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We conduct a theoretical and experimental investigation of the properties of stripe domain 
structures with magnetic dislocations. We obtain the equations of motion for a solitary magnetic 
dislocation, and show that its velocity is determined by the combined action of a braking force, a 
surface tension force, and forces caused by external magnetic and demagnetization fields. We also 
discuss how magnetic dislocations differ from ordinary dislocations in crystals. 

In analyzing the properties of completely ordered stripe 
domain structures (DS) in magnetic films, the following 
question arises: how does the period d of this type of distribu- 
tion of magnetization vector M specifically change as we 
vary the magnetic field H, the temperature T, etc.? Despite 
the apparent simplicity of this question, an answer to it is far 
from evident. Actually, in films with unbounded transverse 
dimensions subjected to uniform external perturbations, a 
smooth change in the period is forbidden by symmetry con- 
siderations; for finite-size films it is forbidden because of the 
existence of an energy barrier between states with differing 
numbers of domains. Therefore, if for certain values of 
T = To and H = H, an equilibrium DS exists in the film 
with period d, = do ( To, H, ), any change in T or H will 
make this DS metastable. If d, > do ( T, H) ,  then the DS 
will be found in a state of tension and, depending on the value 
of the difference Ad, = d, - do, the following situations 
are possible: either a kink instability in the domain wall sys- 
tem against a sinusoidal distortion of the profile, a transla- 
tional (modulation) instability of the position of the domain 
wall, or (for quasi-uniaxial films) a first-order phase transi- 
tion to a hexagonal lattice of cylindrical magnetic domains. 
For d, <do (T, H )  the stripe DS will be under compres- 
sion, and for a certain critical value of Ad, it is possible to 
have either translational (modulation) instability of the do- 
main wall or a transition to a cylindrical magnetic domain 
lattice. '-' 

The situation changes if we take into account the possi- 
bility that defects of magnetic dislocation (MD) type can 
exist in the stripe DS. Note that the creation of MD, which 
disrupts the translational order in the DS and thereby in- 
creases the entropy of the system, becomes favorable in the 
neighborhood of a second-order phase-transition line (or a 
first-order line that is close to second-order), at which the 
corresponding modulus of rigidity of the DS reduces to 
zero.*s9 In this case, for T # O  relaxation of the metastable 
stripe DS to equilibrium can take place by way of creation, 
annihilation, fusion, and motion of MD. 

Point and line defects in the crystal structures of real 
films (including the transverse sample boundaries) facili- 
tate the birth and fusion of dislocations. In addition, these 
defects exert coercive forces on the cores of the MD, stabiliz- 
ing the positions of the latter. Therefore, in films with dis- 
tributed coercive forces the average period of the DS can 
vary within wide limits due to motion of the MD, while the 
instabilities that are inherent in an ideally-ordered DS will in 

general not arise in this case (such mechanisms are dis- 
cussed in Refs. 7 and 10-12). 

In this paper we investigate the properties of stripe DS 
with MD both theoretically and experimentally. We show 
that the velocity of a MD is determined by the combined 
action of a braking force and a surface-tension force, as well 
as forces which arise from external magnetic fields and de- 
magnetization fields. In contrast to normal dislocations 
(i.e., in crystals), which can translate parallel to glide planes 
(when the continuous media is not disrupted), MD acted on 
by uniform external forces move in such a way that the veloc- 
ity of the core always coincides with the direction of the 
domain wall of the stripe DS, i.e., perpendicular to the glide 
planes. This is connected with the fact that the climb ofdislo- 
cations in crystals takes place because of mass transfer, while 
the motion of MD is mediated by changes in the direction or 
magnitude of M. If the external influence (e.g., H )  is uni- 
form, motion of the MD can occur in theglide planes as well; 
in this case the motion has a threshold character, and begins 
if the "elastic" stress in the stripe DS exceeds some start-up 
value determined by the Peierls force. 

1. THEORY 

1 .l. Derivation of basic equations 

An analytic theory that describes the behavior of an 
MD in a stripe DS can be constructed fairly simply for uniax- 
ial ferromagnetic films in the neighborhood of a second-or- 
der spontaneous or orientational phase-transition line (or a 
first-order line that is close to second-order), for which the 
distribution of magnetization can be accurately approximat- 
ed by using a Fourier series containing a small number of 
terms. For films with strong "perpendicular" anisotropies 
[flu ,4rr, where flu is the uniaxial anisotropy constant; the 
axis of easy magnetization is parallel to the normal n to the 
surface], this type of phase transition involving the partici- 
pation of a DS was investigated in Refs. 8 and 9. The external 
parameters that can induce a spontaneous phase transition 
are the temperature T (below the Curie temperature T,), 
and, for an orientational phase transition, a magnetic field H 
roughly parallel to the surface of the film (i.e., H, $HI , ,  
where H, and HII are the projections of H on the film surface 
and on the normal n to the surface, respectively). 

It has been established that a phase transition with the 
participation of a DS is described by a three-component or- 
der parameter, one of whose components is defined as the 
value of the magnitude of the magnetization vector M or 

1213 Sov. Phys. JETP 71 (6), December 1990 0038-5646/90/121213-11$03.00 @ 1991 American Institute of Physics 121 3 



some one of its projections Mi, while the two other compo- 
nents characterize the degrees of translational and orienta- 
tional order of the domain wall. 

The analysis carried out in Refs. 8 and 9 showed that, 
depending on the parameters Tand H, inhomogeneous mag- 
netic states in the film can be realized in the following modi- 
fications: a "crystalline" phase (i.e., a fully-ordered DS), 
the so-called BKT (Berezinskii-Kosterlitz-Thouless) 
phase'3-'5 (i.e., a DS with bound MD), a "liquid-crystal" 
phase (i.e., a DS with free MD), and a "liquid" phase (i.e., a 
DS with free magnetic disclinations). In what follows we 
will investigate films with quasi-ordered DS corresponding 
to the BKT or liquid-crystal phases. 

We limit the discussion to the case of a thick magneti- 
cally uniaxial ferromagnetic film (lz)a'/2, where I, is the 
film thickness and a is the inhomogeneous exchange interac- 
tion constant) with its easy magnetic axis parallel to the 
surface normal, rille,, in a magnetic field 
H = M(h, e, + hll e, ) near an orientational phase transition 
(i.e., for hll gh,; 16 I <max{4n-, flu), where 6 = flu - h, ). 
If we parametrize the direction of the vector M in a spherical 
system of coordinates by the angles 8 = arcsin (M,/M) and 
$ = arctan (M,/M, ), we can write the free energy of the 
system in the form 

+ g U  cosZ 0-2hl cos 0 cos 21, 

-2hfl sin 8-mhD), (1)  

where m = M/M and h, = H,/M is the normalized mag- 
netostatic field. Since 84 1 and $4 1 hold near a phase-tran- 
sition line, it follows from the Landau-Lifshits equation and 
the equations of magneto static^^"^^'^ that 

whereB= flu - (3/32r2)flUh i , p  = 1 + 4n-h 1 ',A, andR, 
are relaxation constants whose origins are relativistic and 
exchange effects respectively, while w, = gM, whereg is the 
gyromagnetic constant. 

In the course of calculating the distribution of magneti- 
zation and the spin-wave spectrum in the film, it is custom- 
ary to write the angle 8 in the form of a sum of a static 8, ( r )  
and a dynamic B(r, t )  component, where l6,I, 18 1. For a 
regular stripe DS with a fixed period d (in a film with un- 
bounded transverse size the period d can be arbitrary; for 
films with transverse dimension I, the period equals 
d = 1,N; I ,  where N, is the number of periods), the solu- 
tions to Eqs. (2)  have the 

OI 

0. ( r )  =z hnA. ( z )  cos (nks )  , 
n=O 

Q ( r )  = AnBn ( z )  sin (nkr)  , (3) 

where R 4 1 is the order parameter; k = 2n-d - I ;  q = n-/Iz; 
A, = (457) - 'hll ; and 

Al=al cos (qz)  +i/zP,h2ai3a3 cos (342) ; 

Az=ilzgUAoa12 [ bo+bz cos (242) I , 
A3='l2P,al3 [ c ,  cos (qz )  +c, cos (3qz) ] . 

Explicit expressions for the coefficients a,, b,, and c, are 
obtained from Eq. (13) of Ref. 19 if we make the replace- 
ment S+flu /2. 

Substituting the series (3)  into ( 1 ) and (2)  and taking 
into account the boundary conditions at the film surface: 

{n, VM) I,=0, (n ,  (HDi+4nM-H,,) ) I,=0, 
(4)  

(HDi-HDe) I I s=O, 

where H, = M hDi and H, = M h,, are the demagnetiza- 
tion and scattering fields respectively, we obtain an expan- 
sion of the free energy density in the parameter Ra, =Ra for 
fixed values of k and c: 

and the equation that determines the dependence of the pa- 
rameter Ra on k and 6 is: 

B2+ (ha) 'B,+ ( ha)'B,=O, ( 6 )  

where V is the film volume and 9, is the free energy of the 
film in its uniform magnetized state, which equals 

the functions B,, are defined by the expressions 

B,=6231Pu2 (512x,o)-2. ( 7 ~ )  

Here E = ~ - + P , A ~ ;  x=kal / ' ;  x,=k,a'/2 
= (4an-3/p,lf)"4; go = x,x-' = k,k - I .  

In Ref. 9 it was shown that in the course of an orienta- 
tional phase transition the uniform magnetized state that 
exists in a strong transverse magnetic field, i.e., for h, ?flu, 
loses its stability against a transition to a stripe DS in ther- 
modynamic equilibrium along the curve 

h,, (h , , )  = f i , - 2 ~ , 2 - ~ / ~ ~ p ~ h , , ~ n - 2 1  (8a) 

furthermore, the DS, in its turn, becomes unstable with re- 
spect to a transition to a uniform state for 

h~c' (hill =hlo  (hll) +0,388 (xcOekc) 2 h l i f ~  ( e k e )  , (8b) 

while the critical value of the normalized reciprocal period 
for such a DS along the curves defined by Eqs. (8a) and (8b) 
equals 
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Here d, is the critical period; x, = x, (0); w(E,, ) is the 
Heaviside function; &kc = h i  -hikc;hilkc 
= 2fl~x,P;  is the ordinate of a tricritical point at 

which two phase transition lines which separate the stripe 
DS with equilibrium period d, from the uniform state join 
together. Across one of these, the phase transition is first- 
order, while across the other it is second-order. 

Equations ( 8) and (9 ) were obtained from the condi- 
tion that the free energy Eq. (5)  be a minimum with respect 
to the order parameter, i.e., 

aF/a (ha) =0, d 2 S / a  (ha) ' 2 0 ,  (10) 

with subsequent minimization with respect to the normal- 
ized inverse period of the DS x = 2 ~ d  - If the minimi- 
zation is not carried out, i.e., the parameter x is arbitrary but 
fixed, the system ( 10) will determine the behavior of a non- 
equilibrium DS with x #x,. The first of the conditions ( 10) 
is identical to Eq. (6); the sign of the equation in the second 
condition determines the position of the line along which the 
DS loses its stability for a given x, that is 

for the second-order phase transition, where { = x,x- ', 
and 

for the first-order phase transition; the amplitude of the z- 
component of the magnetization of the DS on these curves 
comes to 

(ha) t=8 ( xc0 /nx )  Iekw(ek)Et/(2077Ez) I". (12) 

Here&, = h i  - h i k , E l  =9-[:,E2 =3-c:,whilethe 
ordinate of the tricritical point HII, which separates the first- 
order and second-order phase transition lines across which 
the stripe DS with nonequilibrium period devolves into the 
uniformly magnetized state is determined by the expression 
hllk = 4?rx(3P, 'E, 'E,)"~. 

It follows from ( 11) that the line on which a DS with 
fixed period d on the plane (h,, hll ) loses stability shifts to 
the left relative to the corresponding curves for a DS with 
equilibrium period, and is tangent to the latter (for d > d,, 
i.e., x < x, ) ford = d,. We note, however, that a transition 
of the nonequilibrium DS to the uniformly magnetized state 
in the regime of quasistatic variation of the magnetic field 
does not take place, since an instability of another type will 
develop first (see Ref. 7). The field dependence of /la is de- 
termined by the expression 

(ha) )"= [ (BIB-4BaBB) "-BI]  (2Bs)-'; (13) 

in the limiting case Ah, = hLf - h, 4 x2h 11, I&, I 

(ha) 2=32/eAh,h1~,2 (BY I e k ( )  -', (14a) 

while in the case x2h I~ IE,  I 4 Ah, 4 x 2  

(ha) 2=3,24pu-'~,o(Ahl) "=. (14b) 

In order to investigate the nonlinear dynamics of distor- 
tions in the shape of the DS it is necessary to introduce a field 

which specifies the displacement of a point with a given val- 
ue of magnetization from its position in the regular DS, 
u = u, ( x ,y ) ,  i.e., to cast the distribution of magnetization in 
the form2*'.* 

rn 

0 ( r ,  t )  = ( z )  cos {nk [x -u  (x ,  y ,  t )  I ) ,  (15a) 
n=o 

$ ( I .  t )  = h " ~ .  (I) sin {nklx-u (x ,  y ,  t )  1) .  (15b) 

Then by limiting the discussion to long wavelength distor- 
tions of the shape of the DS, we can write the "elastic" part of 
the free energy associated with shifts of the domain bound- 
ary in the following form: 

where 

The effective moduli of rigidity C, and C,, of the stripe DS 
equal 

Cx=CoE3[1-2~2E3-iE,2(Ah,)-11, (18a) 

while the remaining quantities entering into ( 17) and ( 18) 
are defined in the following way: 

In order to derive the equation of motion for the shift of 
the domain wall we also introduce kinetic energy and dissi- 
pation functions: 

Then the Euler-Lagrange equation 

where Y = rkin - % is the Lagrangian that completely 
determines the nonlinear behavior of the domain wall sys- 
tem, acquires the form 

where p = ( A a )  'k 2(2,uP,g2) - 'Iz is the effective density of 
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the stripe DS, and C (a) = Ci - iavi  is the effective com- 
plex modulus of rigidity ( i  = x,y); 

Rather than proceed to an analysis of the motion of the 
MD, we will pause to make the following remark: magnetic 
dislocations exist in two dual modifications, which differ by 
the direction of M at the center of the dislocation core. For 
HI1 = 0 the behaviors of both MD modifications are identi- 
cal; however, an arbitrarily small field HII makes them ine- 
quivalent. In particular, for the same values of the external 
parameters a change in the type of MD may involve a change 
in the direction of motion. The inequivalence of the behavior 
of MD for which the vector M has different directions at 
dislocation cores arises because the properties of "different- 
polarity" domains are not identical for HII #O. The period of 
an asymmetric DS in the general case is given by the expres- 
sion 

where E, (Aa) z arcsin (hl, /27r2/2a) for 1 hll 1 (8Aa. The equi- 
librium period do of the DS for lhll I <hl,,, depends on the 
field H in the following way: 

where 

1.2. Motion of dislocations in a quasi-ordered stripe DS 

The static distribution of M around a solitary MD with 
Burgers vector Bile,, where IBI ~ d ,  is givenz0 by Eqs. ( 15): 

u= ( B / 2 n )  arctg [ ( y l z )  (C.IC,)"l for xwx, ,  y B  y,, 

1 
= - B @ ( ~ ( , > ) " ' )  4 sign x for B<x<r., B<y<yc, 

(25b) 

where 

xc= (C,C=)'ll(kC,,) -', yc = 

2 
@ ( x )  = -1 e-" dl. n'12 

0 

The equation of motion of the MD can be written in the 
form2' 

Here m, is the effective mass tensor of the MD, whose com- 
ponents are equal in order of magnitude to 
[pB ,/47r] In (I, /ro ), where ro -d; W is the acceleration of 

the MD; Fb' is the braking force on the MD; F is the force 
that results from the action of the external magnetic field, 
the magnetization fields, and the surface tension of the 
warped domain wall, on the MD; and F'"' is the force exerted 
on the MD by other dislocations. In particular, for a pair of 
MD with Burgers vectors B, and B,, for /r,, 1 < lrlc - r,, I 
we have 

here x and y are components of the two-dimensional vector 
r12 = r ,  - r,, where r ,  and r, are the radius vectors to the 
MD cores. In a metastable DS (i.e., with d #do ) the force F 
can be written as a sum F = Fl + F,. The force F, which is 
caused by the "stress" 

as=6U/6 ( V z u )  =C,V,u=C, (d-do) Id=-p, 

is calculated by using the Peach-Koehler formula 

Fj,=pB. 

This force, which is directed along the domain wall of the 
stripe DS, expels the MD from the sample for d < do and 
causes it to move in the opposite direction for d > do. The 
force F2 gives rise to the inequivalence of dislocations with 
orientations of the vector M in the core parallel to the field 
HII  = Hll e, (type 1) and antiparallel to the latter (type 2).  
Estimates give 

where f L ' v ~ '  = + 4AaM1, (HI1 - Hll, )a- ' is the force act- 
ing on a unit length of a contour s in the shape of a semicircle 
with radius -+dl,, in the plane z = 0, which bounds the 
core of the MD and is directed along the external normal to 
the contour; j"s2' = - + 4AaMlzdlSz (7B) - '(HI/ - HI,, 1; 
the angle a, is formed by the radius vector passing from the 
center of the MD core to a given point on the contour and the 
y axis; cos a, = [ l  + (dy/dx) - 

and HIIS is the field 
corresponding to the equilibrium period of the DS. When the 
other conditions are the same the force F:;), for example, 
pulls an MD of type 1 into the sample, while an MD of type 2 
is expelled from the sample under the action of the force 
F::'. For IF::'l> IFly I a change in the MD type entails a 
change in the direction of motion. 

The braking force Fbr is caused by processes in which 
the MD interacts with magnons and phonons, as well as with 
defects in the magnetic and crystallographic structure. 
However, if the velocity of MD motion Vile, is small (i.e., 
V,, (urn where urn = (C,,/p) then the braking force may 
be determined phenomenologically without specifying the 
mechanism which leads to its appearance. The equation for 
the free ("above-barrier") motion of a dislocation has the 
formz2 

(pa f i r )  v,(R)+os(h)ks+oy~k~k,=O. (29) 

Here u ' ~ ' ,  a : k ) ,  a J k ) ,  and v ' ~ '  are the Fourier components of 
u, u,, u,,, and v, where v = v(r, , t )  is the velocity of motion 
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of elements of the medium far from the dislocation, and I I"' 
is the symmetric part of the incommensurateness tensor: 
I IS) = e ,  v,B exp( - iwt); e ,  is the totally antisymmetric 
tensor of second rank; and w = kv. Converting the system of 
Eqs. (29) to the form 

[o  ( p o f i r )  --C,'kx2] o,'k)-C$kxk,o,(k)=i(PoSir)C,'BV7 

we find the component ux of the stress field generated by a 
moving dislocation which, at time t = 0 occupies the posi- 
tion y = 0, x = 0, and which makes up an additional stripe 
domain extending the direction y > 0. As a result we obtain 

where 

A,(k,) =V[rC,2k2+k,2(qxCY"k:+quC,"k,")] +iCx(Cu 
+C3k,2k-Z) (Cxkx"+Cuk,"+C,k,lk-2) k,, 

A(k , )  = (C,k,2+Cvk,2+C3k,"k-2)2+V2ky2(r+qXk,2+qvk:)z, 
Cu=Cy-pVZ7 g= y-Vt.  

The force of viscous friction acting on a dislocation equals 

where 

If the MD is found at a large distance from the boundar- 
ies of the film and from other dislocations, then we have 
IFly + F,, 1 ) IFY'J and the MD moves with a velocity 
V= V(p + @) determined from the equation 
Fy = - (Fly + F2y). In the general case the function 
V = V(p + @) can be determined by numerical methods. Let 
us introduce approximate expressions for the velocity of an 
MD in certain special cases. For r ) q , k f ,  i.e., for 
A, + A, k f )A,k f ,  the time dependence of the elastic modu- 
li can be neglected by setting r ] ,  = 0; then both types of MD 
move with a velocity which for small values of 
Vy 4nCy (1, T )  - is determined by the expression 

where 

is the mobility of the MD, and p, is the coercive magnetic 
pressure for the motion of the MD. The mobility G depends 
on the magnetic pressure p because the parameters Ci are 
functions ofp. For nC,/IY r ( VY g urn the velocity of the MD 
is found from the approximate equation 

In films with large anisotropy (flu - co ), the expressions for 
the elastic moduli simplify when HI, = 0 (Cy z p ,  C, z4C0,  
C, z C, ); neglecting the coercive force, we find from (34) 
that V ~ T ~ ~ / ~ C ~ / ~ ( I ? B )  - I. 

The solution to the system of Eqs. (30) allows us to 
calculate the components of the tensors a, and Viu for the 
stress and strain fields generated by a moving MD. For 
x (x, and j 4yc the components of the magnetic strain ten- 
sor V,u are defined as derivatives of the quantities u [see 
(25b)l with the subsequent replacement y- j .  For x)x, or 
j)y, the term C, k :k, and the terms proportional to r ] ,  in 
the denominator of the expressions under the integral sign 
can be neglected and the expression for the component Vy u 
of the strain tensor acquire the form 

where k=  (j2 + x2CYC; ')'I2; KI (x) is the modified Bes- 
sel function of the second kind. 

For 1x1 ) ljl and b 2 C Y  (r V) - we obtain 

i.e., the components of the strain tensor Viu(r,, t)  fall off 
exponentially at large distances from the dislocation core in 
the direction of motion of the latter, while in the opposite 
direction they fall off as a power law. If yg 2Cy (r V )  - ', 
then the function V,u (r, , t)  equals 

which is analogous to the case of a nonmoving dislocation, as 
follows from Eq. (25a). The change in the decay law of the 
strain generated by a moving MD [see (36) ] compared with 
normal dislocations arises from the specifics of the equation 
of motion (22). 

Near the boundary of the film or near defects of the 
crystalline and magnetic structure, dislocations move non- 
uniformly; the energy released in this case is radiated in the 
form of spin waves (compare with Refs. 21-24). The depar- 
ture of the dislocation from the lateral surface of the film is 
also accompanied by radiation of spin waves; this is because 
we can treat this process as one in which dislocations annihi- 
late with their mirror images, accompanied by the release of 
an energy 

1.3. Kinetics of the transition of a metastable DS with 
magnetic dislocations to the equilibrium state 

The concentration of dislocation pairs of types 1 and 2 
of lengthy in a metastable DS ( d  < d, ) equals 
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where F,,, (y) is the thermodynamic potential per unit vol- 
ume (for a single pair of dislocations) of the strained DS, 
which equals 

Here Fnuc - ( C, Cy ) 1/2B is the thermodynamic potential 
for the formation of a dislocation core; 
P ' ( y )  = T* ln(lyl/B) is the energy of interaction 
between dislocations in a single pair; S = B ,; and 
T * = ( C, C, ) 1/2B 2/27r. 

The dependence of the potential per unit volume of an 
MD pair on the distance between the constituent MD is 
shown schematically in Fig. 1. For y = y, the attractive 
force Fin' is balanced by the forces Fly and F2,, which arise 
from the compressive stress a, the action of the magnetic 
field HI, in the nonequilibrium stripe DS, and the force of 
dislocation repulsion F3y originating from exchange and 
magnetostatics (both MD of a pair have the same magnetic 
charge). The quantities y, and y, are comparable in magni- 
tude to B; therefore, it is necessary to use numerical calcula- 
tions to determine them. For y)b the forces satisfy 
F3, (Fin', F,, +I;;,, and we need not take them into ac- 
count. For either a type 1 or a type 2 MD pair, the critical 
distance between MD for which the pair is stable against 
dissociation equals 

For y>y,, the force Fly + F2, > F F  and the distance 
between dislocations increases; for y < ycr the potential per 
unit volume of a dislocation pair F(y, ,  ) = F,, is a maxi- 
mum. From this we see that the problem of the kinetics of the 
transition of a metastable DS to the equilibrium configura- 
tion is analogous to the corresponding problem in the classi- 
cal theory of n~cleation.~' A similar situation arises with 
regard to the motion of kinks during the glide of disloca- 
t i o n ~ ~ ~  and the nucleation of soliton lines in an incommensu- 
rate phase.26 

According to Ref. 24, we can determine the rate of for- 
mation of dislocations per unit length of a solitary stripe 
domain: 

position y,, ) at which the energy of a dislocation pair equals 
Fcr - T. A pair separated by a distance y > ycr + y, can be 
considered as having surmounted an activation barrier F,, , 
while pairs with y,, <y < y,, + y, are partially coupled and 
remain at the position y = y, and are partially dissociated. 
The value y, is determined from the equation 

-'/Z(YT) ' V ; ~ ( Y )  lu=vcr=TI 

whose solution gives 

Y ~ t . 2 ~  (2TT. )  "zl[B(p+p"i ,z)] .  

From the relations JLT;,, - 1 and VT;., -L we can esti- 
mate the average lifetime of pairs of type 1 and type 2 

where L is the mean free path of a solitary MD along they 
axis. A dislocation can annihilate with the MD of another 
pair; it can also link up behind dislocations in neighboring 
domains or with defects in the crystal lattice. These pro- 
cesses are characterized by mean free paths L ,  , L,, and L, 
respectively; therefore, 

3 

The relation (42) is valid for L < I,. In the other limiting case 
L % I,, we have T;:, - (J1,, Iy ) ' and 7;:; -Iy V determine 
the average times necessary to create a pair of dislocations of 
types 1 and 2 and the time necessary to annihilate an MD at 
the boundaries of the sample, respectively. Therefore, the 
average time during which a dislocation pair exists is 
T = max{~;:~ ,T;> ). The estimates obtained here for the life- 
time T are valid if the stress p changes insignificantly in the 
process of MD motion. However, as new pairs of MD appear 
and are annihilated the stress p in the system decreases, 
while the critical size of an MD pair y,, increases. The final 
stage of the process is analogous to the coalescence stage in 
the theory of n u c l e a t i ~ n . ~ ~ , ~ ~  According to Refs. 25 and 26, 
in order to determine the average size of a pair J ( t )  = y,, ( t ) ,  
we obtain a system of equations 

J = D 1 v 1 , 2 ( ~ c l )  YT-', (41 d y  2 0  
-=- 

2DT' 
[ B A  ( t ) -  T'y-'I= -[ (y , , ) - '  - y-'I,  (43) 

where D is the coefficient of diffusion of a solitary disloca- d t  T T 

tion, which is connected with its mobility by the Einstein 
relation D = GT, and y, is the distance (measured from the a! a ( f v u )  P ( t )  + A ( t )  = const=p, - + ------ - 

at  a y  - 0, (44) 

FIG. 1. Dependence of the thermodynamic potential of a bound dislo- 
cation pair on the distance between the cores. 
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where P = CxZ,By, is the stress relieved within the stripe 
DS due to the formation of dislocation pairs, which is con- 
nected with the dislocation pair distribution function f(y, t)  
by the relation P( t )  = Jyf(y, t)dy; yi is the length of the ith 
pair of dislocations, A(t) = [By,, ( t )  ] - IT* is the remain- 
ing stress in the DS arising from the stressp; and V, = dy/dt. 
We find from Eqs. (43) and (44) that the average size of a 
pair depends on time according to the law 
j ( t )  = y,, ( t )  a t 'I2. 

The theory we have developed can also be used to ana- 
lyze the behavior of DS during phase transitions that are 
close to the Curie point. For this, in the free energy of the 
system we must add a term 

A9=- i /2EM+1/4FMWo-z ,  

where = &M ,(T)M; 2; &( T) is the equilibrium value of 
the magnetization in an unbounded medium and 6 is the 
uniform exchange interaction constant; in the equations giv- 
en in paragraphs 1.1-1.3 we make the replacements 

Here Go is the characteristic frequency in the Landau-Kha- 
latnikov equation 

1.4. Generalization of the theory to the region of magnetic 
fields H, -g (3,M 

In order to generalize the theory to the case of biaxial 
ferromagnetic films with DS located in a magnetic field 
(H,  ( <p,M and (HII 1-4n-M, we must add a term 
A 7  = +/3,M; to the free energy density, where PX is the 
constant of "rhombic" anisotropy (0 <Px <flu ) and then 
use the results of Refs. 6 and 27, where the ground state and 
spin-wave spectra of such films, i.e., with stripe DS, were 
investigated for Px = 0 and H, = 0. According to Ref. 27, 
we can show that the "elastic" part of the free energy 9 is 
given by Eqs. ( 17a) and ( 17b), where 

C,=4nklz2M2 ( wV,,,- w:,, w::) , 
C,=4nl,M2[ W,, + ( l + ~ ~ ~ u - ' + n H L ~ u - ' M - ' )  lw l z - i ] ,  

X exp ( - v l n )  ] sinz ( n v z / 2 ) ,  

here I, = uo (4n-M) - ' is a characteristic length in the mate- 
rial; A = A o [ l  +p,p;' + ~ T H ~ ( ~ P , M ) - ~ ] ;  E, uo, and 
A, are the effective mass, energy density and width of the 
DB re~~ect ively, '~  and we have written Y, = kl, and 
Y, = kd2. The width of a domain d, , in the center of which 
M = - Me,, is calculated from the equation W V 2  = 0, while 
the equilibrium period do of the DS is determined from the 
solution to the equation W,,, = 0. In deriving Eq. (46) we 
have assumed that Agl,, while a does not depend on the 
curvature of the domain wall. 

From this we see that the results obtained above, taking 
into account the transformation specified by Eq. (46) can be 
used to analyze the behavior of an MD in a stripe DS. The 
distribution of M around the core of the MD, the character 
ofits motion and the kinetics of reconstruction of the DS can 
differ from those discussed above due to the formation of 
vertical Bloch lines which accompanies the disruption of do- 
mains. In a stripe DS with a single-polarity domain wall, in 
the course of the destruction of a domain the number of ver- 
tical Bloch lines that appear in each of the MD is odd, i.e., 
n = 2j + 1, while for a DS with different polarity domain 
wall this number is even: n = 2j. In order to take into ac- 
count the influence of the vertical Bloch lines, we must add 
an interaction force FL for the vertical Bloch lines to the 
right side of the MD equation of motion (26). For example, 
in a DS with a single-polarity domain wall, for n = 1 a verti- 
cal Bloch line in a dislocation pair is attracted with a force 
F, = - 8r2A21,M 2y - I ,  where y is the spacing between the 
MD of the pair.,' In addition, it is necessary to take into 
account the change in the attenuation constant r caused by 
the vertical Bloch lines in the expression (32) for the forces 
of viscous friction acting on the MD, and also in Eqs. (33) 
and (34) for the velocity and mobility of the MD. To do this, 
in Eq. (46) we must set" 

where Q, = P,/4n- is the Q-factor of the material. To the 
potential F ( y )  [see Eq. (39)] it is necessary to add a term 
YL (y) = 2n7L0) + F f 3 ,  where Fp' = k l , M  'Q ; 'I2 is 
the energy of an isolated vertical Bloch line, and 9 y  is the 
vertical Bloch line interaction energy. For n = 1 in a DS 
with a single-polarity domain wall 

where A = (a/4n-) "' is the width of a solitary vertical Bloch 

In order to estimate the position of the points y, and y, 
in Fig. 1 (for the case where y,,, <d  and we can neglect long- 
range interactions by the "elastic" fields around the MB), 
we will use a model which approximates the dislocation di- 
pole by a rectangular break in a stripe domain of width d,  or 
d, on the portion of lengthy. Then the increase in the poten- 
tial F,,, (y) due to the formation of a pair for d<l, and 
HII < 4n-M equals29 

f 2n-I [ y  arctg ( ~ 1 , - ' )  
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The quantities y, and y, are determined by numerical 
calculation from the equation 

+ 2n-1 [arctg ( ~ 1 , - ' )  

The quantities d,,, (Hil ) can be taken to be the same as 
for the ordered stripe DS; the form of the function 3, (y) is 
assumed to be known. 

The structure of the core can turn out to have a strong 
influence on the process of MD motion. Thus, for example, if 
the "tip" of a stripe domain has the form of a wedge with an 
angle q, at the vertex, and if during the motion of the domain 
it expands with a "transverse" velocity v, , then the velocity 
of MD motion will equal v =  V + v, [ sin(q, /2) ] - ', where 
the value Vis determined by Eq. (33). If the angle q, is small, 
then t c a n  considerably exceed V. It is possible that this, too, 
has been observed by the authors of Ref. 30. 

Let us discuss the effect of a field H, on the results we 
have obtained. Since increasing H, results in a decrease in 
the quantity do (for Hi, = const), the stripe DS which forms 
for a certain value of HI, with H, = 0 will become unstable 
against the appearance of a sinusoidal modulation of the pro- 
file of the domain wall as H, increases. If the field H, is 
directed along the domain wall, then for certain initial con- 
ditions it is possible to have repolarization of the Bloch do- 
main wall if the direction of the vector M at the center of the 
domain wall is antiparallel to H, This repolarization can 
occur as a result of the birth of vertical Bloch line pairs and 
subsequent attraction of these pairs towards the edges of the 
film. An investigation of the kinetics of repolarization of 
Bloch domain wall can be carried out in the same way as in 
paragraph 1.3. The velocity of a solitary vertical Bloch line 
under the action of a field H, is expressed in terms of the 
vertical Bloch line mobility 

where Y = A, ( 3 A 3 ,  ) - I, in the following way:" 

Here FL1' = ~PA,I,MH, is the force exerted on the vertical 
Bloch line by the field H, ; F p' = 2aAo I, M H  :" is the coer- 
cive force; and H :" is the coercive field. Using Eq. (48) we 
find the diffusion coefficient of the vertical Bloch line 

The concentration N(y) of vertical Bloch line pairs of length 
y and the rate J of formation of vertical Bloch line pairs per 
unit length of the domain wall will be determined by rela- 
tions (38) and (41), respectively, where 

The function 9, (y) is analogous to that shown in Fig. 
1; the position of the points y, and y, is determined by nu- 
merical calculations,29s31 while y,, and y, are determined by 
the expressions 

After this, from the relations JLT' - 1 and v, 7'- L, we can 
estimate the average lifetime of a vertical Bloch line (for 
L <Iy ), which comes to 

where L is the mean distance between the vertical Bloch line 
(along the domain wall) in a pair until it annihilates with 
other vertical Bloch lines. For L $1, the average times re- 
quired to create a vertical Bloch line pair and to annihilate it 
at the boundaries of the film are determined by the quantities 
T" - (JI, ) - and T'"-1,v~ ', respectively; the average time 
during which the vertical Bloch line pair exists is 
7 = max{rn, T'"). In contrast to the case where the period of 
the DS changes because of formation of MD pairs, the force 
FL" acting on a vertical Bloch line does not change in the 
course of repolarization of the domain wall. 

2. EXPERIMENT AND DISCUSSION OF RESULTS 

Our experimental investigation of the behavior of MD 
in a regular stripe DS was carried out in quasi-uniaxial epi- 
taxial films of the ferrite-garnet compound 
(YGdYbBi), (FeAl) ,O,,, which was grown on a nonmag- 
netic substrate made of Gd, Ga, O,, with ( 11 1 ) orientation. 
The intrinsic DS of such films usually is labyrinthine; a regu- 
lar stripe DS is created with the help of the following meth- 
od. Using a magnetic head, a harmonic oscillation was re- 
corded on a magnetic strip whose spatial wavelength A, was 
close to the equilibrium period do of the labyrinthine DS of 
the film at room temperature. Then the strip with its record 
was placed in close contact with the magnetic film and was 
pulled through along the entire surface of the film in such a 
way that the direction of motion of the strip coincided with 
the direction of the "dashes" of the record. The procedure 
described allowed us to form an almost ideally regular stripe 
DS which was preserved after withdrawal of the magnetic 
strip. By changing the pressure on the strip in the process of 
forming the induced DS in the film, we were able to vary the 
density of MD from zero to lo2 cm - 2  and larger, obtaining 
both single MD and dislocation dipoles of various types 
(Figs. 2 and 3 ). 

If MD were present in the original DS, then the average 
period 2 of the DS can be changed within certain limits be- 
cause of the motion of the latter. In a defectless film of finite 
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FIG. 2. Behavior of an isolated dislocation dipole in the field Hi,  for film FIG. 4. Dependence of the position of the core of a single dislocation on 
No. 1 (do = 11 pm):  a-0 Oe; b--6.5 Oe; c-10.5 Oe; d-13.2 Oe. field HI, for film No. 2 (d,, = 6 p m )  . 

Yo1P'" 

size, if the values of H and Tare fixed, the MD are spaced in 
such a way that the average period 2 will equal (if this is 
possible) the thermodynamic-equilibrium value do (H, T ) ;  
changing H or T causes a shift in the noninteracting MD to 
new positions without hysteresis. 

In actual films, because the cores have a tendency to be 
pinned at defects, the motion of MD takes place as a succes- 
sion of jumps. This is illustrated by Fig. 4 where we show 
how the position of the core of a solitary dislocation yo de- 
pends on the magnetic field Hll for film No. 2. The function 
yo (HII 1 resembles do (Hll ), since for fixed increments I AHII I 
the tensile stresses that act on the MD core are proportional 
to the difference do (HI[ + AHlI ) - do (Hll ) which increases 
as [AHII I increases. It follows from Fig. 4 that the coercive 
force for cores lies within the limits 1-10 Oe. 

Photographs of the various dislocation dipoles and soli- 
tary MD in the DS for film No. 1 are shown in Figs. 2 and 3, 

600 -- -- 
400 

a b 

200 

I -- 
P - 

which correspond to various original MD densities. It is 
clear that dislocations can be bound in pairs not only when 
they are located in a single stripe domain [e.g., Fig. 2 for 
dipole No. 1; the left-hand lower dipole (No. 2)  in Fig. 3,l-  
4; the left-hand upper dipole (No. 3) in Fig. 3, 1-11; the 
right-hand lower dipole (No. 4) in Fig. 3, 1-41 but also in 
cases where the MD are separated from each other by one or 
several "unbroken" stripe domains [the right-hand lower 
dipole (No. 5 ) in Fig. 3,5-71. The behavior of the dipoles in 
a magnetic field is illustrated in Fig. 5 where we show Hll as a 
function of the distance y between vertices of the dislocation 
cores in a pair. 

For a pair in whose cores M - H  < 0 holds, a monotonic 
increase in y is characteristic (if the dipole was formed in a 
field HII = 0 )  as HII increases (curves 1, 2, 4 in Fig. 5; the 
labels of the curves correspond to enumeration of the dipoles 
shown in Figs. 2 and 3); for a certain value of Hll dissociation 
begins. If the dipoles are formed in a field Hll #O (dipole No. 
5 in Fig. 3,5-7, which was formed during the dissociation of 
dipoles No. 2 and No. 4 in a field 11 Oe <HI ,  < 12.7 Oe), 
then y initially passes through a minimum and then begins to 
increase rapidly and monotonically (curve 5 in Fig. 5).  

For a pair with cores in which M-H > 0, the distance y 
initially decreases monotonically as HII increases, and then, 
after bulk dissociation and "dispersal" of the dipoles formed 

- 

- 

- 

by MD with M . H  < 0, the distance y increases slightly due to 
an increase in the average period of the DS; after this the 
decrease continues until the pair annihilate (curve 3 in Fig. 
5 1. 

From this we see that dislocation dipoles can be divided 
into two groups, depending on the direction of M in the cores 
relative to  the field HI I  . Dipoles in the first group are charac- 
terized by an increase in y with increasing Hll and dissocia- 
tion at a certain critical value of HI, = Hi ' ) ;  in dipoles of the 
second group, y decreases with increasing Hll and for 
HII =Hi2' annihilation of a pair begins, where 
IH a 2 )  I > I H 6" 1 .  AS the direction of the field HI I  changes, the 
dipoles of the first group begin to behave like dipoles of the 
second group and conversely. 

I 1 

c d 20 40 n,,, 0 e  00 

FIG. 3. Behavior of solitary and bound dislocations of various types for 
solitary dislocations and bound pairs of similar MD do 

film No. 1 in a field HI (in Oe) : 0 ( I ) ,  5.5 (2), 8.8 (31, 11.0 (4), 12.7 (51, 13.2 not exhaust the set of possible magnetic defects in a 
(6), 14.3 /7), 16.1 /8), 16.3 (9), 18.7 ( l o ) ,  22.0 ( I ] ) ,  25.3 (12). DS. Thus, for example, a "finger" of a neighboring stripe 
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FIG. 5. Dependence of the distance between cores of bound dis- 
location pairs of various types on the field HI, for film NO. 1. 

domain with the same direction of the vector M as in the ti%= (CJ,)  '" (B2/4n) ln (rl/ro) ., 
cores (Fig. 3 , l )  can be "sucked" into the gap between the 
cores of a dislocation dipole; MD with the vector M oriented be cancelled by the entropic contribution which comes to 
antiparallel in their cores and located in neighboring stripe 

-TGS=-2T In (rL/ro)  ; domains can bind in pairs (Fig. 3, 1,2) .  Such defects, how- 
ever, are "self-healing" in relatively weak magnetic fields 
HII . see also Ref. 9. 

A comparison of the results of our experiments with the 
IT. W. Collins, J. Iazdag, and J. Kochan, IEEE Trans. Magn. MAG-11, conclusions of theory indicates good qualitative agreement 1088, 1975. 
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which a DS reconstructs as the external parameters vary is Materials for Microelectronics: abstracts from the Proc. IX All-Union 

School-Seminar at Saransk, Mordovian State University, 1984, p. 53. confirmed' We have observed "nonreciprocal" behavior of 
,P. Mohlo, J. Gouzerh, J. C. S. Levy, and J. L. Portesil, J. Magn. Magn. 

dislocation pairs in a field Hll  : for MT TH, where M is the M ~ ~ .  54-57, 857 (1986). 
magnetization vector in the cores of the dislocations, as the 
field intensity Hll increases we observe pair annihilation; for 
MT lH, we observe dissociation. 

The question of how an MD behaves in a stripe DS was 
discussed in Ref. 4; however, the theoretical analysis carried 
out in Ref. 4 does not apply to actual systems, since the au- 
thors used the model of an isotropic crystal, which does not 
admit the existence of regular stripe DS; a stable DS, accord- 
ing to the classification of Ref. 9, corresponds to the "liquid- 
crystal" phase. The expressions given in this paper for the 
effective moduli of rigidity of the DS and the functional de- 
pendence of the DS period on film thickness and magnetic 
field are erroneous. The transition from the BKT phase 
(strictly speaking, it is only for this phase that the theory 
developed in paragraphs 1.1-1.4 is valid) to the "liquid- 
crystal" phase is accompanied by a massive multiplication of 
the MD (see Ref. 9); in this case the static and dynamic 
characteristics of the MD must change significantly. Equa- 
tions for the transition line from the BKT phase to the "liq- 
uid-crystal" phase for an equilibrium stripe DS were ob- 
tained in Ref. 9; for the nonuniform (i.e., "compressed" or 
"under tension") DS this line on the HLHII (or THll ) plane 
shifts in the direction of lower values of H, (or T), since the 
"elastic" stresses in the region of two-dimensionality de- 
crease the "elastic" moduli C, and C,. The equation for the 
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condition that the energy expended in the formation of a 
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