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We derive a system of dynamic equations for metals consisting of the Boltzmann kinetic equation 
for the conduction electrons, the equations of elasticity theory for the lattice, and the Maxwell 
equations. The system takes into account the electron-electron Fermi-liquid interaction, which 
leads to coupling between these equations. We find exact identities for the electron-phonon 
interaction vertices; these identities in turn determine the vertex for the interaction of the 
electrons with long-wavelength low-frequency phonons in terms of a given electron energy 
spectrum and the Landau Fermi-liquid function. 

When a'metal is sufficiently close to a perfect crystal, its 
macroscopic dynamic properties at low temperatures are not 
described by local equations of hydrodynamic type, which 
correspond to the presence of a finite number of Goldstone 
degrees of freedom in the metal dynamics. The reason for 
this is the Fermi-liquid behavior of the conduction electrons, 
which gives rise to the appearance of an infinite number of 
"Fermi-like Goldstone-ons", i.e., gapless Fermi-like excita- 
tions which are characterized by an infinitely long mean free 
path at zero temperature in an ideal crystal. 

The equations that describe the macroscopic dynamics 
of metals make up a coupled system, consisting of equations 
from the theory of elasticity, the Boltzmann kinetic equation 
for the conduction electrons, and the Maxwell equations for 
the electromagnetic field (see Ref. 1 of Kontorovich and the 
literature cited therein). Puchkavor and one of the present 
authors2 identified a system of nonlinear equations for the 
dynamics of a metal, and showed that this system could be 
uniquely derived from general principles of Galilean invar- 

ily be model-dependent character. Such a vertex is absent in 
the true Hamiltonian of electrons and nuclei which make up 
the metal. 

1. A COMPLETE SYSTEM OF DYNAMIC EQUATIONS 

Following the paper by Pushkarov and one of the au- 
t h o r ~ , ~  we will describe the motion of the metal lattice in the 
general nonlinear case using the Lagrangian coordinates 
N u  = Na(r,t), which are functions of the usual Eulerian 
coordinates r and time. The local values of the vectors 
aa(r,t) ( a  = 1,2,3) of the reciprocal lattice and the 
lattice velocity v- (r,t) are determined by the spatial and 
time derivatives of N", respectively: 

where a, is an elementary translation vector of the direct 
lattice connected with a" by the relations 

iance, symmetries and conservation laws, as is the case for The density of the lattice is p, = Mg - where is the 
equations of used describe the d~nam-  mass of the ions in a unit cell, andg is the determinant ofthe 
ics of other macroscopic bodies. However, the authors of metric 66tensor,, = The ..tensor,. ga8 inverse to it 
Ref. 2 did not include the electron-electron Fermi-liquid in- equals aaa8. By virtue of Eqs. ( 1 ) and (2) ,  the derivatives of 
teraction in their analysis. the vectors a" and a, with respect to time can be expressed in 

The basic goal of this paper is to derive macroscopic 
dynamic equations for metals that include the Fermi-liquid 

terms of the spatial derivatives: 

electron-electron interaction. The equations obtained here 
also apply to Fermi-like quantum crystals, for example, 
spin-polarized crystals of 3He with no vacancies (see Ref. 
3), in which a quantum delocalization of the particles occurs 
(for this special case the electric charge of a quasiparticle 
equals zero and the Maxwell equations are not needed). 
Dzyaloshinskii, Kondratenko, and Levchekov4 investigated 
the system of linear equations for a quantum crystal; the 
difference between these equations and the linearized ver- 
sion of the equations we derive here will be discussed below. 

The equations obtained in this paper for an ideal crystal 
at zero temperature are exact in the sense that the only re- 
quirement for their applicability is a large number of spatial 
and temporal scales of the motion. As we will show below, 
one consequence of these equations is a series of exact identi- 
ties for the electron-phonon interaction vertices. We empha- 
size that our discussion will center around the exact vertex; 
the introduction of any sort of "bare" electron-phonon ver- 
tex (e.g., in a Hamiltonian of Froehlich type) must necessar- 

Equations ( 3 )  and (1)  along with the relation 
dg = - gga8dga8 imply that the equation of continuity is 
identically satisfied for the lattice: 

Let 

c T o = & 0 { n ( ~ a ) ,  gap) 

be the energy per unit volume of the stationary metal 
(v, = 0),  which is a function of the invariant metric tensor 
and a functional of the electron distribution function n (s, ), 
where sa is the component of the invariant quasimomentum 
that is canonically conjugate to the coordinate N u  (see Ref. 
2). The physical quantities must be periodic functions of s, 
with period 277%. We write the variation 6 8 ,  in the form 
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Here d ~ ,  = 2d 3s/(277-6) ', and ~ ( s ,  ) and uao are functionals 
of n (s, ); E(S, ) is in some sense the energy of a quasiparticle 
with invariant quasimomentum s,. The appearance of the 
factor g -  '/' arises because the density of states in the vari- 
ables s,, r equals 2g- '/2d 3sd 3r/(2d)3.  As is well known, 
the quantity ~ ( s ,  ) in a stationary crystal also plays the role 
of a Hamiltonian function for the quasiparticles. 

In order to find the quasimomentum p that is canonical- 
ly conjugate to the usual coordinate r and Hamilton's func- 
tion H(r,p,t) for a crystal moving with velocity v,, we will 
start with the formula for Galilean transformations. Since 
the transformation law of the Y-operators for interacting 
electrons under a Galilean transformation is the same as that 
for free electrons, the transformation law for p and H coin- 
cides with that found in Ref. 2: 

p=aasa+mvL, 
(6) 

H=e+pvL-mvL2/2. 

Here m is the mass of a free electron. (For a Fermi-like 
quantum crystal we should understand by m the mass of the 
isolated atoms which make up the crystal.) 

The electron distribution function n (r,p,t) satisfies the 
kinetic equation which includes the electric E and magnetic 
B fields 
dn d n a H  dnaH -+ an{ eE+- :[::B]}=1n.(7) - 
at dr dp dp dr dp 

where I is the collision operator. Here, in contrast to the 
equation for noninteracting electrons, the energy E and the 
Hamiltonian function are functionals of the distribution 
function. 

We transform Eq. (5 )  for the variation of the energy go 
to a system in which the lattice is stationary by introducing 
the usual quasimomentum p in place of s,. The variation 
(Sn), at constants, is related to the variation (Sn), at con- 
stant p by the relation 

where 

is the variation of p for constant s,. Expressing 
SgaB = S(aaaB) in terms of Saa as well, and taking into ac- 

p, we obtain count the equation d 3s = g - '"d 

68. = I ebn (p) dlp-P,6vL+La6P, (8 

where d ~ .  = 2d 3 ~ / ( 2 d ) 3 ,  and 

Note that the vector Po, according to Eq. (9) ,  is the 
electron momentum per unit volume of metal in the system 
of the stationary lattice. 

The equations of motion of the lattice are contained in 
the law of conservation of momentum 

where P is the total momentum per unit metallic volume and 
iIik is the symmetric momentum flux tensor, which must be 
determined from the condition for conservation of energy. 
As a sequence of Eqs. (7) and ( 11 ) and the Maxwell equa- 
tions, this condition requires that 

div B=O, rot B= (4x1~) j, rot E= (-llc) B, (12) 

where j = - (e/m)Po, be an equation of the form 

where 8 is the total energy per unit volume of the metal and 
Q is the required definition of the energy flux vector. 

The momentum P and energy i9 are determined from 
the formula for a Galilean transformation 

Herep is the total density of the metal and equals 

In the paper by Dzyaloshinskii et no distinction was 
made between the energy and the Hamiltonian function of 
the electrons, although the first of these must, and the sec- 
ond need not, be a periodic function of the quasimomentum. 
This latter fact is connected with the circumstance that only 
nonperiodic Hamiltonian functions can ensure consistency 
of the Boltzmann kinetic equation with the condition that 
the distribution function be periodic (with variable period). 
Furthermore, in Ref. 4 the function Po(p) was treated as 
indeterminate, i.e., Eq. (9)  was not included. In connection 
with this note that Eq. (9)  is valid both for the case ofmetals, 
where the momentum in the system of the stationary lattice 
is a pure electronic momentum (the nuclei are localized at 
the lattice sites), and for the case of quantum crystals, which 
consist of particles of a single kind. In both cases the momen- 
tum and particle flux operators in the system of the station- 
ary lattice are proportional to one another. 

By differentiating Eq. (15) with respect to time and 
including Eqs. (3),  (8),  and ( 12) we obtain 

- vLZ 8=-'+ p p v L ~ L + ~ o v L +  j drp tir+L> - div S-Ej, ( 17) 
2 

where S is the Poynting vector. Here and below we will fol- 
low the rule formulated in Ref. 2, according to which we may 
omit integrals that appear in intermediate equations over the 
boundaries of the Brillouin zone. Such integrals cancel out in 
the final expressions. 

From Eqs. (4) ,  (6),  (7) ,  ( l l ) ,  (14), and (16) there 
follow the equations 

dnik 13 H p~L,+P,i = - - + VL, div 
3% 
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(20) 

With the help of identity ( 3 )  we find 
8vLk Laaa=-La (vLV) aa-Laiaka - . 
3x3 

(21) 

The first term in the right side of Eq. (21) is conveniently 
transformed by using the equation 

which is a direct consequence of identity (8). We then have 

Finally, substituting Eqs. ( 18)-(20) and (22) into Eq. 
( 17) we obtain 

ae vL2 b 4- diu {vL8. + J' d~~ e - n - - P+u=, (nik+t ik)  +s) 
dp 2 

where t, is the Maxwell tensor for the magnetic field intensi- 
ty. 

By comparing Eqs. (23) and ( 13) we find the currents 
we are looking for: 

For noninteracting electrons, expressions (24) and (25) re- 
duce to the corresponding expressions from Ref. 2. In fact, 
from identity (5) we obtain an equation for the second 
mixed derivatives: 

from which it is clear that for noninteracting electrons we 
have 

where a,,, and $, do not depend on the electron distribu- 
tion function and have the meaning of an invariant stress 
tensor for the lattice and an elastic energy for the stationary 
lattice respectively. After condition (26) is substituted into 
Eq. (24), the latter agrees identically with the expression 

from Ref. 2. Equation (25) for the energy flux reduces to the 
corresponding expression of Ref. 2 upon substitution of the 
expression 

8 0  = J dTp E T Z + ~ L  

for the energy of a metal with noninteracting electrons. 
In formulating the complete system of equations it is 

necessary to use yet another condition: the electric quasineu- 
trality of the system. This condition, as in Ref. 2, has the 
form 

Equations (7) and ( 1 1 ) together with the Maxwell Eqs. 
( 12) and the condition of quasineutrality (27) constitute a 
complete system of dynamic equations for the metal. The 
unknown functions, in addition to the electromagnetic 
fields, are N u  (r,t) and n (r,p,t) . 

For a quantum crystal consisting of electrically neutral 
particles, we must first set e = 0. In this case the complete 
system consists of Eqs. (7) and (ll), and condition (27) 
need not hold. 

2. ELECTRON-PHONON INTERACTION VERTEX 

In this section a linearized system of dynamic equations 
will be derived microscopically. A comparison of the results 
of the two approaches allows us to establish a number of 
exact identities for the electron-phonon interaction vertex. 

In order to compare with the microscopic theory the 
kinetic equation (7 )  is conveniently rewritten as an equation 
for n (s ,  ,r,t) . The exact form of this equation formally coin- 
cides with the equation presented in Ref. 2, with the sole 
difference that now E is a functional of n. The linearization 
gives 

deo d no odn-a,, - kdn+aao - {kde-i (eE+mi, ) )  = O .  (28) 
sa dsa 

Here w, k are the frequency and wave vector, Sn, SE are 
the deviations of the functions n (s, ,r,t) and E(S, ,r,t) from 
their values no, E~ in the original equilibrium state, and a,, is 
the period of the lattice in this state. Let us consider an ideal 
crystal at zero temperature, corresponding to which we set 
h 

I = O .  
The acceleration of the lattice v, can be eliminated 

from Eq. (28) with the help of Eq. ( 1 1 ) . In this case 

where u, is the strain tensor from the linear theory of elasti- 
city and v, is the velocity of sound. The first term in the curly 
brackets of Eq. (28) is of order 

where E ~ ,  uF are the energy and velocity of electrons at the 
Fermi surface. The term with v, in Eq. (28) thus can be 
neglected. 

In the general case, the electric field is the sum 
E = E ,  + El of the longitudinal (curl E, = 0) and trans- 
verse (div El = 0 )  fields. When sound propagates in a metal, 
it is well-known'~~ that the transverse field can be ignored if 
we are not considering the region of very small sound fre- 
quencies such that (w/v, )S(w) 5 1, where S is the electro- 
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magnetic skin depth. In fact,in order to neglect the field E, it 
is sufficient to have w > lo9 sec- ' . The longitudinal field 
must be included in order to fulfill the condition of quasineu- 
trality (27). 

Setting eE, = V$, replacing s, by the quasimomentum 
a,,"sa everywhere in the small terms (this corresponds to an 
unstrained lattice), and transforming to the new unknown 
function v, according to 

we obtain in place of (28) 

Here p,, p i  are quasimomenta which lie at the Fermi 
surface, v, = 13~/dp for p = p,, dc  = 2dS/vF (2nJi13, dS is 
an element of area of the Fermi surface, and 

is the Landauf-function that is symmetric with respect to its 
arguments; 

has the sense of a deformation potential. 
The condition of quasineutrality (27) can be rewritten 

in the form 

J d w  (PF) =O. (31) 

By virtue of the linearity of the problem we have 

where K = (w,k) and the kernels Nik and Qik by virtue of 
Eqs. (29) and (31) are determined by the equations 

Passing to the microscopic description, let us discuss 
the electron Green's function G(r,rl, t - t ') of the original 
equilibrium state of the metal. We first represent the coordi- 
nates of an electron in the form r = R + p, where R is a 
discrete-valued coordinate for a given unit cell and p takes 
on values within the unit cell. Let us set 

G(r, r', t-t') 

where P = (p,,p); p is the quasimomentum, while p, is the 
temporal component of the momentum P; the integration 
with respect top is carried out over an elementary unit cell of 

the reciprocal lattice. The Green's function G(P,p,pl) in the 
representation we are discussing here has the usual pole-like 
singularities near the Fermi surface of the metal. Near such a 
pole we have 

u p  (P) UP* (P') 
G(pl " "I- po-e (p) +aF+i0 sign po ' 

where up (p)  is some function of the coordinate p and the 
quasimomentum (see Ref. 6, 9 62). 

We introduce the vertices yik (P,K, p,,p,,p,) and 
y(P,K,p,,p,,p,), which couple the electrons to the long- 
wavelength and low-frequency fields uik (r,t) and $(r,t) and 
are defined by the formula 

Here u, (K) and $(K) are the Fourier components of the 
fields uik and $. We have also included the fact that, because 
these fields vary slowly in space, we can set uik ( r )  -- uik (R)  
and y( r )  z y ( R ) ,  i.e., we assume that these functions de- 
pend only on the discrete coordinate R. 

The vertices yik and y have singularities in their k-de- 
pendences that are characteristic of a Fermi liquid. To iden- 
tify these singularities we follow the method described by 
Landau in Ref. 7 (see also Ref. 6, 5 17) for the four-fermion 
vertex. The equations that we need differ from those given by 
Migda18 for the vertices that determine the interaction of 
fermions with an arbitrary boson field only in that we have 
taken into account the inhomogeneity of the metal. In the 
spatially inhomogeneous case the product of two-electron 
Green's functions can be written for small K in the forn- 

where q, is the w-limit of the left-hand side of Eq. (36), i.e., 
its limit as K-0, Ikl/w + 0. The equation for the vertex has 
the form 

The same equation is valid for the scalar vertex 
y (P,K,p,,p2). Here we have introduced the averaged ver- 
tices with two arguments p 

(and analogously for yik ), which enter everywhere into all 
the expressions which follow; ek (and analogously y") is 
the w-limit of the vertex yik , and the quantity T" is deter- 
mined by the expression 

r" (P1 Q, PI, PZ, ~ s ,  PA 
1 

=- lim ras,=e (P, Q;  P+K, Q-K; pi, PZ, PS, PA, 4 K-.O.lkl/*-.O 
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i.e., it is the w-limit of the four-fermion vertex taking into 
account its spin indices. We have omitted the spin indices in 
the expressions for y, , y, and G, keeping in mind that in our 
case these quantities are diagonal with respect to spin. 

In what follows we will need to use one of the standard 
identities satisfied by the four-fermion vertex r". Specifical- 
ly we need the one derived in Ref.2, §J9 by using the time- 
dependent gauge transformation \V+Y exp[i,y(t) ]. A sim- 
ple generalization of the usual derivation to include spatial 
inhomogeneity gives 

where the singular product of the G-functions must be un- 
derstood in the sense of the w-limit. Isolating the pole-like 
part of Eq. (38), we find the identity 

where we have introduced the notation 

z(P)=l  ~PIuP(P) I Z .  
Let us calculate the change in the electronic density 

SN(K) under the action of the field uik (K). We have 

6N (K) =Rib (K) ~ i h  ( K )  , (40) 

where the kernel equals 

We substitute Eqs. (36) and (37) into the right side of 
Eq. (41 ) . As a result of this, the product of the second term 
in Eq. (36), which equals p, and the first term in Eq. (37), 
which equals flk, gives the w-limit of the kernel (41 ), i.e., its 
value for the case of a spatially homogeneous perturbation 
uik . However, in this case the kernel equals zero by virtue of 
the conservation of charge, so that this particular product in 
Eq. (41 ) can be neglected. We then have 

Using the identity (39), we obtain 

In the case of a scalar perturbation $( K) we find in an analo- 
gous fashion that 

where 

Since the scalar field in the presence of the strain uik (K) 
in fact is determined by the quasineutrality condition, for 
$(K) the second of the formulas (32) is valid, while the 
kernel Qik (K) by virtue of Eqs. (40) and (44) is determined 
by the equation 

A scalar field always unavoidably accompanies the strain 
field uik (K). Therefore it is not y, that has physical signifi- 
cance but rather the effective vertex Fik = yik + yQika We 
introduce the effective vertex 7, by averaging with respect 
to the variable p according to the formula 

P j h ( p ,  K)= J +r U; ( ~ 1 )  u p ( h ) ~ n ( P , K ;  pi9 PSI. 

By virtue of Eqs. (43) and (45 ), and also Eq. i 37) ahd 
the formulas analogous to it for y, the effective vertex satis- 
fies the equation 

kv,' + j do1! (PF, PR. - 
U - ~ V F  

P (47) 

where 

~ ( P F ,  ppl) - Ju; (pl) up (pz) up (p,) up,* (p.1 ra 

is a quantity which, as we will see, plays the role of the Lan- 
dau f- function. 

The quasineutrality condition (46) can be written in 
the form 

If we set 

then the system of equations (47) and (48) becomes identi- 
cal to the system of phenomenological equations (33) and 
(34). After substituting condition (50) in Eq. (47) the lat- 
ter together with Eq. (48) constitutes the required system of 
identities for the vertex yik when K is small, which deter- 
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mines the vertex for a specified electronic energy spectrum 
and Landauf-function. 

The vertex for interaction with real phonons corre- 
sponds to the condition w = v,k(u,k, ie., it is the k-limit 
( K - O , O / I ~ I + O )  of the overall vertex 7; ( p , ) .  Equations 
( 4 7 )  and (48 ) imply that this vertex satisfies the equation 

where 

-{ 5 f ( P F t P P ' ) d o f + l  f ( P P ,  p / ) d o }  / 1 do. 

It is easy to see that F i ( p , )  equals the derivative of the 
electron energy ~ ( p )  at p = pF with respect to u,, taking 

into account the equilibrium change of the distribution func- 
tion of the electrons, the Fermi-liquid interactions, and the 
equilibrium change of the electronic potential that is re- 
quired in order to insure quasineutrality. 
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