
point of minimum distance from the nucleus, where its accel- 
eration is at a maximum. The formation of the above-de- 
scribed macroscopic quantum states corresponding to the 
fractional regenerations of the packet should be manifested 
in the onset of regular radiation spikes, one following the 
other twice, three times, four times, etc. as often as in the 
classical motion. It is interesting to compare the asymptotic 
scenario described here with the results of a detailed numeri- 
cal investigation4 of the luminescence of a Rydberg atom 
excited by a laser pulse of duration - 10 psec in the region of 
energy states with principal quantum number close to 
E = 85, which corresponds to T,., -9 94 psec (see Fig. 2) .  The 
sharp peaks of radiation, repeating the shape of the exciting 
pulse at the initial stage of the evolution, correspond to mo- 
tion according to the correspondence principle (see also Ref. 
12). The authors of Ref. 4 also discovered and explained the 
regeneration of the initial structure of the time course of the 
radiation that is observed after - 35 periods of the classical 
motion (see Fig. 2)  and is a regeneration of order 1/2 in our 
nomenclature ( T,,, -9 5.2 nsec) . The intermediate region in 
Fig. 2, described in Refs. 4 and 5 as a "complicated picture of 
quantum beats," possesses in fact a well-defined structure. 
The arrows in Fig. 2 indicate the times (1/8) T,.,,, (1 /  
6)  T ,.,, , ( 1/4) T,,, , and ( 1/2) T,.,, . The intensity spikes close 
to the indicated times correspond to fractional regenerations 
of order 1/8, 1/6, 1/4, and 1/2 with repetition periods ( 1/ 
4 )  T,., , ( 1/3) T,, , ( 1/2) T,, , and T,,  , respectively. The asym- 
metric character of Fig. 2 with respect to the time ( 1/4) T,,, 
can be attributed to the influence of higher terms of the ex- 
pansion of E,, in powers of ( n  - E) for the chosen values of 
the parameters. 

In the present article we have described the universal 
behavior of wave packets consisting of highly excited states 
of quantum systems executing regular periodic motion in the 
classical limit. We have shown that during the course of the 
long-term evolution, following the well-known stage of the 
motion in accordance with the correspondence principle, 

1, arb unlts 

DO 10 2,o 3.0 
t ,  nsec 

FIG. 2. Spontaneous-emission intens~ty of a Rydberg atom excited by a 
short laser pulse (according to Ref 4 ) .  We ~ndlcate by arrows fractional 
regenerations of varlous order. 
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these superposition states undergo a universal sequence of 
fractional regenerations with formation of a correlated set of 
localized components distributed along a classical orbit. 
Such objects are in fact macroscopically distinguishable 
quantum states, whose properties have been extensively dis- 
cussed over the course of the development of quantum me- 
chanics. The preparation and detection of such states has at 
present become experimentally feasible.'."," As follows 
from the present article, states of this kind regularly arise in a 
wide class of quantum systems of varying physical nature, in 
the course of the evolution of an arbitrary "classical" initial 
state. 

'R .  G. 1-ittlejohn, Phys. Rep. 138, No.  4, 5; 1'14 (1086). 
'G.  Schustcr. Dc/crr?~irrir/ic Clrcrov: ,411 Irr/rod~rc/iott. VCH Puhlicntion\, 
New York ( 1987 ) .  
'G. M. Zaslavskii, S/oclru~/icity of' Dy~rurtrrc Sysro?rv [in Russian]. 
Nauka, Moscow ( 1985). 

'J. Parker and C. R. Stroud, Jr., Phys. Rev. Lett. 56, 716 (1986). 
'G. Alber, H. Ritsch, and P. Zoller, Phys. Rev. A 34, 1058 (1986). 
"J. Grochmalicki and M. Lewenstein, J .  Phys. B 21, 3285 ( 1988). 
'Y. A. Yea~ell and C. K. Stroud. Jr.. Phys. Rev. Lett. 60. 1494 (1988). 
"L. D. Landau and E. M. Lifshitz, Quanrurn Mcchorric.~, .Vor~relu/i~~istic 

469 Sov. Phys. JETP 69 (3), September 1989 

Theory, Pergamon ( 1978). 
9C. Cohen-Tannoudji, B. Ciu, and F. Laloe, Quantum Mechanics, Wiley, 
New York (1977). 

'OR. Loudon, Quantum Theory of Light, 2nd Ed., Oxford University 
Press, Oxford ( 1983). 

"G. G. Cabrera and M. Kiwi, Phys. Rev. A 36, 2995 (1987). 
I2I. Sh. Averbukh, V. A. Kovarsky, and N. F. Perelman, Phys. Lett. A 70, 

289 (1979). 
I3G. J. Milburn, Phys. Rev. A 33, 674 (1986). 
I4B. Yurke and D. Stoler, Phys. Rev. Lett. 57, 13 (1986). 
I5B. Yurke and D. Stoler, Physica B 151,298 (1988). 
"B. Yurke and D. Stoler, Phys. Rev. A 35, 4846 (1987). 
"J. H, Eberly and Y.-H. Yoo, Phys. Rep. 118, 539 (1985). 
IXU. Titulaer and R. Glauber, Phys. Rev. 145, 1041 ( 1965). 
I9V. A. Fock, The Principles of Quantum Mechanics [in Russian], Nauka, 

Moscow ( 1976). 
*OM. Hillery, R. F. O'Connell, M. 0 .  Scully, and E. P. Wigner, Phys. Rep. 

106, 121 (1985). 
"A. ten Wolde et al., Phys. Rev. Lett. 61, 2099 (1988). 
'2D. M. Greenberger, Rev. Mod. Phys. 55, 875 ( 1983). 

Translated by Paul Schippnick 

I .  Sh. Averbukh and N. F. Perel'rnan 469 


