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The Green's function formalism is used for a novel formulation of the problem of 
electromagnetic-wave diffraction by multilayer media with rough interfaces. The problem is 
reduced to a solution of the traditional quantum-mechanics problem of T-matrix scattering with 
T = V + VG,T. The derived equation is solved in an approximation linear in the amplitudes of 
the roughnesses. 

An all-inclusive theoretical analysis of strong resonant 1. FORMULATION OF PROBLEM, THREE-LAYER MEDIUM 
electromagnetic ( E M )  effects discovered recently on rough The propagation of a monochromatic EM wave 
interfaces of condensed media, such as surface-enhanced E ( ~ ) ~ -  MS'I in a three-layer medium ( ~ i ~ .  l a )  having a di- 
Raman scattering,' anomalous suppression of the specular electric constant 
component,' wave localization and their backward scatter- 
ing,' and others call for the use of the most powerful formal- E (P) = E ~ +  ( E ~ - E , )  0 (hi (p) -2) + ( E ~ - E Z )  0 ( h ~  (P)-z) 

ism of modern theoretical physics-the Green's function and containing interfaces = h, ( = (x,y) is a two-di- 
even the first attempt to "lve the prob- mensional vector lying in the plane = 0 )  is determined by 

lem of EM wave diffraction by the Green's function method4 solving the macroscopic~electrodynamics equations 
revealed a number of problems that hinder further develop- 
ment of this method, namely, the singular behavior of the 
Green's function and the discontinuous behavior of its con- 
stituent fields. In the general case this introduces inevitably 
in the solution (even in the first term of the expansion in 
powers of the roughness amplitude) mathematically ill- 
posed expressions such as s dxB(x)S(x), where B(x) is the 
Heaviside step function and S ( x )  the Dirac function.' It is 
this circumstance which prompted the authors of Ref. 6 to 
confine themselves, in the solution of the problem of EM- 
wave diffraction by rough interfaces of three-layer media by 
the Green's function method, to the case of only normal inci- 
dence, where indeterminacies of this type do not occur, at 
least in the linear terms of the expansion. 

A complete solution of the problem for the case of EM- 
wave diffraction by one rough interface of homogeneous iso- 
tropic media was given in Ref. 7, where the problem was 
reduced, for arbitrary interface roughnesses, to a solution of 
a traditional quantum-mechanics equation for the scattering 
T-matrix. The modified Green's function contained in this 
equation is free of singularities, the basis functions for this 
function are continuous on the interface, while the iterative 
solution is free of mathematically ill-posed expressions in 
any order in the perturbation. 

The aim of the present paper is to generalize the results 
of Ref. 7 to include multilayer media containing an arbitrary 
number of rough interfaces. In order not to clutter up the 
exposition with many subscripts and symbols, we consider 
first three-layer media with rough interfaces (Sec. l ) ,  fol- 
lowed by a generalization to multilayer media (Sec. 3) .  In 
Secs. 2 and 4 we obtain, by way of example, a solution of the 
equation for the T matrix in an approximation linear in the 
roughness amplitudes. The results are discussed in Sec. 5. 
Some of the intermediate equations are relegated to Appen- 
dices A and B. 

It is assumed below that the media in contact are homo- 
geneous, isotropic, without spatial dispersion, and in the 
general case with a dissipation Imc, (w) 20, where E, is the 
dielectric constant of the layerj = 1,2, ..., n (Fig. 1 ) and w is 
the frequency of the incident monochromatic EM wave. 

(rot rot-k,2&,)E (r) = v  ( r )E  (r) , ( 1 )  

where k,, = w/c is the wave number in vacuum, E, is the 
dielectric constant in the absence of perturbations of the in- 
terfaces 

h, = (h, ( p ) ) ,  (...) is the average over the ensemble of the 
rough surfaces, and u(r )  is the perturbation of the problem, 
determined by the change A&(r) = ~ ( r )  - E,, of the dielec- 
tric constant of the medium in the region of the rough layer, 

v(r)  =ko2A& (r) = (kZ2-ki2)hi (r) + (k2-kz2) hZ ( r ) ,  

k,(r) =0 (hj(p) -z) -0 (zj-z), 

and k, = k,,~,!'~ is the wave number in the layer j. 
We rewrite Eq. ( 1 ) in integral form 

FIG. 1. Diffraction of electromagnetic waves in three-layer ( a )  and in n- 
layer ( b )  media. 
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E(r)=Eo ( r )  + J ~ ( r ,  r r )  v ( r r ) E ( r f ) d 3 r f ,  ( 2 )  
A 

using for this purpose the Green's function G(r,  r ' )  of a 
three-layer medium satisfying the equation 

(rot r o t - k o 2 ~ , )  G ( r ,  r ' )  =6 ( r - r ' )  . ( 3 )  

A  solution of Eq. ( 3 )  is It contains, however, 
a very cumbersome expanded expression of the tensor 
G,,, ( b , z , z l )  determined by the Fourier transform of the 
function G,,, ( r , r l )  with respect to the difference argument, 
for different values of the subscripts a,B = x,y,z and for re- 
gions of space z,z'EV,, V2, V3, ( 5 is the region belonging to 
the layerj). This hinders the algebraic transformations and 
makes the subsequent generalizations difficult. We present a 
more compact form of the function G,, (b , z , z l ) ,  which will 
be generalized below to include multilayer media. In dyadic 
notation we obtain 

..A 

zz 
B (b, Z ,  z ' )  = - 7 6 ( z - z ' )  +8' ( b ,  z ,  z ' ) ,  ( 4 )  

ko E z  

where n = 3 for the considered case of three-layer media. 
The system of basic functions E,;,,(b, z ) ,  where m = 1 ,  
n and y = s, p, consists of independent solutions of the ho- 
mogeneous equation ( 1 )  with zero right-hand part, and is 
given together with other symbols in Appendix A .  The am- 
plitude transmission coefficients t,, = t,  ( b )  are specified by 
Eqs. ( A 4 ) .  Normalization of the functions ( A 1  ) and the 
form of ( 5 )  are mutually consistent, and the poles of the 
Green's function ( 5 ) ,  which correspond to the eigenmodes 
of the medium, enter only in the transmission coefficient t , .  
The functions E,& ( b ,  z )  made no pole singularities and 
specify the polarization structure of ( 5 ) .  

Direct utilization of expressions ( 4 )  and ( 5 )  for an iter- 
ation solution of Eq. ( 2 )  by expanding the field E ( r )  in pow- 
ers of the roughness-amplitude fluctuations & ( p )  
= hJ ( p )  - &, leads in general, just as for two-layer media,' 

to mathematicially ill-posed expressions. Equation ( 2 )  is 
thus hardly suitable for analysis. 

Separating in ( 2 )  the singular term ( 4 ) ,  and carrying 
out transformations similar to those made in Ref. 7 ,  we ob- 
tain an equivalent equation for the scattering T-matrix 

+ d2b' dzr D (b-b' ,  z , )  G, (b', z,, z')  T (b', b, ,  z', z , )  , ( 6 )  
A 

where G,,(b,  z ,  z ' )  is a modified Green's function 

Go ( b ,  z ,  z r )  

+Xi ,+  (b, z )  X,,- ( b ,  z ' )  0 ( z f - z )  I ,  ( 7 

that contains no singular terms and consists only of contin- 
uous components of the field E  

where E,,,,,,, are the componen t~~of  the initial fields E,:, 
defined in ( A 5 ) .  T j e  p e r t ~ b a t i o n  V ( q ,  z )  in ( 6 )  is the Fou- 
rier transform of V ( r )  = V ( p ,  z )  with respect to the argu- 
ment p, where 

k,, = 22 and = 1 - 22 are the operators for projection on 
the normal direction z and on the plane z  = const, respec- 
tively. 

The matrix elements T $  (J, b,,) of the solution of Eq. 
( 6 )  for the scattering operator T ( b ,  bo, z ,  z ' )  

Tap im ( b ,  b o )  = J dz  dz' X,,- ( b ,  z )  T ( b ,  b,, z ,  z t )Xm,+ (b,, z')  , 
- m 

( 10) 

taken over the same system of basis functions ( 8 )  on which 
the modified Green's function is constructed, determine 
uniquely the amplitude of the diffracted waves E ( r )  in the 
media I, m = 1 ,  n that border the layers ( n  = 3 for a three- 
layer medium). 

d 2 b  E (r) = CpGb (b , .  z )  eibop + i CB S t,e'b.j 

P=s. P a, B=s. P 
1?1 

where C,, are arbitrary constants that determine the intensi- 
ty and the polarization state of the incident E M  waves, ej', 
are the diffracted-wave polarization vectors ( A 3 ) ,  and 77, 
are the projections of the wave vectors ( A 2 )  on the direction 
of the normal in the layer j.  I t  is assumed in ( 1 1  ), without 
loss of generality, that the incident plane wave is specified in 
layer 1 (Fig. l a ) .  

Equation ( 6 )  and expressions ( 10) and ( 1 1 ) solve com- 
pletely the problem of the diffraction of EM waves in a three- 
layer medium by the rough interfaces, but in contrast to the 
initial equation (2 )  they determine the field only in the me- 
dia that border the layer. On going from (2 )  to ( 6 ) ,  ( l o ) ,  
and ( 1 1 ) no restrictions whatever were imposed on the char- 
acter of the roughnesses and on the layer thickness. 

Equation ( 6 )  for the T matrix agrees is form with the 
analogous equation of Ref. 7 for a contact between two semi- 
infinite media with one rough interface. In contrast to Ref. 7, 

h 

however, the perturbation of V ( r )  in ( 6 )  in the presence of 
several rough interfaces is not reduced to a scalar form, but is 
given by the tensor ( 9 ) .  

2. LINEAR APPROXIMATION FOR ATHREE-LAYER MEDIUM. 
ANGLE SPECTRUM 

In the limiting case of not too rough interfaces, Eq. ( 6 )  
for the T matrix can be iterated by expanding ( 9 )  and ( 6 )  
in powers of the roughness-fluctuation amplitudes 
b, ( p)  = h, ( p)  - 6, (Ref. 7 ) .  In the approximation linear in 
h, we obtain 
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where h,,, is the Fourier transform of the profile h, (0. The 
bilinear combination of 6 (z )  functions eliminates all the in- 
tegration with respect to z in the matrix elements ( 10). As a 
result, the T z  (b, bO) contain only terms made up of scalar 
products of the form 

h h 

The projection operators P, and PI, renormalize the f com- 
ponents of the fields X,', and leave the j: and 6 components 
unchanged. With allowance for (8 )  it is convenient to intro- 
duce a local basis on the jth interface 

Zms* (b ,  h:i) =Em' (b ,  hj) , ZmPL (b ,  E j )  

= ( ~ j ~ j + i )  -'I2Dmz (b ,  F i j )  *Ern* (b ,  E j )  . (12) 

The matrix elements ( 10) reduce then finally, in the approx- 
imation linear in 4, to the form 

Tap'" (b ,  bo) = ( k t - k t 2 )  (Z,.-(b, ht)Zm,+(bo, E l )  ) E l ,  b-bo 

+ (ks2-k t )  ( Z I , - ( ~ ,  Ez)Zme+ (bo, Z 2 )  ) E 2 ,  b-boa ( 13) 

Expressions for the fields of the local basis Z,& ( b  h, ) follow 
directly from Eqs. (12),  (8),  (A5) ,  and ( A l ) :  

ksb qs - ZtPf (b ,  F i t )  = - HS+z k - Hs-b, 
kt k2 k,  

k,b 'li  ^ Z,p* (b ,  E,)  = -Hi+: r - Hi-b. 
kzks kt 

The character of the change of the roughness profile 
(whether it is deterministic or stochastic) was not estab- 
lished in the derivation of ( 13). In the case of statistically 
rough interfaces, by substituting ( 13) and ( 11 ), calculating 
the EM energy flux density in the media bordering the lay- 
ers, and averaging the result over the ensemble of rough sur- 
faces with allowance for 

where S, (q) are the spectral densities, we get for the angle 
spectrum dP,,,/dfl, of the EM wave scattered into the me- 
dium m = 1, 3 and having a polarization P = s, p upon inci- 
dence of a wave with polarization P= s, p, the following 
expression 

dPa* -- - 4qtOqmkm2 {Sit (b-bo) I Qt:a I' 
Po, dS2, 

m - m  + S,, (b-b,)  / Q,:, 1 '+2 ~e [S12 (b-bo) QiaaQza,] 1 ,  ( 5, 

where the overbar denotes complex conjugation, Po, is the 
normal component of the EM energy flux incident on layer 2 
at an angle 6,); dR, = sin 6, do, dy, is the solid angle of 
scattering in the medium m = 1,3; O,, is the scattering angle 
in the medium m; b = k,, sin f,, ; bO 7 k,sin 6,); y, is the an- 
gle between the unit vectors b and b,,. Expression (15) is 
meaningful for m = 3 only if the medium 3 is nondissipative 
and transparent, i.e., if k : > 0. The functions Q;EB are given 
in Appendix B. 

Comparison of ( 15) with earlier  result^^^'.'^) shows that 
the angle spectrum of an electromagnetic wave scattered 
into medium 1, in particular cases of normal incidence and 
for arbitrary S,, agrees with the result of Ref. 6; for oblique 
incidence with fully correlated interface roughnesses, when 
S,. (q )  = S ( q ) ,  it agrees with Ref. 9. If the interface rough- 
ness is assumed uncorrelated, i.e., SIZ = S2,  = 0, or if the 
layer is assumed thin, v2d<  1, expression (15) for the re- 
flected wave agrees with the result of Ref. 10 provided that 
the signs of the terms containing the factorspp' (in the nota- 
tion of Ref. 10) are reversed in Eqs. ( A l )  and (A3)  of that 
reference for thepp polarization. To  confirm the validity of 
the equations obtained above we note that in the particular 
case of two-layer media, when for example E ,  = E~ or  
E? = E ~ ,  orelseh,  ( p )  = andd-0, E ~ S .  (15) are trans- 
formed into the known results for two-layer media.'," The 
expressions given in Ref. 1 do not contain such a limiting 
transition. In  addition, Eqs. (15) are a particular case of 
more general expressions for n-layer medium, which we con- 
sider below. 

3. FORMULATION OF PROBLEM, MANY-LAYER MEDIUM 

The foregoing formulation (6)-( 1 1 ) of the problem of 
diffraction of EM waves in a three-layer medium can be di- 
rectly generalized to include many-layer media with arbi- 
trary number of interfaces z = h, ( p)  (Fig. l b ) .  The crux 
here is the statement that the Green's function ( 4 ) ,  (5 )  will 
be a solution of Eq. (3 )  also for an n-layer medium having a 
dielectric constant 

n-1 

This can be verified directly by substituting (4) ,  (5 ) ,  and 
(16) in (3) .  The set of basis functions E,:,, (b, z ) ,  m = 1,n 
for an n-layer medium, which enters in ( 5 ) ,  is given by 

= & 7 ~ j r +  exp [ i q j  (z-Tij) ] +&j+7aj,- exp [ - iq j  ( 2 - E j )  1, 

(17) 
Ej<z<Ej-t, j=i, 2 , .  . . , n, 

where the coefficients a,: are connected by the recurrence 
relations 
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in the functions Ei: ( b ,  z )  and 

in the functions E,$ ( b ,  2 ) .  The 2 x  2  matrices 8 z ,  
( y = s, p )and H, are defined as 

- 
where d, = h i - ,  - Ai is the thickness of layer j having a 
dielectric constant E ~ .  The unit vectors 6:k are defined by 
expressions (A3) .  The initial values of the components a,;, 
in ( 18) and a,? in ( 19) normalize the functions ( 17) to 
corres~ond to the form of the Green's function ( 4 ) ,  ( 5 ) ,  
where now t ,  = l / a ,  is the transmission coefficient of the 
n-layer medium for the passage of a y = s-polarized or p- 
polarized EM wave from layer 1 to layer n. 

The boundaries h,, and h,, which enter formally in ( 17) 
and are absent from the initial layered system (Fig. l b )  were 
introduced to conform with ( 1 7 ) .  For the chosen initial val- 
ues of the coefficients a,;, and a,$ in ( 18) and ( 1 9 ) ,  the fields 
( 17) - are independent of the - locations - of the boundaries h,, 

'and h,, so that we can put h,, = + co, h,, = - co. 
Since the solution ( 4 ) ,  (5 )  of Eq. ( 3 )  for the Green's 

function o f a n  n-layer medium is now known, the integral 
equation ( 2 )  for the field is valid also for a many-layer medi- 
um, but the perturbation potential u(r) in ( 2 )  takes now the 
form of a sum of pertubations over all the rough interfaces: 

n-l 

The algebraic transformations that effect the transition 
from the singular integral equation ( 2 )  for the field into the 
equation ( 6 )  for the scattering T-matrix remain in force for 
any number of interfaces, since they are connected only with 
elhination of the singular component of the Green's func- 
tion ( 4 )  from the integral term of Eq. ( 2 )  and with subse- 
quent algebraic transformations of Eq. ( 8 ) .  Expressions 
( 6 ) - (  1 1  ) are thus valid also for n-layer media with rough 
interfaces, but the perturbation ( 9 )  must be replaced by a 
sum over all the rough interfaces: 

Equation ( 6 )  for the scattering T-matrix of many-layer 
media is fully equivalent to the initial equation ( 1 ) [or ( 2 )  ] 

and does not require that the roughnesses of the interface be 
small or smooth. In accord with ( 1 1  ), however, its solution 
determines the field only in the media bordering the layers, 
j = 1 or n. 

We consider below by way of example the solution of 
Eq. ( 6 )  for n-layer media in an approximation linear in j?, , 
and obtain expressions for the angle spectrum of the diffract- 
ed reflected and transmitted EM waves. 

4. LINEAR APPROXIMATION FOR AN n-LAYER MEDIUM. 
ANGLE SPECTRUM 

Substituting ( 2 0 )  in ( 6 )  and solving the latter by iter- 
ation up to terms linear in 6 (expanding also A, in powers of 
4 up to terms of the same order of smallness), we obtain for 
the T-matrix a solution similar to that given in Sec. 2  for a 
three-layer medium, but containing now a sum over all the 
rough interfaces: 

When the matrix elements of ( 10) are calculated, each term 
of this sum is transformed, just as in the case of three-layer 
media, by replacing the X basis ( 7 )  by the local Z basis ( 1 2 ) .  
As a result we obtain for the matrix elements T $ ( b ,  b , , ) ,  
which determine uniquely in accordance with ( 1 1  ) the com- 
ponents of the diffracted EM waves in the media bordering 
the layers, in an approximation linear in &, , the expression 

The functions Z z  ( b ,  h, ), are expressed, according to ( 8 ) ,  
( 1 2 ) ,  and ( 1 7 ) ,  in terms of the initial coefficients a,; of the 
expansion ( 17) 

Zip* ( b ,  T i j )  =;(ajp-+ajp+) b/kj+i*b^(ajp--ajp+) q j /k j ,  

A - + Znaf ( b ,  Ti l )  =s (ai+i..+aj+i,J, 
- - 

Znp* (b ,  Zj) =; (aj;i,p+aL,,) blkj*b(a,+t,p-ajf I,,) qj+dkt+i, 

where a,: are specified in ( 2 1  ) by the recurrence equations 
( 1 8 ) ,  and in ( 2 2 )  by Eqs. ( 1 9 ) .  The basis fields Z,:,, ( b ,  h, ) 
contain only linear combinations of the coefficients a,:, in 
the form a,; f a,:, which have the simple physical meaning 
of the tangential components of the intensities of the electric 

and magnetic 

fields on the jth interface. Using the introduced definitions of 
the components E;"' and H;"", we obtain for the functions 
Z,:,, ( b ,  5, 1 

A 

Z,,* ( b ,  E j )  =sEjrn8, ( 2 3 )  
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The fields EYY and HYY are connected by the recurrence 
relations 

Ejm7= (COS pj+i  (y;ILI:/N,') sin p,) E::, 

E,"'=l, Elnp=-ql/ki, 
( 2 4 )  

~ j ? =  (cos Pj-i (Yjm71N,') sin f i r )  Ejm7, 

which follow from ( 18) and ( 19),  where 

is the admittance of the jth boundary and satisfies the rela- 
tions 

Substituting the expression for T $ in ( 1 1 ), normaliz- 
ing the field E(r) to unity amplitude of the incident wave, 
and denoting 

we obtain for the partial amplitude E $ ' ( b ,  b,,) of the dif- 
fracted wave in the medium m = 1 ,  in the approximation 
linear in A j ,  

n-i 

Averaging the EM-energy flux density over the ensem- 
ble of the rough surfaces and taking ( 14) and ( 2 6 )  into ac- 
count, we obtain for the angle spectrum dPaB/dR,, of the 
waves diffracted in layers m = 1 ,  n 

The connection between the wave vectors and the scattering 
angles in the media bordering the layers is similar to that 
described above [in the text following Eq. ( 1 5 )  ] for the case 
of three-layer media. 

Comparison of ( 2 5 ) - ( 2 7 )  with the results of the pre- 
ceding studies shows that in the particular cases of two- and 
three-layer media Eqs. ( 2 6 )  and ( 2 7 )  coincide with the re- 
sults of Refs. 7  and 1 1 and with Eq. ( 15 ) .  In the general case 
of n-layer media, Eqs. ( 2 5 ) - ( 2 7 )  agree with the result of 
Ref. 12 upon correction of a number of misprints [in the 
notation of Ref. 12, reverse the sign of N ,':' for a polarization 
and make the substitution ( sH - Y,sB, ) 

- (sE, - Y ;SB, ) in the final Eq. ( 18) 1 .  To  reduce the re- 
sult ( 2 5 ) - ( 2 7 )  to the form given in Ref. 12 it is necessary to 
use the recurrence relations ( 2 4 )  and the condition that the 
Wronskian of the linearly independent soltutions of the ho- 
mogeneous equation ( 1 ) be independent at v  = 0  of the spa- 
tial coordinate z. 

5. DISCUSSION OF RESULTS. CONCLUSION 

Using the Green's-function mathematical formalism, 
we reformulated the problem of EM-wave diffraction by an 
arbitrary assembly of rough interface of homogeneous iso- 
tropic many-layer media. The problem was reduced to a so- 
lution of the traditional quantum-mechanics equation for 
the scattering T-matrix ( 6 ) .  In symbolic notation we have 
T =  V +  VG,,T. The modified Green's function G,, ( 7 ) ,  
which enters in this equation, is written in covariant form, 
contains no singular terms, and is not constructed on the 
system ( 8 )  of basis functions containing only field compo- 
nents that are continuous on the interfaces. 

A solution of (6 )  can be obtained by some known meth- 
od. l 3  The matrix elements ( 10) of the T-matrix, taken in the 
same system of basis functions on which the Green's func- 
tion G,, is constructed, determine uniquely, according to 
( l l ) ,  the amplitude of the diffracted waves in the media 
z>max{h, ( p ) )  or z<min{h, _ , ( p ) ) ,  bordering the layers. 
In the derivation of ( 6 ) ,  ( l o ) ,  and ( 1 1  ), no restrictions 
whatever were imposed on the character of the roughnesses 
(deterministic or stochastic profile, steep or gently sloping, 
etc.) and on the thicknesses of the layers. 

As an example of the use of the developed approach, a 
solution is obtained in Secs. 2  and 4  of the equation for the T 
matrix in an approximation linear in the roughness fluctu- 
ations, for the cases of three- and n-layer media. Expressions 
were obtained for the angle spectrum of the diffracted re- 
flected and transmitted EM waves ( 1 5 )  and ( 2 7 ) .  Compari- 
son with the results of earlier work has revealed in some of 
them certain misprints whose elimination leads to agree- 
ment. 

Equation ( 6 )  and expressions ( 10) and ( 1 1 ) serve as 
the basis for an analysis, outside the scope of perturbation 
theory, of optical phenomena due to roughness of the inter- 
faces in resonant many-layer systems. 

APPENDIX A 

The solution of the homogeneous equation ( 2 )  in the 
absence of perturbation of the interfaces ( v  = 0 )  is repre- 
sented in the form of a linear superposition of independent 
functions e"QE,:,, ( b ,  z )  where the subscripts m = 1 ,  3 and 
y = s, p identify the medium in which the incident wave is 
specified, and the state of its polarization. The functions 
E,;,, ( b ,  z) ,  which form the basis for the construction of the 
Green's function ( 8 ) ,  ( 9 ) ,  satisfy the equations 

a direct solution of which yields 

ByTaly exp [iql (z - El)] i- Bykal, ~ X P  [-i% (z - z 2 f i 1 9  

e^iFaiy exp [iq, (z - E,)] + Bika& exp [- iq, (z - &)I, f i ,  S ,< 
Gi* exp [- iq3(z - h,)], ,< E2, 
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8& exp [iql ( z  - E l ) ] ,  
8iTbiv exp [iq2 (z - E l ) ]  + &bTy exp 1- i r l 2  (z 

G&b& exp [iq3 ( Z  - hz)l + %b3~ exp [- ill3 (2 

where 

qj= (kj2-bZ)'",  Re, Im qj>O (A21 

is the normal component of the wave vectors in the medium 
j, and 

--a - A 

ej* = s = [ b ,  z ] ,  Gy* .= f i j+  = (b; + q&)/kj (A3 

are the polarization unit vectors ofthes- andp-polarized EM 
waves in the layer. The functions E,:,, (b, z )  are normalized 
to unity amplitude of the transmitted wave. The expansion 
coefficients a,;, and 6,: follow from the conditions that the 
fields be continuous on the interfaces 

where d = h ,  - hl? is the layer thickness. The functions Ej" 
and Hi* are normalized to unity at d = 0. 

If the incident wave is specified in the medium 1, the 
amplitude reflection and transmission coefficients r,, and t,, 
are given by 

r,=ai7+/ai7-, t7=I/ai7-. (A4)  

Another form of the functions (A1 ), more convenient 
for succeeding transformations, is 

E,,*=E,,, EmP*=E,,*E,~, (A51 
where E,,, and E,,, are tangential 0- and b-components that 
are continuous on the interfaces, and Em, is the normal 4- 
component of the field E,:,, and is discontinuous on the in- 
terfaces. 

APPENDIX B 

The functions Q;:D = Qefl (b,b,,) determine the contri- 
bution of the j th rough interface ( j  = 1,2) and the angle 
spectrum ( 15) of diffracted s- orp-polarized EM waves in a 
medium 1,3 (Fig. a )  following incidence of a plane s- or  p- 
polarized EM wave at an angle B,, = arc sin ( b,,/k, ) in medi- 

I 

um 1. The subscript "0" indicates below a dependence of the 
quantities on b,,, while the absence of the subscript a depen- 
dence on b. For example, rj, = rj, ( b )  and rjfll = 7, (b,,), 
where rj, is specified (A2) ,  etc. 

Defining 

Q>>= (k;+i-kJ2) tateoBjze/4qiqio, 

we obtain 

B i  i a a -  -E3+E 30 +-A ssol ~ : ~ ~ = ~ ~ ~ + i i ~ ,  

1130 - - qso - -  
B , ' , ~ = E ~ + H ~ , -  - sbo, B,~,=H,,-  - sb,, 

k3 k3 
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