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The statistics of the one-electron energy levels in a finite, closed, disordered system near the 
Anderson transition is considered. The fluctuations ( [6N(E) 1 2, of the number of levels N(E) 
are studied within an energy band of width E, as the realization of the random potential is varied. 
Within the framework of the self-consistent localization theory an interpolation scheme is 
constructed which describes the fluctuations of the number of energy levels over the entire range 
of existence of the system, from the weakly-ordered metal to the Anderson insulator. At the 
metal-insulator transition, the quantity ( [SN(E) 1 ') is proportional to the average number of 
levels in the interval (N(E) ), similar to the case of a deep insulating state. The proportionality 
coefficient is of the order of 1/2. The results agree well with the qualitative arguments based on 
the scaling localization theory. The general description of the fluctuations in systems ranging 
from good metals to insulators agrees satisfactorily with the numerical model calculations. 

1. INTRODUCTION 

In recent years, great attention has been devoted to the 
study of statistical fluctuations of physical quantities in fi- 
nite disordered systems (mesoscopy ) .' One of the important 
problems considered in the present work is the fluctuation of 
the number of energy levels within an energy band E as the 
realization of the random potential varies.'~~ This problem is 
closely related to the statistical mesoscopic conductivity 
fluctuations, which have recently stimulated much interest.' 

The fluctuation of the number of energy levels within a 
band of given width was first considered by D y ~ o n . ~  In the 
work Al'tshuler and Shklovskl,' this problem was solved in 
the case ofa weakly disordered metal. Later on, Al'tshuler et 
u I . ~  gave a qualitative analysis of the boundaries of the An- 
derson metal-insulator transition. This analysis was based 
on the simplest consideration of the ideas of the elementary 
scaling localization t h e ~ r y . ~  As a result, the ordering param- 
eters were obtained, but a number of questions remained 
unanswered such as e.g., the role of the frequency (and pos- 
sibly momentum) dependence of the diffusion coefficient 
near the mobility threshold. For an arbitrary disorder, Al't- 
shuler et carried out direct numerical modeling which 
made possible a qualitative study of the statistics of the levels 
over the entire range from "good" metals to Anderson insu- 
lators. However, this analysis was possible only for very 
small systems, which in fact prevented a complete analysis of 
the transition to the ultimate insulator case. 

In this work we demonstrate that, based on the self- 
consistent localization it is possible to develop a 
complete microscopic treatment of this problem and to build 
a consistent picture of the fluctuations in the entire region of 
metallic behavior of the system, up to the Anderson insula- 
tor (with a rather large localization radius). It is thus possi- 
ble to analyze the role of the frequency dependence of the 
diffusion coefficient and to refine to a certain extent the re- 
sults of Al'tshuler et near the metal-insulator transition. 
These results are also in qualitative agreement with Al't- 
shuler's numerical analy~is .~ 

2.THE MICROSCOPIC MODEL 

The analysis of the level fluctuations can be performed 
by using the standard diagram technique for impurities 6. 
For this purpose, one should find the density-of-states corre- 
lator Y,  for various energies E, and E ~ :  

where G f (rr') is the retarded Green function of the electron 
with energy E for the given realization of the impurity poten- 
tial, Sis the degree of degeneracy of the electronic states, Vis 
the volume of the system and the angular brackets represent 
averaging over the impurity configurations. 

The Green's correlator in equation (1)  can easily be 
expressed in terms of the two-particle Green's function. The 
most significant part of it is determined by the diagrams 
shown in Fig. 1, which illustrates two equivalent ways of 
drawing the diagram that determines the correlator of the 
local densities of states. The shaded blocks and the wavy 
lines represent the diffusion propagator. A similar contribu- 
tion is given by the diagram differing in the direction of the 
electron lines of one of the loops (the Cooperon contribu- 
tion). In the final, the following expression is obtained for 
K(E,,E~)': 

where Do is the Drude diffusion coefficient of the electron, 
and y is the broadening of the electronic levels due, e.g., to 
inelastic scattering processes. For an isolated sample in the 
shape of a parallellipiped of dimensions L, ,L .,L, the mo- 
mentum quantization condition is2 

In order to evaluate the correlator-of interest in the vi- 
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FIG. 1. The diagram that determines the local density-of-states correlator 
K ( E , , E ~ ) .  

cinity of the mobility threshold, in the spirit of the self-con- 
sistent localization theory6*' one can replace the diffusion 
coefficient Do in Eq. (2) by the generalized diffusion coeffi- 
cient D, (a) determined from the following self-consistency 
equation 

where ko is the cutoff momentum described below. 
The average number of levels in the band with width E 

centered at point E on the energy scale can be expressed in 
terms of the density of states as follows: 

e + E / Z  

N ( E ) = V  I de 'v(e t ) .  ( 5 )  
e - E / Z  

Thus, the mean square fluctuation of the number of levels is: 

In the self-consistency equation (2),  one should take 
into account the inelastic damping y. It enters this equation 
in the combination w + iy. With this contribution accounted 
for, the generalized diffusion coefficient ( u  ) is: 

Here, A = ~ ( E ) / T E ,  where y ( ~ )  = rrpU 'v(E) is the "Born" 
collision frequency of electron with impurities (the impurity 
being pointlike),' p is the mixture concentration, U is its 
potential, and x, = kokF is the cutoff parameter, where k, 
and k, are the momentum cutoff and the Fermi momentum, 
respectively. 

The diffusion approximation is valid for momenta of 
order 1 - ' , where I is the mean free path. In the metallic 
region, where I - '  9 k F  for the momentum cutoff one 
chooses k, = I - ' = ?rAkF. In the insulator region, I - ' ) k,, 
and for the momentum cutoff one chooses ko on the order of 
kF. The transition to the insulating state occurs for a = 0, 
i.e., for 1 = A, = (377) - ' I 2 .  Therefore, from the condition 
of continuity of the momentum cutoff at the transition point, 
one obtains 

dition of continuity of Eqs. ( 7 )  for the absolute value of the 
diffusion coefficient. With these matching conditions we 
have 

O==E la1 (3/2nh)-3. ( 9 )  

The density-of-states correlator K ( E ~ , E ~ )  is symmetric 
with respect to the variables E, and E,. Therefore, it is suffi- 
cient to consider only the case E ~ ) E ~ .  Then, instead of (2),  
one obtains: 

After substituting the new variables w = E, - E, and 
w = E + E/2  - (Fig. 2)  in Eq. (6), one obtains 

Since we are considering a closed sample, the sum over 
the momentum in equation ( 10) contains a term with q = 0 
(see Ref. 3). This term should be distinguished since for 
E,y 4 D, /L the contribution of this term dominates. Here L 
is the dimension of the sample (in the following we will con- 
sider a cubic sample with side L ) .  The contribution of this 
term in the fluctuation of the number of levels does not de- 
pend on the behavior of the diffusion coefficient and is equal 
to2 

If the inelastic damping y is much smaller than the average 
distance between the levels in the band 6 = E /  
(N(E))  - l / v ( ~ ) L  3 -~ / (LkF)3 ,  then the meaning of the 
width of the band is determined by S. In this case 

< [6N ( E ) ]  '>,=2 (S2 /n2) ln (N(E)  ). (13) 

Here (N(E)  ) is the average number of levels in the band. A 
description of the fluctuations of the number of levels ( 13) 
was given by Dyson.4 In the following, the contribution 
( [SN(E) ] '), will be called Dyson contribution. 

The remaining terms in the sum over momentum can be 
included by replacing the summation by integration. The 
upper limit must be limited by the momentum cutoff k,, and 
the lower limit will be on the order L - ' However, if the 
contribution of the terms with q #O ( ( [SN(E) ] '), ) is much 
larger than that of the Dyson term, then the difference 
between zero and the lower limit of integration over q can be 
neglected. Then 

The characteristic frequency w, is chosen from the con- FIG. 2. The new integration variables. 
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In the energy range where ( [ S N ( E )  ] 2 ) , $  ( [ S N ( E )  ]'), the 
fluctuations will exhibit Dyson behavior. 

3. MAIN RESULTS AND DISCUSSION 

Let us consider a band centered at the Fermi level 
( E  = E~ ). Let us define A = I E  - E ,  1, the energy distance 
between the Fermi level and the mobility threshold E,  of the 
conductivity band and consider the vicinity of the metal- 
insulator transition, e.g., the case when A <&. 

We are interested in bands with a large number of levels 
[ ( N ( E )  ) $ 1  ] i.e. bands whose width is much larger than the 
average distance between the levels in the band: 

EBG=EI<N ( E )  > - E / ( L ~ ~ ) ~ .  

If the band width satisfies E<A, then the frequency 
dependence of the diffusion coefficient for various pairs of 
levels in the band varies only slightly, and the dependence on 
Win the diffusion coefficient in Eq. ( 14) can be neglected. 

For E$ A the frequency dependence of the diffusion 
coefficient in Eq. ( 14) depends critically on w and the ener- 
gy dependence must be taken into account. In this case, the 
magnitude of the fluctuations is not much different from 
their magnitude at the transition point. For this reason, we 
consider directly the transition point. Using Eqs. ( 7 )  and 
( 14),  we obtain: 

By comparing with the term ( [ S N ( E )  1 2 ) , ,  we see that the 
region of Dyson behavior is absent. Finally, for the transi- 
tion point we obtain : 

The fluctuation behavior for y< E< (YE')  ' I 3  is deter- 
mined by the Gotze frequency dependence9 for the general- 
ized diffusion coefficient [D ,  ( w  ) a ]. This result is cor- 
rect within the framework of the self-consistent localization 
t h e ~ r y . ~  

For E> ( y ~ ~ ) " ~  the magnitude of the fluctuations is 
determined by the total contribution of pairs of levels with 
metallic [ D E ( o )  = const] and insulating [D ,  ( o )  a - iw] 
behavior of the diffusion coefficient, i.e., by the frequencies 
smaller than the characteristic frequency. This result is to a 
great extent determined by the method chosen to assure the 

continuity of expression ( 7 )  for the diffusion coefficient 
from various frequency regions, and by the choice of the 
characteristic frequency (9). Therefore, particular care 
should be exercised in the numerical evaluation of expres- 
sion ( [ S N ( E )  I 2 ) / ( N ( E ) )  ~ 0 . 3 8 s  for E$  YE^) 

In the case y  < 6  the smearing of the band width is deter- 
mined by the average distance between the levels in the band: 

Thus, for the fluctuations in the transition point, we obtain 

< [GN ( E )  1 2 >  S/2, EeeILk,, 
<N ( E )  > ={ 0.38S, E>e/LkF. 

Let us consider now the vicinity of the transition point. 
We introduce the correlation length f - ( & / A )  k  , ' ,  which 
in the insulator region has the meaning of localization radi- 
us. In the metallic region 6 determines the scale on which 
Ohm's law for the conductivity is valid1' and hence the va- 
lidity of the Dyson description of energy level repul~ion.~ 

The characteristic frequency w, for the bands with 
E< A changes little for different pairs of levels, and is deter- 
mined by the average dispersion of the levels in a region of 
the sample with dimension - 6 [ w ,  - A 3 / ~ 2 -  l / y ( ~ ) f  3 ] .  

Therefore, for y )  A 3 / ~ 2  any further increase of 6 influences 
neither the behavior of the diffusion coefficient 
[ D ,  ( a )  a ( - i ~ ) " ~  depends little on 61 nor that of the 
fluctuations. The fluctuations have the same behavior as at 
the transition point. For y  < S - & / ( L k ,  ) 3 ,  the average dis- 
tance between the levels S determines the spreading of the 
band, i.e., it plays the role of y, and the fluctuations [for 
A<&/Lk,, i.e., for { $ L ]  behave in the same way as at the 
transition point. 

Substituting the expressions for the diffusion coefficient 
from Eq. ( 7 )  into Eq. ( 14), and comparing with the Dyson 
term, we find the fluctuation behavior in the vicinity of the 
transition point. 

A. Fluctuation behavior for y < ~ / ( L k , ) ~ - t i  

In this case, the role of y  is played by the distances be- 
tween the levels in the band. This case corresponds to the 
low-temperature and small-sample limit. In fact, at low tem- 
peratures, the main contribution to damping is due to elec- 
tron-electron scattering processes. Therefore, we have 
y -  T 2 / & ,  and in order to fulfill the condition y  < & / ( L k ,  ) 2  

even at temperatures of the order of l o p 2  K, samples of 
dimensions smaller than cm are needed. However, 
consideration of this case is necessary for the description of 
level fluctuations in the limit T = 0  and for comparison with 
the numerical modeling results given in Reference 3. 

I .  Fluctuations in the metallic region, L>g (Fig. 3, curve 
2 ) .  For E < A ( g ) / ( L k , ) ' - D ( f ) / L 2 = E c  the Dyson be- 
havior of fluctuations is valid: ( [ S N ( E )  ] ') 
= 2 ( s / ~ ) ~ l n ( N ( E ) ) .  Here, E, = D ( f ) / L  ' is the energy 

necessary for the electron to diffuse through the entire sam- 
ple, and D ( f )  = A (6 )  (Do/&)  is the metallic behavior of the 
diffusion coefficient for small frequencies ( w  < w, ). 

For E, - A / ( L k , ) 2 < E < A 3 / ~ 2 -  l / v ( & ) C 3  the fluctu- 
ations increase and become equal to 
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- . . -  - --- 
( N ( E )  > (3n)"' A'" ' 

The fluctuations increase2s3 because for E> Ec in the time - E -  ' , the electron manages to traverse only a small por- 
tion of the sample of the order of - [ D ( f ) / E ]  ' I2 .  Separate 
cubes of this size have practically independent systems of 
levels and their fluctuations add together. 

For l / v ( & ) f  - A3/&' < E & A we have: 

The change in magnitude of the fluctuations is due to the fact 
that if for E< A3/&' - wC the diffusion coefficient has metal- 
lic behavior [ D ( w )  = const] over the entire band, then for 
E )  A3/&' - a, the frequency region where the diffusion co- 
efficient has metallic behavior is bounded above by the char- 
acteristic frequency m,. This frequency region determines 
the result ( 19) .  Numerically, expression ( 19) depends to a 
great extent on how the solutions for the diffusion coefficient 
from various frequency regions ( 7 )  are joined and on the 
choice of the characteristic frequency (9) .  However, equa- 
tions ( 18) and ( 19) coincide completely with those obtained 
in Ref. 3 based on the scaling theory of localization. This 
confirms the successful choice of the method for joining the 
solutions for the diffusion coefficient from various frequency 
regions in the metallic case. 

For E > A ,  we are practically at the transition point 
( 1 7 ) ,  so we have 

This result, as already mentioned, also results from the re- 
gion of frequencies lower than the characteristic frequency. 
However, unlike the previous case ( 19),  here the character- 
istic frequencies w, differ strongly for different positions of 
the lower level, i.e., for different w, and the main contribu- 
tion to fluctuations comes from both the region with metallic 
behavior [ D ,  ( a )  = const] and the region with insulator be- 
havior [D ,  ( w )  a - i w ] .  

2. Fluctuations in the metallic region, L  - f  (Fig. 3, curve 

3). With increasing disorder, the correlation length f  in the 
metallic region increases, and A ( f )  decreases. For L -6, we 
obtain A -&/Lk,  and A / ( L k F  ) 2  - A3/&' - & / ( L k ,  ) 3 .  

Thus, the region of validity of the Dyson behavior of the 
form ( 18) vanishes. We obtain 

3. Fluctuations in the metallic region, L,% f  (Fig. 3, curve 
6). For E< A 3 / ~ 2  - l / v ( ~ ) f  3 ,  the self-consistent localization 
theory does not provide good values for the magnitude of 
fluctuations (Appendix 1 ) .  This is due to the need to consid- 
er the discrete character of the levels in the insulating region. 
In fact, the average energy distance between the levels in a 
sample of dimensions of the order of 6 is - ~ / Y ( E ) ~ ~ - A ~ / & ' .  Therefore, the levels in a band with 
width much smaller than A 3 / ~ 2  will be spread out over dis- 
tances larger than f .  Therefore, the levels overlap weakly 
and are independent, and the fluctuations will be the same as 
in "deep" insulators: 

For A3/&' < E < A we have: 

This fluctuation magnitude is determined by the range of 
frequencies smaller than the characteristic frequency w, ,  
with a diffusion coefficient exhibiting insulating behavior. 
As in the case of Eq. ( 19),  the result expressed by Eq. ( 2 2 )  
depends qualitatively on the method used to join the solu- 
tions for the diffusion coefficient from different frequency 
regions, and on the choice of w ,  . 

For E> A, we are practically at the transition point i.e., 

4. Fluctuations in the insulating region, L  - f  (Fig. 3, curve 
5). As we approach the transition from the insulating side, f  
increases, A decreases, and for L - f  we obtain 
A3/&' - E / ( L ~ ,  ) 3  - 6  and A -&/Lk,,  i.e., the region in 
which Eq. (21 ) holds vanishes: 

B-The behavior of fluctuations for y * ~ / ( L k , ) ~ - s  

FIG. 3. Qualitative behavior of the fluctuations of the number of energy 
levels for y ( a - ~ / ( L k , ) ~ :  1-Dyson behavior of the fluctuations; 2-in 
the metallic region ({(L); 3-in the metallic region ( l - L ) ;  &at the 
metal-to-insulator transition point; 5-in the insulating region (6-L);  
&in the insulating region ( l ( L ) ;  7-in the "deep" insulator. 

The behavior of fluctuations for y % S is shown in Fig. 4, 
and the corresponding analytic expressions are given in Ap- 
pendix 2. 

I. Fluctuations in the metallic region, y < A / ( L k ,  ) '. 
For E< A/ (Lk , )*  - E, , the fluctuations exhibit Dyson be- 
havior which is y%S has the form 

For the rest, the fluctuation behavior coincides with that 
described in case A for the metallic region with L > f .  

2. Fluctuations in the metallic region A/(Lk,)' 
< y 4 A3/c2. The region where Dyson behavior holds vanish. 
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FIG. 4. Qualitative behavior of the fluctuations of the number of energy 
levels for y,6-&/(LkF )': 1-Dyson behavior of the fluctuations; 2-in 
the metallic region, y < A/(Lk,)'; 3-in the metallic region, 
A/(LkF)> 4 y(A3/c2; &in the metallic region, y- AS/&>; 5-in the 
point of metal-to-insulator transition; b i n  the insulating region, 
y - A'/&'; 7-in the insulating region, y(A3/&'; 8- in the "deep" insula- 
tor. 

For E(  y, the fluctuations are larger than Dyson fluctu-' 
ations and have the form 

For E )  y, the fluctuations have the same form as in case 1 for 
E)A/(LkF 1'. 

3. FIuctuations in the metaIIic and insulating region, 
y- A3/&'. For E ( y, the fluctuations have the form 

For E )  y they are as in case A for L -6: 

and the constant values are the same as in case A for the 
metallic and the insulating regions with L -6 respectively. 
However, the small variation of the constant quantities 
which in case A occurs for E-&/LkF, happens here for 
E- (YE') ' I 3 .  

4. Fluctuations in the insulating region, y A3/&'. The 
fluctuations coincide with those described in case A for the 
insulating region with L $6. 

4. CONCLUSIONS 

Use of the self-consistent localization theory allows one 
to obtain a picture of the number of energy level fluctuations 
in systems from weakly disordered metals to Anderson insu- 
lators (with rather large localization radius). Qualitatively, 
the picture of the fluctuation behavior agrees with the devel- 
opment based on the scaling localization t h e ~ r y . ~  Taking 
into account the frequency dependence of the diffusion coef- 
ficient leads to an insignificant variation of the ratio 
( [SN] ')/(N ) near the transition point, as compared to that 
in Ref. 3. The qualitative conclusion that, in the vicinity of 
the transition, this ratio depends weakly on the width of the 
band is still valid. From this work, it follows that at the 
transition point we have ( [SN] ')/(N ) z 1/2. However, one 
should note the fact that the numerical value of the ratio 
( [SN] 2 ) / ( N  ) near the transition point may be slightly dif- 

ferent from that obtained in this work.The fact is that these 
quantities are to a great extent determined by the way the 
solutions for D, ( w )  from different frequency regions are 
joined and by the choice of the characteristic frequency a,. 
One should therefore expect that, e.g., the magnitude of the 
fluctuations, and therefore also ( [SN] ') / (N  ) , in the vicini- 
ty of the transition on the insulating side will be somewhat 
larger than on the metal side, because of the decrease of level 
repulsion when the disorder increases. In our calculations, 
this is not the case (see Figs. 3 and 4).  At the present time, it 
is not clear whether this nonmonotonicity has any physical 
significance. It is also possible that, in the insulating region, 
it is necessary to take into account the momentum depen- 
dence of the diffusion coefficient. This appears to be indicat- 
ed by the inapplicability of approximations based on the self- 
consistent localization theory, in the insulating region where 
E( l/v(&)f '. The picture we have obtained for the behavior 
of the fluctuations also agrees well with the numerical results 
obtained in Ref. 3. For example, near the transition point, 
the numerical value of ( [SN] 2) /(N ) is indeed close to 1/2. 
One should also note that the numerical model developed in 
Ref. 3 included only the region with E <  Lk,, i.e., did not 
allow one to consider in the insulating region the transition 
"knee" from the behavior of ( [SNI2)/(N ) = 1 for 
E( l /v(&)g3 to ([SNI2)/(N) z 1/2 for E >  l /v(&)g3 
> &/LkF (see Fig. 3). 

The idea on which this work is based originated during 
useful discussions with B. L. Al'tshuler, to whom the author 
expresses his warm gratitude. 

APPENDIX I:THE FLUCTUATIONS OF THE NUMBER OF 
LEVELS IN THE INSULATING REGION [y,E6A3/~*- 1 /v(&)g3] 

In the insulating region, for El y < A3/t2, the diffusion 
coefficient has the form 

where f = (377) (&/A) k F I is the localization radius. 
Then, using Eq. ( 14), one obtains the following expression 
for the fluctuations: 

(A1.2) 
The result expressed by (A  1.2) can be interpreted as the sum 
of independent Dyson fluctuations in V/f cubes with di- 
mensions of the order of f .  The fluctuations in the cubes are 
independent since for E < l / v ( ~ ) <  the levels are spread out 
over distances greater than f,  and overlap each other only 
weakly. However, inside the same cube of dimension of or- 
der 6, the average number of levels in the band with 
E( l / v ( ~ ) g  will be much smaller than unity, and our de- 
scription cannot be applied. In fact, the bands with these 
widths require consideration of the discrete character of the 
levels. The levels in the band overlap each other weakly and 
the fluctuations will be the same as those in a deep insulator, 
i.e., ([ANI2)/(N) = 1. 

APPENDIX 2:THE FLUCTUATIONS OFTHE NUMBER OF 
ENERGY LEVELS [y&G-~/(Lk,)3] 

1. The fluctuations in the metallic region, y</(LkF) '  
(Fig. 4, curve 2). For E < A/ (Lk, )' the fluctuations exhibit 
Dyson behavior 
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In the other cases, one obtains 

2. The fluctuations in the metallic region, 
A/(Lk,)2 ( Y(A~/ .E~  (Fig. 4, curve 3).  The region of valid- 
ity of the Dyson behavior of the fluctuations vanishes, and 
the fluctuations have the form: 

< [6N ( E )  1 ' )  
<N ( E )  > = 

S e  E"' A3 
'["(E'12) - W F ,  - I  r a E <  - , (A2.2) 

e2 
<N ( E )  ) 2'" 

A3 
-Sm0.45S, - <E<A, 
n e2 

' S eE'" A -- - A3 
(3n)'" A" ' (Lk,) 2 a - e 2  ' 

2" A3 
-S=O.45S7 - <E<A, 
n e2 
2" f l  

2n 
- S=O.38S7 A K E .  

5. The fluctuations in the insulating region, y-A3/.c2 
(Fig. 4, curve 6) :  

3. The fluctuations in the metallic region, y - A3/~2  
(Fig. 4, curve 4): 

6. The fluctuations in the insulating region, y(A3/&' 
(Fig. 4, curve 7 )  : 

< [ 6 N ( E )  1 ' )  = 
<N ( E )  ) 

' I  Expression ( 19) yields a result, in the vicinity of the transition point, 
which is twice as large as that obtained in Reference 3. This is due to the 
fact that in the work reported in Reference 3, the conductance in the 
transition point was chosen with the spin degeneration S = 2 taken into 
account, and the expression for the fluctuations of the number of levels 
was written in the absence of degeneration. 

' S  E  -- , E a y ,  " 'I 
2"' 
- Sm0,45S, y<E< ( y e 2 )  '", (A2.3 ) 
31 

2"-+I 
-Sm0,38S, ( y e z )  ' " a E .  
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4. The fluctuations at the transition point (Fig. 4, curve 

5 ) :  
( S  E 
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