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A scaling theory is constructed for the electrophysical properties of a percolation layer of finite 
thickness in order to investigate the transition from three-dimensional to two-dimensional 
behavior that is observed near the percolation threshold. This transition is manifest in differences 
in the percolation threshold, the critical exponents for the conductivity and dielectric 
permittivity, and the frequency dependence of the dielectric response, compared to a three- 
dimensional percolation system. Using the method of percolation renormalization-group 
transformations, we obtain the dependence of the percolation threshold of the layer on its 
thickness, and also scaling asymptotic forms for the conductivity and dielectric permittivity in the 
longitudinal and transverse directions at different frequencies. The metal-insulator system is 
investigated in detail. It is shown that the layer exhibits a sharpening of the peak in the dielectric 
permittivity at the percolation threshold compared to that of a three-dimensional system. 
Possible applications of the theory developed here are noted. 

A large number of papers"3 have been devoted to cal- 
culations of the electrophysical and optical properties of per- 
colation systems, and to the application of percolation mod- 
els to qualitative and quantitative descriptions of various 
disordered dispersive systems: composite materials, HTSC, 
metalloceramics, porous bodies, emulsions, and other colloi- 
dal systems. In these papers, the systems that were investi- 
gated were isotropic two-dimensional or three-dimensional 
systems, either infinite or having the form of L x L squares 
or L X L X L cubes. A detailed discussion of finite size effects 
in two-dimensional percolating systems can be found in 
Refs. 4, 5, 14, and 15. 

The object of our investigation is a percolating 
L X L X H layer ( H g  L )  . This layer is a useful model of dis- 
ordered composite films, in particular metalloceramic layers 
deposited on a substrate. In the system under discussion 
here, the percolation threshold exhibits a transition from 
three-dimensional to two-dimensional behavior that is 
manifest in changes in the threshold for percolation, the 
critical exponents for the conductivity and dielectric permit- 
tivity, the frequency dependences of the dielectric response, 
and other characteristics compared to a three-dimensional 
percolating system. Apparently, the first time this phenome- 
non was noted was by the authors of Ref. 16, who gave a 
qualitative explanation for it. In recent time, descriptions 
have appeared of special experimental investigations of the 
electrophysical and optical properties of composite films in 
the neighborhood of the percolation thre~hold;" '~ these in- 
vestigations have stimulated the present work. 

In this paper we use the method of percolation renor- 
malization-group  transformation^"^^^-^^ to obtain scaling 
expressions for the electrophysical characteristics of a per- 
colation layer in the neighborhood of threshold. We investi- 
gate conductor-insulator, conductor-superconductor, 
"bad" conductor-"good" conductor, and metal-dielectric 
systems. We also discuss the region of applicability of the 
theory developed here. 

1. PERCOLATION THRESHOLD AND CONDUCTIVITY OF 
CONDUCTING AND INSULATING LAYERS 

of size a. Let p be the fraction of conductor and 1 - p  the 
fraction of insulator. We will assume that the longitudinal 
size of the layer is infinite but the transverse size is finite. For 
definiteness we will consider a cubic close-packed structure 
bounded by the planes z = 0 and z = H, consisting of ran- 
domly placed conducting and nonconducting cubes (Fig. 
la) .  The specific nature of this model system does not des- 
troy the generality of the results we obtain. The system is 
anisotropic; there is no percolation threshold in the trans- 
verse direction: for any value of p there exists a chain of 
contacting conductors which join the bounding layers of the 
plane. The threshold for percolation in the longitudinal di- 
rections pc,ll depends on the thickness of the layer H: for 
H- co ,pc,I1 +pG3 wherep,, is the percolation threshold of a 
three-dimensional close-packed structure. For H = a, the 
system under study is two-dimensional andp, , ,  = p , ,  where 
p , ,  is the percolation threshold of the two-dimensional 
close-packed structure. In the case under discussion here we 
havep,,  ~ 0 . 3 1 1 7  (the percolation threshold for the prob- 
lem of sites on a cubic lattice), andp, ,  ~0 .59275  (the perco- 
lation threshold for the problem of sites on a square lat- 
tice) .2 '  

For a finite thickness a < H  < co the properties of a per- 
colation layer are determined by the relation between the 
correlation length of the three-dimensional percolating sys- 
tem 

and the thickness H  (here and in what follows, the subscript 
3 denotes three-dimensionality; v is the critical index for the 
correlation length, and v3 =: 0.9; see Ref. 2 1 ) . For {, < H the 
layer behaves like a three-dimensional system, and the indi- 
vidual characteristics of the layer are isotropic and do not 
depend on its thickness. In this case, we can use well-known 
methods for treating three-dimensional systems to calculate 
the electrophysical characteristics, e.g., for c3 Za ,  the meth- 
od of self-consistent field theory, and for c3 %a the method of 
scaling relations. In particular the conductivity of a layer o 
forp > p , ,  and c3 < H equals 

Let us first discuss a percolation system in the form of a 
layer consisting of conducting and nonconducting elements OI=O,,=O, (p-p,, 3 )  ' a .  
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FIG. 1 .  a-Percolation layer. b--Equivalent 
two-dimensional percolation system obtained as 
a result of a PRGT. 

Here a, is the specific conductivity of the conducting ele- 
ments, t  is the critical exponent of the conductivity, and t ,  
varies from 1.6 to 2.9 (Ref. 2 1 ) . 

For (, > H the layer behaves as a two-dimensional sys- 
tem, which can be treated as if it consisted of effective blocks 
of size H x H x H. The characteristics of the effective blocks 
can be calculated by the method of percolation renormaliza- 
tion-group transformations (PRGT) . '3,20-23 These trans- 
formations are implemented by passing from a percolation 
system with elements of size a to an equivalent percolation 
system with macroscopic properties consisting of effective 
elements (blocks) whose size is n times larger, including nd 
elements of the original system ( d  is the dimensionality of 
the space; in the present case d = 3 ) .  The condition that the 
PRGT method can be used is the strong inequality an <(-,. 
In the transformed system the fraction of effective conduc- 
torsp* and their specific conductivity a: e q ~ a l ~ ~ , ~ '  

We remind the reader that Eqs. (3)  and (4)  reflect the as- 
sumption that the fixed point of the PRGT is the percolation 
threshold p , ,  , and that the correlation length 6- defined in 
( 1 ) and the effective conductivity a defined in (2)  are pre- 
served under the PRGT. 

Let us apply a PRGT to the system under discussion 
and set n = H /a. In this case we will go from a percolation 
layer thickness H = na to a two dimensional mosaic formed 
by effective blocks of size H X H X H (Fig. lb)  . It properties 
are determined by the relations (3)  and (4).  Because the 
percolation threshold p , ,  of the two-dimensional mosaic is 
larger than the percolation threshold of the corresponding 
three-dimensional close-packed structure, a percolation 
breakdown in the longitudinal direction takes place when 
the fraction of effective conductorsp* becomes equal top , ,  . 
Consequently, the percolation threshold for a percolation 
layerpc,il is determined from the condition 

packed structure in Fig. 2. This function agrees qualitatively 
with the experimental data of Ref. 16, obtained in the course 
of investigating the conductivity of layers of conducting and 
nonconducting spheres, and with the data of Ref. 17 ob- 
tained in studying metalloceramic Au-Al,O, films; because 
the experimental data in these papers is presented in the 
form of plots, a quantitative comparison is not possible, and 
the best we can do is look for qualitative agreement with Eq. 
(6).  

In the neighborhood of the percolation threshold, for 
(, > H the transverse conductivity of the layer is determined 
by the effective conductivity a *  of the conducting blocks, 
taking into account their fraction p* 

o1 ( H )  =p*o,*=pc,30i ( H j a )  -'3/va. (7)  

Expression (7)  corresponds to the fractal conductivity law 
of an isotropic finite-dimensional percolation system. The 
longitudinal characteristics of the layer for 6, >Hare  deter- 
mined by the critical exponents of a two-dimensional sys- 
tem; in particular, the correlation length equals 

g,=Hlp'-p,,, 1 -'l=a ( H l a )  1 - V 2 / V ~ I  p-pE,, ,  I -Vl, (8)  

where the critical exponent is v, = 4/3 (see Ref. 4), while 
the longitudinal conductivity for p >pc,ll equals 

oI1=o1* ( P * - P ~ , ~ )  t z=o ,  ( H i a )  ( t z - t 3 ' / v 3  ( p - p , , , , )  (9)  

where the critical index is t , ~  1.3." 
As we should expect, a crossover is observed between 

the two-dimensional (Eqs. 7-9) and three-dimensional 
asymptotic forms (see Eqs. 1,2) for 6, z H, and accordingly 

p=pe,s+ ( H l a )  - l r V 3 ,  

this can be verified by direct substitution into the equations 
under discussion. 

and equals I \ 
~ c , l l = ~ e . s +  (pe,z-pe,3) ( H l a )  -'Iv3. 

It is interesting to note that although the PRGT method 
used here is justified only for sufficiently large layer thick- 
nesses (i.e., H /a  ) 1 ), the resulting expression (6)  gives the &+ 1 L 
correct limit not only for H+ W ,  for which pc,ll (H) -p,,  , o . ~  10 20 H/a 
but also for H = a, for w h i ~ h p , ~ ~  (H) = p , ,  . 

Equation (6)  for the percolation of the layer FIG. 2. Dependence of the percolation threshold in the longitudinal direc- 
is plotted as a function of layer thickness for a cubic close- tion on layer thickness. 
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The authors of the experimental studies mentioned 
above '6*'7 observed a transition from the three-dimensional 
asymptotic form (Eq. 2)  to the two-dimensional (Eq. 9)  in 
their electrical conductivity measurements. The critical ex- 
ponents t, and t, determined from their experimental data 
agree with the theoretical values: according to the data of 
Ref. 16, t, z 1.5 + 0.1, t , z  1.28 + 0.1 for layers of spheres. 

In calculating the conductivity in the immediate vicini- 
ty of the percolation threshold it is necessary to take into 
account the finite longitudinal size L of the layer. For 6, > L 
we observe the well-known fractal dependence for a two- 
dimensional sample of finite size; namely, with probability 

p"=p+ (LIB) "v2 (p'-p,,t) 

the sample is an effective conductor with specific conductiv- 
itv 

It should be noted that relations analogous to Eqs. (6 )  
and (9)  for the percolation threshold and the layer conduc- 
tivity were obtained in Ref. 16 by using another method. 
These relations differed from ours by constant factors. In 
our opinion, the PRGT method we have used here is easier to 
justify, allows us to increase the accuracy of our results, and 
most importantly allows us to investigate more complex 
problems in a unified fashion. 

2. CONDUCTOR-SUPERCONDUCTOR SYSTEM 

A problem of particular relevance to the task of predict- 
ing the electrophysical properties of ceramic high-tempera- 
ture superconducting filmsz4 is that of the conductivity of a 
percolation layer made up of superconducting and nonsu- 
perconducting particles. Let p be the fraction of supercon- 
ducting particles and 1 - p the fraction of conducting parti- 
cles with specific conductivity o,. In such a system, a 
transition is observed in the neighborhood of the percolation 
threshold from three-dimensional behavior to two-dimen- 
sional. For 6,(p) < H andp <pc,, the system is isotropic and 
the effective longitudinal conductivity exhibits the usual 
scaling dependence:' 

Here, s is the critical exponent of superconductivity s, ~ 0 . 7  
(see Ref. 21 ). For such a system, the conductivity across a 
layer of finite thickness is always infinite. 

For 6, > H this system is equivalent to a two-dimension- 
al mosaic. Let us use the PRGT method to calculate its char- 
acteristics. Applying a PRGT with a scaling change coeffi- 
cient n leads to an equivalent percolating system consisting 
of blocks of size nu X nu X nu in which the fraction of effec- 
tive superconducting blocks p* is determined by Eq. (3)  
while the effective conductivity u; of nonsuperconducting 
blocks equals', 

Expression ( 12) follows from the condition of conservation 
of effective conductivity of the system under PRGT. Apply- 
ing a PRGT with n = H / a  to the percolation layer, we ob- 
tain an equivalent two-dimensional mosaic made of super- 
conducting and nonsuperconducting blocks of size 

H X H X Hwhich becomessuperconductingin thelongitudi- 
nal direction for p =p,, ,  [see Eq. (6)  1. For c3 > H and 
p < p , , ,  , the effective longitudinal conductivity o,, is deter- 
mined by the two-dimensional critical exponent s,, where 
s, = t , ~ 1 . 3  (seeRef. 21): 

oI1 =02' ( P ~ , ~ - P ' )  -'1=u2 ( H l a )  - ' t l - d 3 ) / v 8  p . ( 13) 

A crossover between the two-dimensional [see. Eq. ( 13) ] 
and three-dimensional [see Eq. ( 1 1 ) ] asymptotic forms is 
observed for 5,zH and, correspondingly, p z p ,  - ( H  / 
a )  - l/v, 

3. THE "GOOD" CONDUCTOR-"BAD" CONDUCTOR SYSTEM 

The problems investigated above are limiting cases of 
the general problem of calculating the conductivity of a per- 
colation layer formed by "good" conductors with specific 
conductivity o, (with fraction p )  and "bad" conductors 
with specific conductivity a, (with fraction 1 - p) .  We as- 
sume y = a,/a, 4 1. As shown in Refs. 13 and 25, in a perco- 
lating system made up of conductors that differ widely in 
conductivity, in addition to the correlation length 6, there is 
still another characteristic scale: the mixed conductivity 
scale I,,, , which equals 

The mixed conductivity scale I,,, possesses the follow- 
ing property: when a PRGT is applied that increases the 
microscale by a factor of I,,, /a, the transformed system con- 
sists of blocks of sizes I,,, X I,,, x I,,, that are equivalent in 
their properties, whose effective conductivity equals the con- 
ductivity of a three-dimensional "bad" conductor-"good" 
conductor system in the neighborhood of the percolation 
threshold, Ref. 1: 

If the PRGT parameter n < (I,,, /a), then the transformed 
system consists of blocks with effective conductivities UT 
and u:, which are determined by relations (4)  and (12) 
(Ref. 13). In this case a: > of,  and the fractionp* of "good" 
conductors (blocks with conductivity 07 ) is determined by 
Eq. ( 3 ) .  

From this we see the conductivity of the percolation 
layer made up of "bad" and "good" conductors is deter- 
mined by the ratio of three scales: the correlation length c, 
[see Eq. ( 1) 1,  the mixed conductivity scale I,,, [see Eq. 
( 14) 1, and the layer thickness H. In this case it is important 
to determine whether or not the thickness of the layer H 
exceeds the scale of the mixed conductivity. 

The three-dimensional asymptotic forms apply when 
the correlation length g3 is the largest of these scales: 

~ l = ~ I , = ~ i  ( P - P ~ , ~ )  tJ=O1 (E3/a) - 1 3 r v ~  

for E3<min ( l , , ,  H )  , p>p,,, 
(16a) 

In the case I,,, < H, the properties of the percolation layer do 
not differ from the properties of an unbounded three-dimen- 
sional system and do not depend on the thickness of the layer 
H. The crossover between asymptotic forms (16a) and 
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(16b) takes place for 6, = I,,, , in the neighborhood of the 
percolation threshold, the effective conductivity is deter- 
mined by Eq. (15): 

Eq. (16c) follows from the condition that it is possible to 
apply a PRGT with transformation parameter n = I,,, /a 
when 6, > I,,, . 

For the case I,,, > H, a transition is observed from 
three-dimensional to two-dimensional behavior. For <, < H 
the scaling asymptotic forms (16a) and (16b) apply. For 
6, > H a PRGT with transformation parameter n = H /a 
converts the percolation layer to a monolayer (i.e., a two- 
dimensional mosaic) of elements of size H x H x H whose 
"good" conductors have an effective conductivity 07 [see 
Eq. (4)  ] which isp*/( 1 - p*) times smaller than the "bad" 
conductors with effective conductivity a; [see Eq. ( 12) 1. 
The ratio of the conductivities 

is a small parameter. The transverse conductivity a, of such 
a layer of conductors connected in parallel equals, Ref. 13 

The crossover between relations ( 18) and the asymptotic 
forms ( 16a) and ( 16b) takes place at 6, =. H, i.e., according- 
ly for 

and 

The longitudinal conductivity a,,  of the layer is the con- 
ductivity of a two-dimensional percolating system of "bad" 
and "good" conductors. Its properties, in analogy with the 
properties discussed above of three-dimensional systems, are 
determined by three characteristic scales: the correlation 
length 6, [see Eq. (8)  1,  a new "two-dimensional" mixed 
conductivity scale I,,, , which equals 

and the longitudinal size of the layer L. We have used the 
relation s, = t ,  in this argument. When the correlation 
length 6, is the largest of these scales, the two-dimensional 
scaling asymptotic forms Eqs. (9)  and ( 13) apply, i.e., 

oII=02~ (E21H) t2'vl for gz<min (lP,z, L ) ,  P<P=,II. (20b) 

The two-dimensional asymptotic forms (20a) and 
(20b) merge with the three-dimensional asymptotic forms 
(16a) and (16b) for {,--6,--H. For the case I,,, < L ,  
6, >I,,, , it is possible to apply a PRGT to this two-dimen- 

sional system with transformation parameter n = I,,, /H .  As 
a result of this transformation, we obtain a two-dimensional 
mosaic of elements of size I,,, XI,,, with effective conductiv- 
ity equal to the conductivity uC,, of a two-dimensional perco- 
lation system of "bad" and "good" conductors at the perco- 
lation threshold: 

Relation (20c) shows that the crossover between the 
asymptotic forms (20a) and (20b) for I,,, < L takes place 
for 6, = I,,, where both these asymptotic forms lead to the 
same value a , ,  [see Eq. (20c) 1. Equations (20c) and ( 16c) 
join smoothly at I,,, = H,  which can easily be verified by 
direct substitution. 

For I,,, > L the finiteness of the longitudinal size of the 
layer L appears directly in the percolation threshold. The 
scaling laws (20a) and (20b) are found to be valid up to 
6, z L ,  while for 6, > L, the effective longitudinal conductiv- 
ity depends both on the transverse and on the longitudinal 
layer dimensions. Applying a two-dimensional PRGT with 
transformation parameter n = L /H ,  we find that with prob- 
ability 

the sample as a whole is a "good" conductor with a longitu- 
dinal conductivity 

while with probability 1 -p** it is a "bad" conductor with 
effective longitudinal conductivity 

On the average the effective longitudinal conductivity of the 
layer at the percolation threshold equals 

0;) (H,  L )  =p"~l"+ (1-p") oZg* for gz>L, Lp,,>L. (24) 

This expression is the two-dimensional analogue of Eq. ( 18) 
for the transverse conductivity. The crossover between Eq. 
(24) and the asymptotic forms (20a) and (20b) takes place 
for 6, = L. 

Summarizing the analysis presented above, we can 
identify three characteristic regions for the parameters of the 
system under study: 

For a system with characteristically three-dimensional be- 
havior, Eq. ( 16) is valid. 

The system undergoes a transition from "three-dimen- 
sional" behavior [Eq. ( 16) ] to "two-dimensional" behavior 
[see Eq. (20) ] for g3 -,--{, -,--H. 
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FIG. 3. Schematic representation of  the asymptotic forms o f  the conduc- 
tivity of  a percolation layer in the neighborhood of  the percolation thresh- 
old: I-three-dimensional asymptotic form ( 2 )  for ul and all with 
l3 < min( l , ,  ,H) ,p  > p , ,  ; 2-three-dimensional asymptotic form ( 1 1  ) for 
ul and 011 with l3 < min ( I , ,  ,H)  p <p, ,  ; 3-two-dimensional asymptotic 
form ( 9 )  for ull with 6, < min(lp,2 ,L ) ,  I+, < H, p > p , , ;  &two-dimen- 
sional asymptotic form (13 )  for ull wlth { ,<min (I, , , ,L),  I,,, > H, 
p < p , ,  ; 5--crossover ( 1 5 )  o f  the three-dimensional asymptotic forms 
( 2 )  and( l1)  for ul and uil with Ip,, <min ( {3 ,H) ;  bcrossover ( 1 8 )  of  
the three-dimensional asymptotic forms ( 2 )  and ( 1 1 )  for ul with 
H < min(C3, I,,, ); 7-crossover (20c) of  the two-dimensional asymptotic 
forms ( 9 )  and (13) for ull with I,,, < min(12,L); 8--crossover (24 )  of  the 
two-dimensional asymptotic forms ( 9 )  and ( 13) for ull with L < min({,, 
I,,, ) ; P *  =pc,3 + ( l p ,3 /a )  - p+ =p< , ,  + ( H / a )  - I / " * (  1 -pc , ,  ). 

After the transition to the two-dimensional state, the system 
exhibits fractal properties in the longitudinal direction in the 
neighborhood of the percolation threshold. 

Figure 3  illustrates all the asymptotic forms we have 
obtained for the conductivity for a percolation layer, along 
with the crossovers between them. 

4. DIELECTRIC PROPERTIES OF A PERCOLATION LAYER 

In calculating the dielectric properties of a percolation 
layer, we will use the method of Efros and Shklovskii.' Let us 
first extend the relations obtained above to the case of con- 
ductivities with frequency-dependent complex values, i.e., 
uI ( w )  and a,(@) for the individual phases are functions of 
the frequency w. Once we determine the effective complex 
conductivity u ( w )  of the system, we then calculate the com- 
plex dielectric permittivity ~ ( w )  according to the well- 
known equation 

Let us put the specific phase conductivities u, ( w )  and 
u 2 ( w )  in a form which is inverse to Eq. ( 2 6 ) :  

where xj (w ) = [ E ~  (a )  - 1  ] / 4 ~  is the specific dielectric 
susceptibility of the jth phase, and j = 1,2. We will use the 
same relations for the effective complex conductivity of the 
system 

( ~ ( 0 )  =Re a - i o  Re X, ( 2 8 )  

wherex(w) = [ ~ ( w  ) - 1 ] / 4 ~  is the effective dielectric sus- 
ceptibility. 

The sole limitation of the theory we will develop below 
is the condition that the absolute value of the ratio of the 
phase conductivities y  = u 2 ( w ) / u I  ( w )  be sufficiently small. 
For the case y  < 1, in order to calculate the effective complex 
conductivity of a percolation system of unbounded size we 
will start with the scaling asymptotic forms presented in Ref. 
1, which we will write in a form that is convenient for further 
analysis: 

a ( 0 )  ( 0 )  (p-pe,3)f3+A3~z (0) ( ~ - p e , s ) - ' ~  
=a,  ( 0 )  (g31a)-f~1v3+A3a2 (g,la) for p>p,,,, (29 )  

for p<pc,s,  (30 )  

here A,  and B, are constants of order unity. These relations 
contain the first two terms in an expansion of u(w ,p )  in the 
small parameter y ( w )  . 

As in the case considered above, i.e., zero frequency in a 
two-phase system with complex phase conductivities, we in- 
troduce a mixed conductivity scale I,,, ( w )  equal to 

This scale corresponds to the correlation length at which all 
the terms in the right sides of the scaling Eqs. ( 2 9 )  and ( 3 0 )  
are of order unity, i.e., for 6 ,  = I,,, ( w )  a crossover occurs 
between the asymptotic forms ( 2 9 )  and (30 ) .  In this case, in 
the vicinity of the percolation threshold where the correla- 
tion length 6 ,  exceeds the mixed conductivity scale I,,, ( w ) ,  
the effective complex conductivity uC,, ( w )  equals, in order 
of magnitude,' 

a,,, ( 0 )  = [a i  ( 0 ) ]  8 3 f ( s 3 + f 5 )  [ a  z ( ) ] t 3 1 ( 8 ~ + t 3 ) .  ( 3 2 )  

Under a PRGT, the effective phase conductivities in the 
transformed system are determined by the relations 

at* ( 0 )  =ai ( 0 )  n-'Iv, a,' ( 0 )  =a, ( 0 )  ndV, ( 3 3 )  

which follow from the condition of invariance of the effec- 
tive conductivity of the system, i.e., Eqs. ( 2 9 )  and (30 ) ,  
under a PRGT. Relations ( 3 2 )  and ( 3 3 )  are extensions of 
Eqs. ( 15 ), ( 4 )  and ( 1 2 )  to nonzero frequency. If the scale of 
the PRGT is chosen to equal the mixed conductivity scale 
and if we set n = I, ( w ) / a ,  then the effective phase conduc- 
tivities in the transformed system are found to be of the same 
order of magnitude. This implies that at scales larger than 
the mixed conductivity scale the system under discussion 
ceases to be strongly disordered. Consequently, if the scale of 
mixed conductivity is smaller than the thickness of the per- 
colation layer [ I , , ,  (w) < H ] then the effective characteris- 
tics of the layer do not differ from the characteristics of a 
three-dimensional percolation system of unbounded size 
and are determined by Eqs. ( 2 9 ) ,  ( 3 0 )  and (32 ) .  In the 
opposite case [ H  < I,,, ( w )  1, the three-dimensional asymp- 
totic forms ( 2 9 )  and ( 3 0 )  are obtained only for 6 ,  < H. 

For 6, > H, by applying a PRGT with transformation 
parameter n = H /a  we obtain an equivalent two-dimension- 
al percolation system with effective phase conductivities 
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a:(,) and uf(w) [see Eq. (33)l.  The condition 
I,,, (w)  > H requires, in addition, the condition 

In this case, the effective transverse complex conductivity 
a, (w)  of the layer is determined by Eq. ( 18), in which the 
complex phase conductivities a, (w), o;(w), a: (w), and 
a: (a) appear. The effective longitudinal complex conduc- 
tivity of the layer a,, (w) is determined by two-dimensional 
asymptotic forms analogous to (29), i.e., 

o,, ( 0 )  =o; ( 0 )  ( p ' - p c , z )  t Z + A 2 0 z *  ( 0 )  ( p ' - p , 2 )  -sz 

[ 0 2 ' ( 0 ) 1 2  s t r / v s  
E 2  for p b < p , z .  

0,' ( 0 )  

The two-dimensional mixed conductivity scale I,,, (w), 
which [by analogy with Eq. ( 19) 1 equals 

determines the longitudinal correlation length 6, = I,,, at 
which all terms on the right sides of (34a) and (34b) are of 
the same order, corresponding to crossover of these asymp- 
totic forms. In the immediate vicinity of the percolation 
threshold, for 6, > I,,, , the effective longitudinal complex 
conductivity uC,, (w) equals 

Equation (34c) is valid whenever the longitudinal scale of 
mixed conductivity I,,, (w) is smaller than the longitudinal 
size of the layer L. In the opposite case, i.e., I,,, (w) > L, the 
average longitudinal conductivity for 6, < L is determined 
by the scaling relations (34a) and (34b), while for 4, > L it is 
determined by Eq. (24) in which the complex phase conduc- 
tivities a, ( w )  and u,(w) appear. 

Equations (29), (30), (32) and (34) imply analogous 
relations for the complex dielectric susceptibility 
~ ( w )  = - ia(w)/w and the complex dielectric permittivity 
E ( W )  [see Eq. (26)l.  

5. THE METAL-DIELECTRIC SYSTEM 

Composite films, one of whose components is metal and 
the other dielectric (e.g., ceramics or polymers), are impor- 
tant objects for practical application of the theory presented 
here. The real conditions for synthesis of metalloceramics 
and metal-filled polymers lead to random distributions of 
metal and dielectric particles. Therefore, the percolation 
model for such systems finds very wide application and ex- 
perimental confirmation, Refs. 6, 9, and 17. 

For the complex metal and dielectric conductivities, we 
use the following standard expressions: 

Here a: (w) and a: ((w) are the specific conductivities of the 
metal and dielectric at zero frequency, is the dielectric 
permittivity of the dielectric at zero frequency, and T, is the 
relaxation time in the metal. Equation (36) is the conse- 
quence of the Drude model for frequencies that are not too 
high, i.e., w 4 y; I .  For these frequencies, the condition that 
the absolute value of the ratio u2(w)/a, (w) be small, which 
ensures the validity of the general expressions obtained in 
the previous section, is certainly fulfilled. The features spe- 
cific to a metal-dielectric system include the fact that, in 
contrast to a dielectric in metal, the dielectric susceptibility 
is negative and sgn(1m a,) = - sgn(1m a,). 

It does not take much work to obtain general expres- 
sions for the conductivity and dielectric permittivity of a 
percolation layer by substituting Eqs. (36) and (37) into 
Eqs. (29)-(34). However, the most interesting results are 
obtained for two regions of parameters-the low frequency 
region (w44ra:/~;) and the high frequency region 
(4ra:/~: <w 4.r; '), to which there correspond two char- 
acteristic mixed conductivity scales: 

Extremely low frequencies 

In the frequency region w~~TD:/E:, the real part of 
the effective conductivity of a percolation layer does not de- 
pend on frequency and can be calculated approximately 
from the relations obtained in Section 3 for a, = u: and 
a2 = a:. The effective dielectric permittivity of the layer EO 

is expressed through the imaginary part of the effective com- 
plex permittivity a ( ~ ) .  In this case, the leading asymptotic 
order is determined by the relation between the mixed con- 
ductivity scale I;,,, the correlation length {,(p), and the 
thickness of the layer H. For I;,, < H the three-dimensional 
asymptotic forms are then valid, and Eqs. (29), (30), and 
(32) lead to the scaling equations obtained previously in 
Ref. 1 for the real part of the effective dielectric permittivity 
of a percolation metal-dielectric system of unbounded size: 

f3r ~ 3 < ~ p , 0 , ,  1P ,3<HI  p < p D , 3 ;  

E I O = E , 1 0 = E , , 3 ~ = E d 0  (omO/odO) s 3 / ( s 3 + t 3 )  = edO ( l p O / a )  S3/v3 

( 3 9 ~ )  
for ~ ~ > l l ~ ,  1i3<~. 

The second term in Eq. (39a) becomes important for 
sufficiently large departures from the percolation threshold, 
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where the correlation length is commensurate (or smaller) 
with the metallization scale 

For t3 > I," the dielectric susceptibility becomes negative 
under conditions for which a finite cluster of the metallic 
phase exists. The asymptotic forms (39a) and (39c) attest to 
the extremal character of the dielectric permittivity in the 
neighborhood of the percolation transition point. The char- 
acteristic form of the function E ( W )  is shown in Fig. 4. The 
curve of dielectric permittivity is symmetric about the extre- 
mum because the corresponding critical exponents up to and 
beyond the percolation threshold are the same. The maxi- 
mum is determined by Eq. (39c). 

The transition to two-dimensional behavior is observed 
for layers of thickness H <  I:,, . In this case, Eqs. (39a) and 
(39b) remain valid only for f, < H, while for 6, > H the fol- 
lowing two-dimensional asymptotic forms are obtained 
from Eqs. ( 18) and (34) 

(42a 
for P z  P*>PC,~; 

(42b) 
for Ez<lp,z, P'<P~,z; 

for EZ>~P,Z. 

Here we have introduced the longitudinal mixed conductiv- 
ity scale 

which determines the upper boundary (with respect to 6,) of 
the scaling asymptotic forms (42a) and (42b). Relations 
(41) and(42) show that in composite films an increase oc- 
curs in the anisotropy of the dielectric permittivity with de- 
creasing thickness H. At the percolation threshold, the max- 
imum of the dielectric permittivity in the transverse 
direction smooths out, while in the longitudinal direction it 

Rer k 

FIG. 4.  Schematic representation of the asymptotic forms of the real part 
of the dielectric permittivity of a metal-dielectric percolation layer in the 
neighborhood of the percolation threshold: I-three-dimensional asymp- 
totic form ( 3 9 )  for E, and E~~ with l3 < min ( I , ,  ( w ) , H ) ;  2-two-dimen- 
sional asymptotic form ( 4 2 )  for E~~ with 6, <min [ I p , ,  ( w ) , L  1, I,,, ( w )  
> H; 3--crossover of the three-dimensional asymptotic forms ( 3 9 )  for E, 

and E~~ with I,,, ( 0 )  < H; 4-crossover of the three-dimensional asympto- 
tic forms ( 3 9 )  for E, with I,,, ( w )  > H; J-crossover of the two-dimen- 
sional asymptotic forms ( 4 2 )  for ell with I,,, (o) > H,  I , ,  ( o )  < L. For 
w < ~ P u : ,  E: (0 )  = I: , ,  ( 3 8 a ) ,  = E : , ~ ,  ( 4 2 b ) ,  E , ,  = E:,, ( 4 1 ) .  For 
w > ~ P ~ / E : ,  I,,, ( w )  = I ; ,  ( 3 8 b ) , ~ , , ~ ~  ( 5 3 ) , ~ , ,  = E ; ,  ( 4 8 ) .  Here, 
P +  + ( H / a ) - 1 " ' 3 ( 1  - p , , ) ,  p-  = p , ,  - ( H / a )  " " p , , ,  p ,  
=p, , ,  + ( / , " / a )  - I"". 

vicinity of the percolation threshold p , , ,  changes from the 
three-dimensional value s, to the two-dimensional value t,. 

When the difference in the conductivities of the metal 
and dielectric is large enough that the longitudinal mixed 
conductivity scale I:,, exceeds the longitudinal size of the 
layer L, the scaling asymptotic forms (42a) and (42c) are 
limited by the conditions f 2  < L, while for {, > L the longitu- 
dinal dielectric permittivity attains its highest value E;, 
which equals 

From this it follows that the longitudinal dielectric permit- 
tivity of a composite film can exceed the transverse permit- 
tivity at the percolation threshold by a factor of (L /H)'2'v~.  
The characteristic form of the dielectric permittivity of a 
composite layer as a function of concentration of the metal- 
lic phase for various parameters is shown in Fig. 4. 

- 
grows sharper in comparison with a three-dimensional sys- 
tem of unbounded size: 

Frequency dependence of the conductivity and dielectric 
O -a,/", permittivity (for 4nuO,/~O, g w g  T;' ) 

- (+) 1.  E C , ~  For w<~T(T:/E: Eqs. (29) contain the principal 
(44) asymptotic forms presented above for the conductivity Re 

U ( W )  that apply in the region of three-dimensional behavior 
of the percolation layer, i.e., for f 3  < min ( I ; ,  , H) : 

E c . 3  

Apparently, previous investigators have not noticed this Re oL ( a )  =Re oil ( a )  =om0 (p-p,, 3 )  t3=o,0 ( g 3 / a )  - t 31 '3  

property. 
The critical exponent of the longitudinal dielectric per- 

mittivity for a layer of thickness H < I:,, in the immediate for P>Pc. 3, (46a) 
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for p<p,, 3. (46b) 

The second term in (46b) is important only for sufficiently 
large departures from the percolation threshold when 
c3 < (1 ,")'/I:. The corresponding asymptotic forms for the 
dielectric permittivity Re U(W)  do not differ from the 
asymptotic form (39) obtained for extremely low frequen- 
cies (they differ only ion the boundaries of their regions of 
applicability). The merging of these asymptotic forms takes 
place for 6, = I l, [Eq. (38b) 1. If the mixed conductivity 
scale I;, does not exceed the layer width H, then the cross- 
over to three-dimensional asymptotic behavior may also oc- 
cur for rather thick layers, independent ofH. The conductiv- 
ity and dielectric permittivity at the percolation threshold 
are power-law functions of frequency: 

a t,i(s,+t,) a ots!(sr+ta) Re 0, (o)  =Re oil (o )  =0,Y3=om (oed0/4nom ) 

for g3>1:3, C,~<H, (47) 

for f3>l;s7 G < H .  (48) 

As w decreases to its limiting value 4n-u:/&:, the quantity Re 
<,, (w) decreases with an exponent t3/(s3 + t,) to its mini- 
mum value ( 15), while Re &:, (a) grows with an exponent 
- s3/(s3 + t3) to its maximum value (39c). 

A transition to two-dimensional behavior is observed 
for layers of thickness H < I ;, . In this case, Eqs. (46a), 
(46b), (39a), and (39b) remain valid only for 5, < H, while 
for <, > H the following asymptotic forms are obtained from 
Eqs. (18) and (34): 

Re o,, (o )  =B2 
(4n) 'omo 

for g~<min (l&, L )  , p c p  ,,,,. 

Here we have introduced a new [compared to (43) ] longitu- 
dinal mixed conductivity scale 

When the correlation length c2 becomes equal to this scale, 
there occurs a crossover of the asymptotic forms (50a) and 
(50b). In this case, directly at the percolation threshold, for 
&>I;,, < L ,  I;, >H ,  we have 

These Eqs. (49)-(53) demonstrate the anisotropy of 
the dielectric properties of a metal-dielectric layer of thick- 
ness H >  I ;, . In other words, the percolation layer is aniso- 
tropic at frequencies 

and the lower the frequency the larger the anisotropy. In this 
case, the peak in the dielectric permittivity as a function of 
the concentration of the metallic phase grows sharper com- 
pared to the three-dimensional system (Fig. 4). The expo- 
nent in the frequency dependence of the conductivity and 
dielectric permittivity at the percolation threshold also var- 
ies. A maximum in the longitudinal permittivity &TI, is ob- 
served at the percolation threshold of the layer. The follow- 
ing relations hold: 

6. POSSIBLE APPLICATIONS OF THE THEORY 

Let us pause briefly to discuss certain possible applica- 
tions of the theory presented here. 

In the first place, there is the problem of calculating the 
electrophysical properties of dispersive layers with pairs of 
phase complex conductivities other than those of the metal- 
dielectric system discussed above. Current systems under 
study are ion-exchange membranes, porous electrodes par- 
tially saturated with electrolyte, current-carrying wires, 
diaphragms, emulsion and suspension films, and ceramic 
HTSC films deposited on substrates. 

Second, the theory investigated here is, in fact, also a 
theory of viscoelasticity of composite films which, as is 
known from Refs. 26 and 27, can be formulated in the lan- 
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guage of complex elastic moduli. In this case, the problem of 
determining the effective complex elastic modulus of a two- 
phase system is mathematically equivalent to the problem 
investigated here of finding the effective conductivity. The 
analogue of the conductivity is the elastic modulus while the 
analog of the dielectric permittivity is the viscosity. 

A third problem of current interest is the investigation 
of the propagation of elastic and electromagnetic waves in 
percolation layers of finite thickness. Similar problems for 
two-dimensional and three-dimensional systems are dis- 
cussed in Refs. 15 and 26-28. 

A fourth problem, which is very current from the point 
of view of practical applications, is the investigation of sys- 
tems consisting of percolation layers of finite thickness de- 
posited on three-dimensional substrates with definite dielec- 
tric properties. The dielectric properties of a 
two-dimensional conductor-dielectric percolation system 
on a dielectric substrate were discussed in Ref. 6. 
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