
Aharonov-Bohm effect in insulators with a charge-density wave 
E. N. Bogachek, I.V. Krive, I .  0. Kulik, and A. S. ~ozhavski j  

Physicotechnical Institute ofLow Temperatures, Academy ofsciences of the Ukrainian SSR, Kharkov 
(Submitted 7 August 1989) 
Zh. Eksp. Teor. Fiz. 97,603-622 (February 1990) 

The Aharonov-Bohm (AB) effect in Peierls insulators with a charge-density wave (CDW) is 
investigated. In general the AB effect includes contributions from three mechanisms: one- 
particle, instanton, and soliton. The one-particle contribution is due to the polarization of the 
states in a filled energy band by a vector potential field and contributes to oscillations of 
thermodynamic quantities characterized by a period Q,, = hc/e. The instanton contribution is 
due to macroscopic quantum transitions between degenerate vacuum states of a CDW. The 
instanton AB effect is considered for the case of an incommensurate CDW and for a 
commensurate CDW with a commensurability index M. The period of the instanton AB effect is 
Q,, = Q,,/2. An interchain interaction leads to a fractional base period Q,, : in a ring consisting of 
Nstrongly correlated chains, the base period of the oscillations becomes Q,, /N. At finite 
temperatures in a ring consisting of a commensurate CDW there is a contribution of thermally 
activated solitons, carrying a fractional charge 2e/M, to oscillations with a period @, . 

INTRODUCTION 

The Aharonov-Bohm (AB) effect is one of the most 
thoroughly studied interference phenomena in quantum 
theory. It combines two of the most important postulates, 
which are the gauge invariance and the quantum nature of 
microparticle motion, and it demonstrates the nonlocal na- 
ture of the interaction of a charge with an electromagnetic 
field in a multiply connected region. The AB effect can be 
detected in condensed media under the conditions of size 
quantization of the charge-carrier spectrum and is manifest- 
ed by oscillations of macroscopic characteristics of multiply 
connected samples observed as a result of a change in a mag- 
netic field flux Q, created by a solenoid (Fig. 1 ). This effect 
was first investigated in metals by Kulik' who demonstrated 
that the thermodynamic and transport coefficients include a 
correction which oscillates as a function of the flux with a 
fundamental period Q,, = hc/e. Under weak localization 
conditions this oscillation period becomes equal to Q,,,/2 
(Ref. 2)." 

Until recently it has been assumed that the AB effect 
can occur only in conductors containing free carriers. In a 
recent paper by the present authors the effect was extended 
also to insulators. The new mechanism of the AB effect pro- 
posed in Ref. 5 is not related to the motion of free carriers, 
but is due to the polarization of electron states in the valence 
band by a vector potential field. 

The AB effect in insulators is due to those harmonics of 
the electron spectrum which are generated by one-particle 
tunneling between sites separated from one another by dis- 
tances which are a multiple of L ( L  is the perimeter of a 
ring). In wide-gap insulators the amplitude of such a term is 
negligible, since it is proportional to exp( - L /a) ( a  is the 
interatomic distance). In the case of narrow-gap insulators 
the number of high harmonics is large because of the strong 
anharmonicity of the spectrum and their contribution be- 
comes of the order of exp ( - LC,), where (, =. a&, /A > a ( E ,  

is the width of the valence band and 2A is the gap in the band 
spectrum). 

The AB effect in insulators can be observed in Peierls 

materials in which the coherence length (, varies from 10 h; 
for polyacetylene to several hundreds of angstroms in crys- 
tals such as TaS,, KO,, MOO,, etc.'j3' The band gap in the 
latter compounds is a component of the order parameter 
heiv, the phase e, of which describes the dynamics of a con- 
densate representing a charge-density wave (CDW).  A 
mode q, is electrically active and its gradients give rise to a 
topological CDW current 

e 
jb = - z ~ ~ ~ d ' c p ,  F,,V=--EV~, p= ( t ,  x) , ( 1 )  

which interacts in the usual (electrodynamic) manner with 
a vector potential field8 

We can therefore expect a manifestation of the AB effect also 
in carriers in a collective state such as quantum excitations in 
a CDW. The AB effect in such systems is investigated below. 

In studies of interference phenomena in Peierls-Froh- 
lich systems we have to distinguish two possibilities. An ana- 
log of conduction electrons is a system of real charged excita- 
tions in a CDW (phase solitons). Tunnel transitions 
between lattice sites forming a spectrum of sites in a filled 
valence band have an analog in the form of virtual excita- 
tions known as instantons coupling different energy-degen- 

FIG. 1. Basic geometry used in observations of the Aharonov-Bohm ef- 
fect in multiparticle systems; S is a solenoid and M ( i )  is a metal (or 
insulating) ring. 
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erate states (vacuum states) of a classical CDW. Such tun- 
neling lifts the degeneracy and in the ring geometry the 
energy of the ground state of a quantum CDW becomes an 
oscillatory function of the magnetic flux @. However, in con- 
trast to the situation considered earlier in Ref. 5, the tunnel- 
ing is now macroscopic and not one-particle. 

By definition, the phase of a CDW lies within the inter- 
val (0 ,27~) .  I t  follows from the Frohlich relationships given 
by Eq. ( 1 ) that a change in the phase by 277 is equivalent to a 
change in the charge by 2e. Therefore, the global 2 7 ~  symme- 
try imposes oscillations of the period @,/2 irrespective of the 
nature of the CDW. 

We recall that CDWs are divided into two classes: in- 
commensurate and commensurate. An incommensurate 
CDW is described by a model of a free zero-mass scalar field 
p defined in a finite interval (0,277). A commensurate CDW 
is described by the sine-Gordon equation and contains a 
potential energy which is periodic in p .  The commensurabi- 
lity of the lattice imposes an additional period 2 r / M  on the 
potential energy (here, M is the commensurability index 
which is an integer in the range M >  2- see Ref. 9 ) .  There- 
fore, on a circle (0,277) in p space there are M minima of the 
CDW potential and the vacuum-vacuum tunneling problem 
reduces to the problem of a ring with M sites and tunneling 
between the nearest neighbors. This elementary process cor- 
responds to an instanton connecting the vacuum states 

( N  is an integer) and the tunnel effect then determines the 
oscillation amplitude. Although each separate instanton 
p ( r )  carries a fractional "charge7' 

and, therefore, the corresponding magnetic flux quantum 
Qf is also fractional, the oscillation period is governed by an 
M-instanton set and is cDf = MQ, = MF,,/2, since only the 
vacuum states separated by an interval 277 are physically 
equivalent. 

I t  should be stressed particularly that since the tunnel- 
ing occurs between quantum states in an insulator ring as a 
whole, the instanton AB effect represents essentially a mani- 
festation of the macroscopic quantum coherence." 

I t  is useful to study also the relationship between this 
effect and the topological properties of low-dimensional 
models of quantum field theory. From this point of view the 
problem under investigation is similar to the problem of the 
8 vacuum (see, for example, Ref. 1 1 ) . 

The present paper is organized as follows. A microscop- 
ic approach is used in the first section to derive the effective 
Lagrangian of a Peierls insulator in the form of a ring located 
in the field of a solenoid. The second section analyzes in 
detail the incoherent reaction of states in a filled valence 
band to a vector potential field (AB effect in a narrow-gap 
insulator). The instanton AB effect is studied in the third 
section. The fourth section deals with a theory of the AB 
effect involving thermally excited topological phase solitons 
carrying a fractional charge. The fifth section is devoted to a 
theory of the AB effect in an incommensurate CDW. The 
last (sixth) section deals with the influence of a three-di- 
mensional interaction of chains on the instanton AB effect. 

1. MICROSCOPIC MODELOFA PEIERLS INSULATOR IN THE 
FORM OF A RING PLACED IN THE FIELD OF A SOLENOID 

The microscopic model of a Peierls insulator represents 
the semiclassical limit of the Hamiltonian of the electron- 
lattice system (see, for example, Ref. 9) .  The only difference 
between the Hamiltonian for a ring placed in the field of a 
solenoid and the Hamiltonian of a linear chain is the explicit 
dependence on the vector potential A (Fig. 1 ): 

where t,,, + , is the integral representing electron transport 
between the sites in the ring; a,i,,a; are the creation and 
annihilation operators for electrons at  a site n characterized 
by a spin projection S; 

x, is the coordinate of a site; N is the number of sites in a 
ring. 

The transition from Eq. ( 3 )  to the Hamiltonian of the 
continuum model is discussed in Ref. 9. In the case of a 
commensurate one-dimensional Peierls insulator this Ham- 
iltonian is ( f i  = c = 1 ) 

%'=$s+ {iv,03 (a,+ieA) +Aa, exp (-ia3rp) 

where A is the dimensionless electron-phonon interaction 
constant; N(0)  is the density of states at the Fermi level; 
PA,,, are the canonical momenta of the fields A and p ;  

MA= [AN (0) a 2 / 2 ]  -', M,= [AN (0) ~ j ~ / 2 A ' ]  -' ; 
- 
w is the frequency of phonons with the momentum 2k,; gi 

are the Pauli matrices; ,u - ( A/&, ) 1; the coordinate x 
is measured from the ring circle; x = RB (0<8<277); I), is 
an electron-hole spinor constructed from the operators a,, 
(Ref. 9 ) .  In the case of an incommensurate Peierls insulator 
the term containing ,u is missing. 

I t  is clear from Eq. ( 4 )  that the specific nature of the 
ring geometry is reflected by the presence of a vector poten- 
tial A =A, , ,  which in the case of a multiply connected space 
cannot be eliminated by the gauge transformation. 

Our task is to calculate the energy of the ground state 
(a t  T = 0)  or the free energy (at  T f 0) .  The most conven- 
ient calculation method is the representation of a generating 
functional (partition function) by a functional integral 

z = j D $ J ~ ~ + ~ D A D ~  exp ( j dz J d T z E ) ,  
0 U (5 )  

where Y E  is the Lagrangian in imaginary time r = it, de- 
rived using the Hamiltonian (4), and f i  = 1/T. 

The integral over the Grassmann variables is easily car- 
ried out and the partition function becomes 

Z = J DAD9 exp [ - j d x J  dr9 .11  ( A ,  p) ] 
0 0 
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where-according to Ref. 9- we have 

yVD,=a2a,+vpal (dx+ieA), 
1 cO2 mo2 ie 

gerf ( q ~ )  =N.[?  +' + -cp" + -(I-cas Mlp) 
2 M 2  

(8 )  
Here, 

The following comments should be made about Eqs. ( 6 ) -  
(8). Separation of the effective Lagrangian into a sum of 
contributions of each collective degree of freedom 
Ye, ( A , p )  = Ye, ( A )  + Ye,  ( p )  is possible using a pa- 
rameter such that A / E ~  < l .  This parameter allows us to ig- 
nore the dependence on the phase in the term Ye,  ( A )  in a 
commensurate Peierls insulator. The presence of a second 
small parameter Z / A  ( 1 means that A is found from a static 
extremum Ye, ( A )  and Ye, ( p )  now contains a self-con- 
sistent value A  = A,. The square of the gradient p  '' and the 
term representing the interaction of the phase with the vec- 
tor potential in Eq. (8 )  appear because of the chiral anomaly 
e f f e ~ t . ~  The special feature of the multiply connected geome- 
try is that the term (e/.rr)Ai$ cannot be eliminated by the 
gauge transformation even for A = const. For example, if we 
assume that the field A  represents a pure gauge 

we find from Eq. ( 1 ) that 

and the complete Lagrangian is 

On the other hand, we find by definition that 

i.e., the quantity A  ( x )  is a multivalued function in the multi- 
ply connected region: A ( L  # A  (0) and we have 

In case of a singly connected space we have L,,, = 0  
[ ( A ( L )  = A ( 0 )  I .  

2. INCOHERENT REACTION OF ELECTRON STATES IN A 
FILLED VALENCE BANDTO THE FIELD IN A SOLENOID 

As pointed out in the Introduction, the AB effect can 
occur in any insulator even at absolute zero. This general 
statement is easily justified on the basis of the following ele- 
mentary considerations. 

Let us assume that ~ ( k )  is the electron spectrum for the 
valence band such that ~ ( k )  = ~ ( k  + 2n-/a). This disper- 
sion law is modified by a vector potential field 
~ ( k )  + a [ k  - ( e / c ) A ] .  It should be noted that in the field of 
a solenoid (curl A  = 0 )  this is an exact substitution and not a 
semiclassical one, as in a magnetic field, and it is a direct 
consequence of the gauge invariance of the theory. The total 
energy of the filled band in a ring containing N cells is 

xexp ima ---- ' )]= em exp(2nimK [ (22n f i c L  m=-m " 
1-exp (2nim) x l-exp (2nim/N) = w o + E  wsNexp(-2ni . s ) .  

s = 1  " 0 

Here, W, is the part of the energy independent of the flux @ 
and W, are the amplitudes of the terms oscillating with @. 

It follows from Eq. ( 14) that harmonics of the spec- 
trum due to the tunneling of electrons between sites separat- 
ed by distances which are a multiple of the ring perimeter L  
oscillate with a period @, and the amplitude of the oscilla- 
tions is finite. In the case of a wide-gap insulator when the 
band gap is 2A -a, , the amplitudes W, of the oscillations in 
a macroscopic ring are small: W, cc exp ( - sL / a )  and the 
oscillation effect is practically undetectable. The situation is 
quite different in the case of narrow-gap insulators, which 
include the Peierls materials. In the case of a Peierls insula- 
tor the role ofa, is played by a, and the spectrum of the band 
states has the relativistic form 

In view of the anharmonicity of the spectrum the number of 
higher harmonics is large, of order &,/A, which gives rise to 
a strong increase in the amplitude of the oscillatory terms. 

The energy of the ground state of a Peierls insulator 
considered to lowest order in the parameter Z / A  corre- 
sponds to an extremum of Ye, ( A )  of Eq. (7) .  Routine cal- 
culations yield the expression 

where k ,  = 2an/L and the equilibrium value of the gap 
A ( @ )  is found by minimizing the energy 

Separating from Eq. ( 16) the components oscillating 
with the period @,, we obtain 
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where f,, = fiuF/A oc acF/A which is the coherence length of 
a Peierls insulator; K ,  ( x )  is the modified Bessel function of 
the second kind of order 1. The expression ( 18) is meaning- 
ful naturally if L 2 f o  when the quantum corrections are 
small and the mean-field approximation can be justified. A 
phase shift kFL, which is usually much greater than unity 
and is typical of the flux quantization effects,' is a reflection 
of the mesoscopic nature of the effect considered in its pure 
limit. 

The equilibrium gap A(@) defined on the basis of the 
self-consistency equation ( 17) is given by 

where A, = 2&,exp( - 1/A) is the order parameter of an 
infinitely long (L - ) Peierls chain; K,,(x) is a modified 
Bessel function. The nonmonotonic dependence A (@)  gives 
rise to oscillatory corrections to the various characteristics 
of a Peierls insulator. In particular, in the case of interband 
absorption of light of frequency fl> 2A the oscillatory cor- 
rection to the absorption coefficient is 

Small oscillatory corrections appear also in the energy of 
amplitude solitons and polarons in a Peierls insulator (nf is 
the two-dimensional density of chains). 

The results given in Eqs. (18)-(20) apply to a single 
chain. In the three-dimensional case if the electron spectrum 
is represented in the form 

the quantity W,,, should simply be multiplied by the num- 
ber of chains in a ring. In the case of a spectrum which can- 
not be described by Eq. (21) the oscillatory behavior is re- 
tained, but the amplitude has to be calculated separately in 
each specific case. 

We shall calculate A(@) and W,,, at T = 0. An 
allowance for the influence of temperature gives rise to ex- 
ponentially small corrections of the form exp( - A/T) < 1, 
since the values of A vary from several hundreds of degrees 
for crystalline Peierls insulators to several thousands of de- 
grees for polyacetylene and the temperature of the Peierls 
transition is Tc <A. The temperature effects, however, are 
important in the instanton AB effect because the character- 
istic energies of the phase degree of freedom are much 
smaller that A. 

3. INSTANTON AHARONOV-BOHM EFFECT IN A 
COMMENSURATE CHARGE-DENSITY WAVE 

We now investigate the phase degree of freedom. The 
free energy of a charge density wave (CDW) is given by the 
standard expression 

where 

Calculation of the functional integral of Eq. (23) re- 
duces to integration over all the paths satisfying the periodic 
boundary conditions in terms of the imaginary time 
p ( r )  = p( T + p), and additional summation over n, be- 
cause the paths differing by 2 m  are topologically inequiva- 
lent. 

The representation (23) is identical with 

where the wave function of the ground state is the direct sum 
of the wave functions describing homotopically inequivalent 
vacuum sectors 

0 

We recall that the potential of a commensurate CDW, 

is subject to (in addition to 2 ~ )  2n-/M periodicity. There- 
fore, each vacuum-vacuum path ( 10)" - lo), , , ) either 
consists of a sum of one-instanton contributions coupling the 
nearest minima of the potential (26) (on condition that the 
total change in the phase is always 277) or of one M-instanton 
path directly connecting homotopically inequivalent vacu- 
um states. In the approximation of a low-density instanton 
gas (see below) the tunnel effect in the M-instanton path is 
small compared with the one-instanton contribution and can 
be ignored. We also ignore paths in which instantons and 
antiinstantons alternate regularly ( lo),, -+ lo), ), since they 
make no contribution to the oscillatory part of the ground- 
state energy. 

We shall consider classical vacuum-vacuum paths 
pc ( r )  in imaginary time and small fluctuations of S p  above 
them, which leads to a representation of Eq. (23) in the form 
of a product 

where 

after regularization gives the partition function of a Bose gas 
of phasons. Equation (28) follows from Eq. (23) if we allow 
for small deviations above perturbative vacuum 
(p 2 = 2n-k /M = const ) and, naturally, it is independent of 
the magnetic flux. The tunnel partition function Z, is due to 
the contribution of large (instanton) fluctuations and in the 
approximation of low-density instanton gas at T = 0 it is of 
the form 

m, 

X exp [-ni (So+iO) ] esy (-i& (S , -~O)  1. (29) 
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Here, n, ( i i ,  ) is the number of instantons (antiinstantons); 
So is the action calculated for one instanton; 8 = 2a@/Qf 
(Qf = M@,/2 is a flux quantum corresponding to a frac- 
tional charge qf ); and the Kronecker delta S,, ,, _ ,, allows 
for the circumstance that only the vacuum states separated 
by an interval 277 are physically equivalent. The numerical 
coefficient (29) in the preexponential factor in Eq. ( 12) was 
calculated first in Ref. 12. 

Since the sine-Gordon model has no spatially inhomo- 
geneous instanton solutions, the minimum of the Euclidean 
action for a chain of length L$ (wo/co) ' is reached for 
spatially homogeneous  solution^.^' 

( F e  ( t )  = (4/M) arclg exp(+wOt) (30) 

(the f signs correspond to an instanton and an antiinstan- 
ton). In this case the one-instanton action So describing the 
macrotunneling of quantum states of a ring as a whole is 

where E, is the energy of a phase soliton.13 
If the Kronecker S is represented in the integral form 

2n 

and the necessary summation is carried out in Eq. (29), the 
final result is 

Here, n ,  = [ + M/2 - {@/@,)I; [...I indicates the inte- 
gral part of a number; {...I is the distance to the nearest 
integer; @, = @,/2 is a "superconducting" flux quantum; 
and the coefficients a, are a, = 1 for n # n + , a,+ = 1/2 if 
M /2 f {@/a, ) is an integer, but a,+ = 1 otherwise; 

Equation (33) is identical with the generating func- 
tional for the energy of a particle in a periodic lattice con- 
taining M sites and characterized by a dispersion law ob- 
tained in the tight-binding approximation: 

E ( k )  = E ,  cos (ak,) , (35) 

where 

This analogy is followed in a consistent manner in the Ham- 
iltonian formulation of the problem (see below). 

We can thus see that at T = 0 the energy of the ground 
state of a CDW oscillates along a flux characterized by a 
quantum @, 

where n* is the value for which the argument of the exponen- 
tial function in Eq. (33) is a maximum. We can easily show 
that n* = 0 holds if the fractional part of the ratio of the 
fluxes occurs in the cosine. 

Since the term (e/a)A+ represents the total derivative, 
it does not alter the equation of motion of a CDW, but occurs 
in the integral characteristics, particularly in the ground- 
state energy of our quantum problem. Therefore, the inter- 
action with the flux is a topological property of a CDW and 
the parameter 8 in Eq. (29) governs the properties of the 8 
vacuum, as in the gauge models used in quantum field theo- 
ry. I t  should be pointed out also that formally if M = 1 
holds, then our problem is fully equivalent to that of the 
quantum pendulum with a 8 vacuum state discussed in detail 
in the literature (see, for example, Ref. 1 1 ). The influence of 
temperature on the oscillations can be allowed for by calcu- 
lating the action for a periodic (in imaginary time) path 

cp (7+p) -cp ( T )  =0 (mod 2n).  

As at T = 0, a minimum of the action occurs for the simplest 
paths of the type 

and 2 a  periodicity is ensured by an addition: the difference 
between T-periodic instantons and antiinstantons (in field 
theory they are called colorons) is kM ( k  = 0, f 1, ... ). 
Then, calculation of the low-temperature partition function 
reduces the replacement of the one-instanton action S,, by 
the one-coloron action SB in Eq. (29).  We shall restrict our 
calculation to just the exponential factor in the tunnel shift 
of the ground-state energy. 

The sine-Gordon equation has explicit spatially homo- 
geneous coloron solutions: 

where am(x)  is the elliptic amplitude and the period f i  is 
related to the elliptic modulus x by 

where K ( x )  is a complete elliptic integral of the first kind. 
The solution (37) describes an instanton crystal with 

repulsion. Its energy (action) in one period increases on re- 
duction in the crystal period (increase in temperature). 
These qualitative discussions are sufficient and show that 
temperature suppresses instantons and their contribution to 
the energy of the 8 vacuum should decrease with tempera- 
ture. 

Using Eqs. (37) and (38), we can readily find the one- 
coloron action 

where T, = c,/L is the characteristic quantum (Casimir) 
temperature. 

The nature of the temperature dependence Sp (T) can 
be understood on the basis of the following quantitative con- 
siderations. If Tgw,, the characteristic separation between 
the instantons T- ' is considerably larger than their dimen- 
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sions w, I .  Only the "tails" of the instantons intersect and 
the interaction (repulsion) is exponentially small. In the op- 
posite limit T) w, the potential energy of instantons ( -w,) 
can be ignored completely. Since the spatial length of an 
instanton is of the order of L (homogeneous tunneling) and 
in imaginary time we havefi = T- ' , the one-coloron action 
is 

In reality the high-temperature asymptotic form of 
(41 ) is completely unrelated to the real temperature depen- 
dence of the amplitude of oscillations of a commensurate 
CDW. We have seen already that the tunneling results in an 
M-fold splitting of the ground-state level of perturbative 
vacuum with an energy scale of the order of 

Therefore, at temperatures T)AE we find that even in the 
limit Tgw, the expression for the partition function (33) 
still contains all M levels of the tunnel energy band. We can 
easily see that because of interference between the oscillation 
phases the part of the free energy dependent on the flux @ 
then becomes smaller by an additional factor - AE /T. In the 
next section we shall see that T, - AE is the true temperature 
at which the macroscopic quantum coherence is destroyed. 
However, the high-temperature limit of Eq. (41 ) is related 
directly to the real temperature dependence of oscillations of 
an incommensurate CDW (see Sec. 5).  

We conclude this section by providing a Hamiltonian 
picture of oscillations of a CDW. All the results obtained at 
T = 0 are readily interpreted in terms of the effective Schro- 
dinger equation for a q, particle. The Hamiltonian corre- 
sponding to the Lagrangian L y e ,  is 

L P e LN, 
H = - ( ? + - A )  + - -wo2( l - cosMcp) ,  (43) 

2N0 L n c  MZ 
, . 

where P, = - id /dp. 
The energy levels are found from the Schrodinger equa- 

tion 

subject to the boundary condition $(0) = $(277). Our prob- 
lem is fully analogous to the Bloch problem in which the role 
of the quasimomentum is played by the flux @ (Ref. 13). 
The wave function $(p) is quasiperiodic if we shift it by one 
period of the potential: 

$ ( c p + -  1 =exp ( i q -  + ( c p ) ,  

so that when it is enclosed in the ring the quantity q becomes 
quantized (q = m, where m is an integer). The function 
$(p) can be sought in the form 

where ~ ( p )  satisfies the Mathieu equation. 
The explicit dependence of the spectrum on the flux @ 

can be analyzed conveniently by replacing the potential in 
the original Mathieu equation with a model one. Conse- 
quently, the functionx(p) is described by 

where 

Equation (47) retains all the principal features of the origi- 
nal problem, but it can be analyzed more simply. The spec- 
trum of Eq. (44) is found by solving the transcendental 
equation 

where O<m<M - 1. 
The periodicity of the energy along the flux, with period 

@, , and a dispersion law of the form (35) but with a different 
value of E, in the tight-binding approximation (b+  co ) fol- 
lows from Eq. (48), but this is an artificial effect due to the 
assumptions made above. 

4. FRACTIONALLY CHARGED SOLITONS AND AHARONOV- 
BOHM OSCILLATIONS 

In the preceding section it is shown that temperature 
suppresses the oscillatory effects due to the macroscopic 
tunnel transitions. However, in the case of the system under 
discussion we can generally have an additional AB oscilla- 
tion mechanism associated with the contribution of excited 
free carriers to the free energy. 

Phase solitons ar charge carriers in a commensurate 
CDW. They have a low energyI4,l5 

and a fractional charge 

so that at low temperatures T g  A, they should dominate the 
oscillatory part of the free energy. Since the equilibrium den- 
sity of soliton-antisoliton pairs increases with temperature, 
we can expect an anomalous temperature dependence of the 
quantum oscillations: their amplitude should increase with 
temperature. Finally, the period of the oscillations associat- 
ed with fractionally charged solitons is of fundamental inter- 
est. In fact, in the naive approach the minimum period is 
@,. = 277/q,. = M@,/2, which is in conflict with the general 
conclusion that for M >  2, a system of integral charges (elec- 
trons) has only the fundamental period @, and its harmon- 
ics. 

Our task is thus to calculate the free energy of solitons 
and antisolitons for a commensurate CDW having ring ge- 
ometry, located in the field of an AB solenoid. In general, for 
an arbitrary ring and an arbitrary temperature Ti t  is very 
difficult to solve this problem, but at low temperatures 
TgE,  and in the case of sufficiently long rings L % d  
(d -  = w,/c, is the characteristic size of a CDW soliton) 
the necessary expressions are easily obtained. In fact, for 
T g  E, , the density of thermally excited pairs is exponential- 
ly small and solitons in a given chain can be regarded as 
noninteracting, since the average distance between them is 
much greater than their characteristic dimensions. Here we 
can use the Coleman theoremI6 on the fermion-boson equiv- 
alence according to which the Lagrangian of free solitons in 
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the sine-Gordon model is equivalent to the Dirac Lagran- 
gian of zero-spin fermions +of mass m, = E, /ci. As a result 
of "fermionization" the topological current of a CDW re- 
duces to a standard electrodynamic fermion current qf qy, + 
(see, for example, Refs. 15-17) and the Lagrangian of inter- 
est to us assumes the simple form (fi = c, = 1 ) 

In a ring the fermion wave function + should satisfy the 
physical boundary conditions. The usual requirement of pe- 
riodicity +(t,O) = +(t,L) automatically leads to oscillations 
with an anomalous period Qf. We recall however that in 
terms of the scalar field p (phase) one circuit round the ring 
corresponds to a change in the phase by 27~, which in turn is 
equivalent to the transfer of a charge 2e along a closed path. 
Therefore, a similar transfer of a fractional charge3' does 
not represent an identity transformation and should be ac- 
companied by an additional acquisition of the wave-function 
phase. 

We can correctly formulate the boundary condition for 
the wave function of fractionally charged objects by noting 
that within the interval p~ (0,2a) there are M different vacu- 
u m s t a t e s p ~  = (2n-/M)x ( x  = 0, 1, ..., M -  1) andMcor- 
responding identical types of solitons (antisolitons) 
p &, ( x )  joining neighboring vacuum states. The boundary 
condition for the fermion wave function of each soliton 
("fermionization" makes it possible to consider solitons as 
point objects, which is exceptionally convenient in specific 
calculations) is 

since only an M-fold circuit of a charge qf = 2e/M along a 
closed contour returns the system to its initial state. In calcu- 
lating the thermodynamic characteristics we have to sum 
over all M branches of the spectrum. 

Using Eq. (50), we find for each branch of the fermion 
spectrum of a ring of length L 

The density of the free energy of a gas of noninteracting 
particles and antiparticles is 

where y + is the sign of the soliton charge. 
~ h ~ s u m  in Eq. ( 52) can be calculated using the Poisson 

summation expression, so that after simple transformations 
we find that the oscillatory part of the free energy is given by 

x d y y  s i n ( 2 n k y ) [ y z +  
0 

Each of the M branches of the spectrum of fractionally 
charged solitons on a ring oscillates [as indicated by Eq. 
(53)] with an anomalous period Qf = M@, (@, = @,,/2). 
However, these oscillations cannot be observed physically 
when they are separate. Any physically observable quantity 
uses a simultaneous contribution of all the branches of the 
spectrum and as a result of interference there remains only a 
period equal to @, , as in the case of the instanton AB effect. 
In fact, in the expression for the oscillatory part of the free 
energy given by Eq. (53) we sum first over x. The result 
differs from zero only for harmonics k which are multiples of 
M and correspond exactly to oscillations with a period @, : 

We now consider the case of low temperatures when 
T<E,, which allows us to simplify the integrand in Eq. 
(53). Then, the oscillatory part of the free energy is 

IE. K,(LE./ ( ~ M ) ' + ( L T ) - ~ I ~ ~ )  psC x -  _. a s (  2nn g) . nL ' [ (nM) '+ (LT) 
11=1 

Since in a real situation we have LE, % 1, we can use an 
asymptotic expression for the modified Bessel function 
K ,  ( x ) .  We then obtain 

exp {-ME, [ TC-'+ (MT) -'I h) 
x e o s ( ~ n  g) . (56) 

[Mz+(Tc/T)2]'4 

According to Eq. (56), when temperature is increased 
the amplitude of the oscillations increases (and so does the 
density of free carriers) reaching a maximum value of the 
order of ( Tc Es ) I" exp ( - E, M /Tc ) for T% MT, . This 
value is considerably less than the amplitude of the oscilla- 
tions in the instanton AB effect described by Eqs. (33) and 
(34). However, at temperatures T 2  w, (we recall that in the 
range of validity of the above expressions we have Tc < w,) 
the main contribution to the temperature dependence of the 
oscillation amplitude is made specifically by the soliton AB 
effect. As expected, this high-temperature limit corresponds 
to an activation energy representing a complex of M phase 
solitons carrying an integral charge 2e. We must stress once 
again, that in contrast to the temperature dependence of the 
oscillation amplitude given by Eq. (56), in the case of metals 
this dependence is just the opposite: the amplitude decreases 
as a function of temperature in accordance with the law 
exp( - T/T, ),with TM = fiv,/L (Ref. 1) .  In the next sec- 
tion we shall show that this law of temperature suppression 
of the oscillations applies also to conductors with an incom- 
mensurate CDW. 

5. INSTANTON AHARONOV-BOHM EFFECT IN AN 
INCOMMENSURATE CHARGE-DENSITY WAVE 

The Lagrangian of an incommensurate CDW 
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is quadratic in the field p(x, T) and the partition function for 
the phase degree of freedom can therefore be calculated ex- 
actly. As in Sec. 3, we shall consider classical vacuum-vacu- 
um paths in imaginary time as well as small deviations from 
these paths. The partition function of such a system is fac- 
tored into a partition function of phasons independent of the 
flux (the phasons are now the Goldstone excitations) and a 
cofactor Z,  which is due to the contribution of topologically 
nontrivial fluctuations. 

The classical vacuum-vacuum paths satisfy the follow- 
ing cyclic boundary conditions 

( n  and m are integers), so that the partition function of in- 
terest to us is 

rn 

where 

The series in Eq. (59) can be summed exactly: 

Here, 9, (u,q) is a Jacobi function, v = 0 /2n-, and q, = e " . 
The free-energy correction oscillating with the flux is due to 
the contribution of large spatially homogeneous fluctuations 
which alter the phase by a multiple of 2n-, and it follows from 
Eq. (62) that this correction is 

For u )  1 (high temperatures), it follows from Eq. (63) 
that 

The expression (64) follows directly, apart from a 
preexponential factor, from Eqs. (36), (39), and (41) if 
M = 1. In fact, at high temperatures, T s w , ,  a corrugated 
relief of the potential energy of a CDW ( -w~cosMp ) be- 
comes unimportant compared with the contribution made to 
the kinetic energy and we are then dealing with a Lagrangian 
of an incommensurate CDW. We note that an exponential 
fall of the oscillation amplitude with temperature is typical 
of metals.' An important feature of conductors with a CDW 
is the appearance of a superconducting flux quantum in the 
main oscillation period. 

We can reach the limit of low temperatures in Eq. (63) 
by rewriting 9, using the imaginary Jacobi transforma- 
tion'* : 

which in our case gives the expression 

with In q = - u = - aTu,/Tcc,,. Using the asymptotic 
form for T-0, we then obtain 

It therefore follows that the low-temperature limit to 
the oscillatory free-energy correction is independent of tem- 
perature and is given by 

According to Eq. (68), the oscillations of an incorrmensu- 
rate CDW "survive" even at absolute zero. Their period is 
equal to a superconducting flux quantum @, = Q0/2 and 
the amplitude is governed by the Casimir "temperature" T, 
representing size quantization of a CDW ( a  small factor 
c,/u, & 1 reflects the inertia of a collective degree of free- 
dom, i.e., of a CDW, compared with one-electron excita- 
tion). It should be noted that in contrast to all the AB oscil- 
lation mechanisms considered above, the amplitude of the 
low-temperature oscillations of an incommensurate CDW, 
T &  T,c,,/v,, does not contain an exponentially small factor. 
This feature is closely related to the scaling symmetry of the 
Lagrangian of Eq. (57) and, as shown above, it disappears if 
we allow for pinning of the commensurability. It is well 
known that in real systems a CDW is always pinned (see, for 
example, Ref. 6 ) .  The results given in Secs. 3 and 5 apply to 
phase excitations in an isolated chain. In the next section we 
shall allow for the influence of a three-dimensional inter- 
chain interaction on the instanton AB effect. 

6. INFLUENCE OFTHE INTERCHAIN INTERACTION ON THE 
INSTANTON AHARONOV-BOHM EFFECT 

The interchain interaction Hamiltonian is (see, for ex- 
ample, Ref. 9 )  

where n is the chain number and the index A labels the near- 
est neighbors. The influence of the term (69) on the instan- 
ton AB effect is easiest to study by considering the example 
of two interacting chains with incommensurate CDWs. 
Since we are interested in the coherent reaction of a CDW to 
a solenoid field, we shall assume that the phase is spatially 
homogeneous (a, q, = 0 )  and, for simplicity, we shall write 
down L = N, = 1. The Lagrangian of such a quantum-me- 
chanical system is 

where q, ,,, are the phases of a CDW for each of the chains; 
77 = q,, - p2, 6 = q,, + p2. The Hamiltonian corresponding 
to Eq. (70) is 
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The wave function $ in the Schrodinger equation has 
independent periods equal to 277- in terms of each of the vari- 
ables p, and p,. As we have seen already, oscillations with 
the period @, are due to periodicity in 6 with period 277. 
However, it follows from the periodicity in terms o f p  ,,, that 
the shift of 6 by 2 a  involves a shift of 7 by 2a,  so that 

In the plane of the two variables (6, 7) the motion along the 
6 axis occurs in a valley and along the 7 axis it necessarily 
passes through a maximum of the interaction potential 
(curve 1 in Fig. 2).  Consequently, the amplitude of a har- 
monic with period @, must contain the factor 
exp( - 8 W", ). In the limit W- w the harmonic @, disap- 
pears from the expression for the energy. 

On the other hand, the amplitude of the harmonic @, /2 
survives in the limit W - +  w , since there is a path (curve 2 in 
Fig. 2),  

which passes completely along a valley parallel to the axis of 
the variable 6. The amplitude of this harmonic is indepen- 
dent of the intensity Wof the interchain interaction. 

It therefore follows that the role of the interchain inter- 
action reduces to suppression of the fundamental harmonic 
which has the period @, . In the limit of a strong interchain 
correlation a flux quantum splits up; the main period of the 
oscillations becomes equal to @, /2. Clearly, the amplitude 
of the @, /2 harmonic contains in the tunnel action the num- 
ber of chains, since the action is an integral of the period. In 
this case, the integration range extends from 0 to 477 and not 
to 2a, as in the case of one chain. The physical interpretation 
of this result is quite obvious: in the limit W- w the phases 
of the chains become equalized and an instanton with a dou- 
ble charge and a double mass moves in the field of the flux. 

These conclusions are readily generalized to the case of 
an arbitrary number of chains. If we have a system of N 
noninteracting chains ( W = O), we find that the total parti- 
tion function factors: 

where Z ,  is the partition function of one chain, and the final 

FIG. 2. Potential relief in the plane of the variables 5 and 7. Here, 1 
denotes the path corresponding to a harmonic with the period @, and 2 
corresponds to one with a period @,/2. 

expressions for F" simply increase by N. In  the presence of 
correlations there is only one path in the space of Nvariables 
corresponding to the period 2 a N  that can be expressed in 
terms of the combined coordinate 

which does not intersect the potential barriers formed by the 
interchain interaction. A flux quantum corresponding to 
such a path is @,/N. The amplitude of these oscillations 
contains the exponential factor exp( - NS,). Consequently, 
the amplitudes of the oscillations with the periods 
@ , / ( N  - p )  (p  = 0, 1, 2, ..., N - 1 ) contain the factors 

corresponding to passage acrossp interchain barriers, and in 
the limit W- co this amplitude vanishes. 

A real situation corresponds more closely to the case of 
correlated chains and a numerical increase in the argument 
of the tunnel exponential function by a factor of N can be 
compensated by selecting a small ring perimeter L. For ex- 
ample, in the case of parameters of the commensurate com- 
pound TaS, for L -c,/w,- lo3 A and a number of chains 
N- lo2, the argument of the tunnel exponential function is 
of order 5 (Ref. 19).  

CONCLUSIONS 

The main result of the present investigation is the de- 
monstration of the existence of a fundamentally new mecha- 
nism for AB oscillations encountered in insulators with a 
CDW, which differs from the usual AB effects discussed so 
far (for review see Refs. 20-22). The new effect is manifest- 
ed by oscillations of the thermodynamic quantities as a func- 
tion of the flux with the period hc/2e corresponding to a 
superconducting quantum and it is simply a manifestation of 
the Frohlich mechanism of superconductivity in systems 
with the CDW. Pinning of a CDW causes the AB effect to be 
absent in infinite systems, so that only systems ofdimensions 
comparable with the coherence length can exhibit this effect. 
One should mention here Ref. 23, where attention is drawn 
to the existence of the AB effect in a one-dimensional super- 
conductor which has no long-range order. 

The AB effect in systems with a CDW is due to the 
tunneling of quantum states of an insulator ring as a whole 
and is a manifestation of the macroscopic quantum coher- 
ence. Its experimental detection would confirm an impor- 
tant (from the general theoretical point of view) conclusion 
that a quantum-mechanical description can be extended to 
macroscopic nonsuperconducting systems. 

The AB effect in normal metals has been observed ex- 
perimentally so far using a nonmonotonic dependence of the 
resistance of a ring on the magnetic but there is an- 
other possibility mentioned in Ref. 1, which is based on oscil- 
lations of the magnetic susceptibility. The magnetic moment 
of a ring is 

where S is the area bounded by the ring. The part of the 
moment p which oscillates with a period has the following 
amplitude at  T = 0: 
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We shall now estimate the oscillation amplitude for a 
one-chain ring formed, for example, from TaS,. The one- 
instanton action So is governed [see Eq. ( 3  1 ) ] by the perim- 
eter L of the ring, by the phason velocity c,, and by the pha- 
son soliton energy E,. The value of E, can be found by 
investigating the nonlinear component of the conductivity of 
a CDW, which is6p7 

Here, 8 is a static electric field; 8, is the threshold field for 
the appearance of a nonlinear conductivity; 8, is the activa- 
tion field. The experimental values of TaS, are 8, = 2.2 
V/cm and x = 5. According to Refs. 19 and 24, the value of 
x determines the energy E, of the phase solitons. It follows 
from Refs. 6 and 7 that c,- lo7 cm/s and the characteristic 
length of phase inhomogeneities (soliton length) is 10,-lo4 
A. Substitution of these parameters into the expression for x 
gives the soliton energy E, - 1 K. The same estimate follows 
from an analysis of the temperature dependence of the acti- 
vation energy of the nonlinear conductivity of a CDW (Ref. 
25). Therefore, we find that the argument of the exponential 
function in Eq. (77) is So/Ci- lo4 cm ' .L. The pinning en- 
ergy of the commensurability is of order 10- 2-10- ' K. 
Consequently, in the case of rings of micron dimensions we 
havepoSc - 1O2p, (p, is the Bohr magneton). In principle, 
such moments can be determined using SQUIDS.'~ If we 
now consider a bulk sample consisting of many rings, we 
have to allow for imperfections of the atomic structure 
which in the simplest case may reduce to the appearance of a 
certain number (q)  of chains which are not closed. Then, 
Eq. (75) should be modified by replacing N with N - q. An 
estimate of post now has an additional factor of the type 
given by Eq. (75). In view of technological difficulties which 
would be encountered in the fabrication of such rings, this 
quantity is not known in advance and further theoretical and 
experimental investigations are desirable. 

It is interesting to consider briefly some of the problems 
not resolved above. The most important of these is clearly 
the influence of dissipation on the instanton AB effect. A 

fairly strong dissipation (like high temperatures) undoubt- 
edly destroys the quantum coherence and suppresses the AB 
oscillations. Under weak dissipation conditions a perturba- 
tion theory treatment of the effective interaction of instan- 
tons, induced by the dissipative nonlocal (in imaginary 
time) term in the Lagrangian of eq. ( l o ) ,  clearly just re- 
duces to the renormalization of the oscillation amplitude. 
However, if a ring is subjected to the AB effect alternating in 
time @ ( t ) ,  the Josephson oscillations caused by the flux 
q ~ a n t i z a t i o n ~ ~  can have not only the canonical period 
T, = @, /&, but also a period Tf = /& which is M times 
longer and which is due to slip of a fractionally charged 
(qf = 2 e / M )  instanton if the inequality w r 9  1 is obeyed; 
here T 1s the inelastic scattering time (Fig. 3 ) .  

The next (in importance) topic ignored above is the 
influence of impurities on the present effect. Since in the 
instanton AB effect the tunneling is macroscopic, impurities 
(in contrast to temperature or dissipation) cannot play a 
decisive role in the destruction of the quantum coherence. In 
a systematic approach they should be allowed for in the mi- 
croscopic (electron-phonon) Hamiltonian so that the effec- 
tive long-wavelength Lagrangian of the phase given by Eq. 
(8)  may contain only the correlation characteristics of the 
impurity field. This problem was solved in the case of weak 
impurity pinning for a commensurate CDW in Ref. 28, 
where it was shown that the influence of impurities is impor- 
tant only in a quantum description of a CDW. In particular, 
in the case of the CDW Lagrangian of Eq. (8)  there are 
additional terms induced by forward-scattering impurities. 
In our problem these terms simply modify the one-instanton 
action slightly. It should be noted that the impurities sup- 
pressing the order parameter reduce the energy of topologi- 
cal  soliton^^^,^^ and, therefore, should increase the oscilla- 
tion amplitude in the soliton AB effect. This anomalous 
behavior (in the one-particle AB effect the role of impurities 
is just the opposite) is explained by the fact that CDW soli- 
tons are extended nonlinear excitations of the order param- 
eter and the influence of weak impurities on their properties 
appears primarily because of renormalization of the param- 
eters of the effective phase Lagrangian. Naturally, these pre- 
liminary conclusions must be checked. 

Finally, there is a very interesting problem of the role of 
strong impurity pinning when the ground state of a CDW 
may be greatly modified (for example, a vacuum state of a 
CDW may become inhomogeneous). 

The authors are grateful to B. L. Al'tshuler and B. Z. 
Spivak for numerous valuable discussions. 

FIG. 3. Ground-state energy of a charge-density wave in the case M = 3, 
plotted as a function of the flux. In the adiabatic limit the system moves 
along the curve a, corresponding to the energy minimum. This curve de- 
scribes thermodynamic (o -0 )  oscillations with the period @,. For 
w )  l / r  and w ) S ,  instanton slip is possible and the system moves along a 
curve of constant m with a period equal to a "fractional" (representing a 
fraction of the charge 2e/M) quantum of the flux M@, (curve b) .  

"The first experimental observations of the AB oscillations with period 
hc/e were reported in Ref. 3;those with the period hc/2e were reported 
in Ref. 4. 

*' For L 5 (oo/co) ' , an important point is the inclusion of the quantum 
fluctuations of the phase, which result in modification of the semiclassi- 
cal Lagrangian of Eq. (8 ). 

"This applies naturally not to an elementary fractional charge, but to a 
fractional charge that appears because of the polarization of the vacuum 
state of integral elementary charges by a topologically nontrivial exter- 
nal field. 
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