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The equation $" + x2 $ = 0 for the radial part of the wave function can be reduced to a first-order 
differential equation (stable and nonsingular at the turning point) for the phase shifts. The 
boundary conditions at this point are specified analytically and directly in the form of an 
asymptotic series. For the Lennard-Jones potential the proposed method of calculation of the 
phase shifts is compared with the WKB method. 

1. INTRODUCTION 

As is well known, the asymptotic behavior of a wave 
scattered by a spherically symmetric potential V ( r )  can be 
specified by the phase shifts of the radial function (see, e.g., 
Ref. 1 ). With the exception of the small number of cases that 
can be solved exactly, to calculate the phase shifts one uses 
the WKB method (see Ref. 2 and Ref. 3, p. 163). This in- 
volves representing the solution of the Schrijdinger equation 
in the form of a sum of two functions-analogs of the inci- 
dent wave and the reflected wave. This makes it possible to 
reduce the wave equation to a system of two first-order equa- 
tions, which, far from the turning point r,, is solved by the 
method of successive approximations. In the neighborhood 
of r = r, this technique is inapplicable, since the equations of 
the system have singularities at this point, and the incident 
and reflected waves are indistinguishable there. At the same 
time, analysis of the solution near the turning point is neces- 
sary, since it is precisely in this interval that the form of the 
solution changes and a substantial phase shift arises. There- 
fore, to investigate the solution in such cases one has to use 
other methods (Ref. 2 and Ref. 3, p. 195), which basically 
reduce to solving an approximate equation in the neighbor- 
hood of r = r, and then matching the resulting solutions in a 
region suitable for this. Thus, the presence of singularities in 
the system of equations used in the WKB method gives rise 
to appreciable complications and additional errors in the 
calculation of the phase shifts. 

Many papers devoted to improving the WKB method 
and to widening its region of applicability have been pub- 
lished r e~en t ly .~ -~  

In the present paper, we propose for a solution of the 
radial wave equation with one turning point a representation 
in the form of a sum of two functions that makes it possible to 
obtain for the phase shifts an everywhere-exact ordinary 
first-order differential equation without singularities at the 
turning point. This representation removes the need to in- 
vestigate the equation in the classically inaccessible region 
and makes it possible to specify boundary conditions direct- 
ly at the p ~ l n t  r = r,, thereby avoiding the need to invoke 
special methods of analysis of the solutions near the singu- 
larities. To specify the initial conditions, the wave function is 
expanded at the turning point in an asymptotic serieJ in the 
dimensionless parameter 

By considering truncations of this series of different lengths, 
we obtain different approximations to the magnitude of the 
phase shift. The expansion is performed analytically, i.e., 
there exist explicit formulas that express the first, second, ..., 
nth approximations of the boundary condition in terms of an 
integral characteristic and derivatives at the point r,, of the 
function q2.  Therefore, to calculate the next approximation 
there is no need (as there is in the WKB method) to calcu- 
late the previous ones. The two functions of which the wave 
function is composed are also interpreted as analogs of the 
incident wave and the reflected wave. The equations relating 
the "amplitudes" do not have singularities at the turning 
point. This makes it possible to distinguish the incident wave 
and reflected wave in the entire classically accessible region 
and to take account of the influence of the reflected wave in 
the calculation of the phase shift. 

The proposed method can be used not only for the cal- 
culation of phase shifts in scattering but also in other prob- 
lems that involve solving a wave equation with one turning 
point. 

The natural question arises as to why, with the present- 
day level of computational techniques, one should solve ap- 
proximate equations rather than find the exact solution by 
numerical methods. Exact solution is inconvenient for the 
following reasons. First, if the potential has a singularity at 
the origin, in the classically inaccessible region the deriva- 
tives take on large values, and this greatly complicates both 
the programming and the computations. Second, exact solu- 
tion is more unwieldy, since it is directed toward obtaining 
superfluous information: First, the wave function is found, 
and only then are the phase shifts found. In problems that 
require multiple calculation of phase shifts (e.g., the calcula- 
tion of a cross section), these factors lead to appreciable 
complication. 

Below, we describe the basic equation, the boundary 
conditions for it, and the results of a numerical calculation. 
The exact mathematical formulations necessary to justify 
the proposed approximate solution are given in the Appen- 
dix. 
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2. THE BASIC EQUATION, ITS PROPERTIES, AND ITS 
BOUNDARY CONDITIONS 

The problem of scattering by a centrally symmetric po- 
tential can be reduced in the standard way to a one-dimen- 
sional equation for the radial part of the wave function: 

For convenience, we change to dimensionless variables: 

Then 

and the turning point is z = 1. We shall denote the eikonal by 
S, and seek the solution of Eq. ( 1 ) in the form 

* 

$ (z)  = A  (z) sin S+B (z) cos S, S = 1 x (r)  dr. (2)  
1 

We require the amplitudes A (z) and B(z) to obey the condi- 
tions 

A' sin S+Rf cos S=O, (3) 

(xA)' sin S-(xB)' cos S=O, (4) 

which can be interpreted as the analog of the Fresnel formu- 
las for reflection from the boundary of two media. By direct 
substitution one can convince oneself that the function 
$(z)given by formula (2) satisfies Eq. ( 1 ) if A (z) and B(z) 
are solutions of the system of equations ( 3 ) ,  (4) .  Expressing 
A ' and B ' from the system (3) ,  (4), we obtain 

X' A ' = -  x' 
sin (2s) B - - cos2 (S) A,  

2% X (5 
x ' B'=- x' 

sin (2s) A - - sinz (S) B. 
2% X 

At the turning point (xO) this system has a singularity [the 
coefficient (x'/x)cos2S] that arises for the following rea- 
sons. The solution $(z) = A (z)sinS + B(z)cosSof Eq. ( l ) 
is a smooth function. At the turning point its second deriva- 
tive is equal to zero, while its first (as shown by the examples 
of Airy functions or Bessel functions) does not vanish, gen- 
erally speaking. At the same time, the first derivative of the 
function sins cc S a x (z - 1 ) is equal to zero while the sec- 
ond is not defined at all, and the singularity of the amplitude 
A(z) a x-' plays the role of canceling the anomalous char- 
acter of the behavior of the eikonal in the neighborhood of 
the point z = 1. The coefficient B(z),  on the other hand, has 
to be smooth at this point, in order not to spoil the smooth- 
ness of $(z) . 

The above qualitative considerations can be partly illus- 
trated by the following example. We introduce the modified 
amplitude A(z) = f(z)A(z) and define the phase shift by 
S = arctan(2 /B), so that the solution takes the form 

1 ba sin C O ~  6 f (z) 6 sin S+cos 6 cusS], 

and the quantity S no longer has the meaning of an additive 
correction to the eikonal iff # 1. 

The factor f(z) must be chosen in such a way that the 

equation for the function S is nonsingular and stable against 
small changes of the boundary conditions. 

From the system (5)  we find 

x ' X' 
B' = --sir1 (2S)X - --sinz ( S )  B. 

2Xf X 

For the ratio 6 = A  /B we obtain, in the usual way, the 
Ricatti equation 

which is easily transformed into an equation for the phase 
shift S: 

It -.; possible to find several functions f(z) that make it possi- 
ble *LC %Ifill the regularity requirement, e.g., f '/f = x'/x, f '/ 
f = (x'/xcbs2S, f '/f = (xr/x)cos2S. But stability requires 
that variant for which the last bracket of Eq. (7)  vanishes. 
Therefore, we set 

m 

I' r.' 
cos 2 ~ ,  ~ = e x p  {- Jscos ? ~ ( r ) d ~ )  . (8)  

I x 

Equations (6 )  and (7)  now take the form 

-, X'  x' 
*-I - - - sill2 (S) A .t - f sill (2s) R. 

X " x  
( 9 )  

31' 
- sin2 (S) B, 

X 

Since for z - 1 we have 

Eqs. (91,  ( 10) do not have a singularity at the turning point. 
Moreover, limf(z) = 1 as z- co , and therefore the phase 
shift 

11, = lim [S-kr,z+ (If l) n/2-6 (w)  1. 
I-+ m 

Thus, for the function S(z),  which asymptotically de- 
termines the phase shift, we obtain an ordinary first-order 
differential equation without singularities. 

We shall denote by x i  the effective potential normal- 
ized by the condition dxi/dz = 1, and consider the family of 
functions x = ax,. An investigation of Eq. ( 10) has shown 
that, for any coefficient x,, for sufficiently large values of the 
parameter a the equation is stable against small changes of 
the boundary conditions. This means that, for any two solu- 
tions S, (z) and S2(z) of the equation, the following inequali- 
ty is valid: 
(61 ( 2 )  -62(~) 1 161 (1) -62(1) I +  T ( a ,  %a) sup (6,  (z) - f i , ( z )  1 ,  

z > t  

with 
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for a > a,,(%,,). Consequently, 

sup 161(z)-6z(z) 161(1)-82(1) !/[I-T(a, xo) I .  
Z > l  

In the Appendix we give an exact formulation of this state- 
ment, and all the necessary bounds. We note that the bounds 
are, of course, overestimates, and, as shown by numerical 
examples, the region of stability of Eq. ( 10) is actually sig- 
nificantly wider than that determined by the inequality 
(11). 

In order to specify the boundary conditions at the point 
z = 1, we expand the solution $(z) in the neighborhood of 
this point in a series in powers of the variable t = z - 1 and 
in an asymptotic series in the large parameter a = [ (dx2/ 
dz) ( 1 ) ] ' I 2 .  We set 

m 

The values g, and gap ' have uniform upper bounds with 
respect to the parameter a (see the Appendix). 

Using the representation (2 )  and the system (9) ,  we 
obtain 

$(z) =A ( i )  sin S+B (?)cos S=B (1) +iT(1) agag,i+O (T3). 

(12) 
We now make use of the asymptotic expansion proposed by 
Olver (Ref. 7 and Ref. 3, p. 195) : 

m, m, 

(P (I) = x A i  ( i )  a-'IU (ay8E) + x~~ ( i )  a-i-8wrca"a), 
1 = O  i = O  

where the function w(x) satisfies the equation 
w" (x)  + X W ( X )  = 0. In the same paper, Olver proved that 
the expansion ( 13) converges asymptotically to the solution 
$(z) uniformly in Z. Despite the complicated definitions of 
the functions A,  and B, ,  their values and the values of their 
derivatives at the origin can be calculated analytically in 
terms of derivatives of the effective potential xi (z). For ex- 
ample, 

Analogous formulas can be obtained for any index i. 
Using the known expansion (see Ref. 8, p. 264) 

we obtain from ( 12) and ( 13) the initial conditions for the 
system (6):  

Consequently, 

This is the desired initial condition for S. We give the formu- 
las for the first three approximations: 

It can be shown that, for the family of effective poten- 
tials 

where r, is the corresponding turning point, the family of 
normalized potentials 

xr2 xt2 
"o'" = ?= 21(1+1) -r13v1 (rlz) 

converges uniformly on any interval (a,  co ) (a  > 0 )  to the 
function v2 = $ ( I  - l/z2) as I- C O .  

In the case when V(r) is an analytic function in the 
region containing (0, co ) it follows from this that all the de- 
rivatives dn x~, /dzn converge uniformly to the correspond- 
ing derivatives d" v2/dz". Since the initial conditions 
tan S(1) and the parameter T(a, ,x,, ) are entirely deter- 
mined by derivatives of the function xi,, we obtain 

and the k th approximation to the initial conditions tan S( 1 ) 
for the potential x: converges to the k th approximation to 
tan S( 1 ) for the potential [(I + 1 ) v:. 
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FIG. 1. Values of 6, for Bessel functions [the potential 
x' = l(1 + 1) (1 - z-?) 1. Curve 1 is the first approximation to the solu- 
tion of Eq. ( 101, curve 2 is the second approximation to the solution of Eq. 
( lo ) ,  and curve 3 gives the true values. 

3. RESULTS OF THE NUMERICAL CALCULATIONS 

To check the efficiency of the proposed method, we 
have used it to calculate the phase shifts S, = lim(z - Ir /  
2 - S) for z - +  co for the Bessel functions Z'/~J,+ (z), 
which are the exact solution of Eq. ( 1 ) with the potential 
x2=1(1 + 1) (1  - z - ~ ) .  

Here, as before, S denotes the eikonal S = $:xdr [i.e., 
in it we havenot replaced I(I + 1 ) by ( I  + 1/2)2]. Asis well 
known, in this case the relation 

is valid. 
The results of the calculation are shown in Fig. 1. We 

give the values A, of the errors for different values of the 
parameter I (as percentages of the true value): 

For comparison with the WKB method, we have calcu- 
lated the phase shifts S, (in units of r d ) :  

FIG. 2. Dependence of the cross section Q on the parameter k u  for the 
Lennard-Jones potential with A = 3.08: I-calculations by the WKB 
method; 2-solutions of Eq. (10); 3-the true values. 

FIG. 3. Dependence ofthe transport cross section Q,,. on the parameter k u  
for the Lennard-Jones potential with A = 3.08: 1-calculated by the 
WKB method; 2-solution of Eq. ( 10); 3-the true values. 

and the transport cross sections 

for scattering by a Lennard-Jones potential. It was assumed 
that, in Eq. ( 1 ), 

The parameter A2 = h 2 /2pd  E ,  wherep is the reduced mass, 
E is the depth of the potential well, and u is the root of the 
potential, characterizes the interaction of the colliding parti- 
cles. The bigger its value, the more strongly pronounced are 
the quantum effects. The calculations were performed for 
the values A = 3.08 (3He-He3 collision) and A = 0.562 
(Hg-Hz). The exact values of the phase shifts were taken 
from the literature (Ref. 9, p. 860, and Ref. 10). The values 
of the phase shifts in the WKB method were calculated by 
the Langer method [i.e., the eikonal was calculated with 
l(1 + 1) replaced by ( I  + 1/2)2]. The value A = 3.08 does 
not fall in the region of applicability defined by the inequali- 
ty ( 11 ). The results of the calculations for this value of the 
parameter A are given in Figs. 2 and 3 and in the table. It 
should be noted that for k u  = 1.2 the parameter aZi3, which, 
for a successful calculation, should be large, is in fact small: 
a%: = 2.0 (see the table). This explains the large magnitude 
of the error at these points. The parameter value A = 0.562 
lies on the boundary of the region of stability of Eq. (10). 
Figures 4 and 5 and the table display the results of the calcu- 
lations in this case. The smallest value of the parameter aZi3 
here is always greater than eight. It should be noted that the 
small magnitude of the error in the calculation of the cross 
section by the WKB method for ku = 3 is explained not by 
the accuracy of the method but by the mutual cancellation of 
two errors in the phase shifts: S, = 2.77 (the true value is 
S, = 2.68), and S, = 0.220 (the true value is S, = 0.145). 

In all the calculations cited, the third approximation in 
the proposed method was compared with the first approxi- 
mation in the WKB method. This was done to demonstrate 
the following fact. Since, for any approximation, the bound- 
ary conditions are specified analytically, and Eq. ( 10) is ex- 
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TABLE I. Errors in the calculations of the phase, cross sections and transport cross sections for 
two values of A. 

Cross section,% I WKB I Zion Equation 1 WKB I E4;;:;" 

Note: Since the true values of the phases are known only to the second decimal place, all quanti- 
ties are given to this accuracy. 

act everywhere, we can obtain any approximation (in this 
case, the third) from the first sweep, whereas the first iter- 
ation of the WKB method gives only the first approxima- 
tion. Thus, in numerical calculations what we compare is not 
the same approximation obtained by different methods, but 
quantities obtained as a result of one iteration of each of 
them. The calculations given show that where the WKB 
method in the first approximation is not sufficiently accu- 
rate the proposed method gives a better result, since it per- 
mits one to calculate any approximation (in the given case, 
the third) from the very first sweep. 

CONCLUSION 

In the paper we have proposed the following method of 
approximate solution of a radial wave equation with one 
turning point r = r,. The desired function $(z) (z = r/r,) is 
represented in the form [see formulas (2 )  and ( 8 ) ]  

FIG. 4. Dependence of the cross section Q on the parameter ka for the 
Lennard-Jones potential with A = 0.562: 1--calculated by the WKB 
method; 2-solution of Eq. ( 10); 3-the true values. 

$(z) =f-'X(Z) sin S+B(z) cos S 

in such a way that the amplitudes 2 and B and the function 
S = arctan(2 /B) do not have singularities at the turning 
point z = 1. The function S determines the phase shift as- 
ymptotically as z+ co and obeys Eq. (10). 

This equation is stable for large values of the parameter 

and does not have singularities at the turning point; this 
makes it possible to specify the boundary conditions S(1) 
directly at this point. The boundary conditions are repre- 
sented by an asymptotic series of the form 

C 

in which the coefficients pi are expressed analytically in 
terms of integral and differential characteristics of the effec- 
tive potential x i ,  i.e., do not depend on a .  To calculate the 
nth approximation it is not necessary (as it is in the WKB 

FIG. 5. Dependenceofthe transport cross section Q,, on the parameter ku 
for the Lennard-Jones potential with A = 0.562: 1-calculated by the 
WKB method; 2-solution of Eq. (10); 3-the true values. 
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method) to calculate the previous approximations. In view 
of this, in those cases in which the first approximation of the 
WKB method is not sufficiently accurate, it makes sense to 
employ the proposed method, and this is confirmed by the 
above examples of numerical comparison of these two meth- 
ods. We note that the proposed method is much simpler than 
exact numerical solution of the wave equation, since it does 
not involve analysis of the solution in the classically inacces- 
sible region. 

APPENDIX 

Here we show under what conditions Eq. ( 10) will cer- 
tainly be stable against small changes ofthe boundary condi- 
tions. Let x i  be the effective potential, normalized by the 
condition 

dxo2 -- I t = j xodz, x.=tNhq (t'), %=axo. 
dz I 

We choose a certain number h (0  < h < T ) ,  and introduce the 
following notation: 

1 dx x' 
c , =  sup 1--j=sup I;;), 

r > r ( h )  1~ dt z > z ( h )  

m 

For definiteness and for simplicity of the formulas, we 
set h = 2. Below, we give the results of straightforward, but 
laborious and unwieldy, estimates, from which it can be seen 
how and by what parameters the stability of Eq. ( 10) is de- 
termined. 

1. The function 

possesses the following properties: For t ( z )  > h /2a, 

fX(z)Gl.l5A(a, x , ) ;  

fx-'(z)<l.O7A(a, ?to); 

I f . (~ )+ f~ -~ (z )  IG2.02A(a, ?to) ; 

If.(z) -fx-'(z) 1<0.3A(a, xo) ;  

g. = lim f. (z) a-""z-1) -'I2< 1.4 exp{pl/aYq A  (a, xo) ; (AS) 
1'1 

g,-I = lim f,-I (z)a"' (~-1) '~<1.1  exp{p,/a") A (a, x,). (A6) 
I-1 

Here, 

We note that A(a,xo) - 1 + 0( p,/a2/3). 
2. If in Eq. (10) the effective potential x =ax,, and 

S, (z) and S2(z) are two solutions of this equation, then 

where 

T (a, x,) = A  (a, xo) {0.44+0.12A (a, xo) 

+a-"pi (0.78f 0.39A (a, xo) 

+a-I (0.87p2+0. 13p12+ 1.8A (a, x,) p12)) 

It is obvious that, for all sufficiently large a > a,(x,,), 
the quantity T(a,tto) < 1, and it is this inequality that deter- 
mines the region in which Eq. ( 10) is stable. 
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