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The Brownian coagulation of highly dispersed aerosol particles in a stochastic medium with small 
velocity fluctuations is analyzed. The fluctuations of the velocity field are assumed to be Gaussian 
with a uniform pair correlation function. Exact equations are found for the mean field of the 
nonuniform size distribution function of the particles. An effective Brownian-coagulation 
equation is constructed for a velocity correlation function of a specific type. The relationship 
between the turbulent diffusion coefficient and the effective coagulation kernel is determined. 

1. INTRODUCTION 

Coagulation is the predominant mechanism for the 
transformation of the size distribution of highly dispersed 
aerosol particles in many natural and industrial disperse sys- 
t e m ~ . ' - ~  In general, the theoretical work on this mechanism 
has been carried out in the approximation of a coagulation 
kinetic equation, which is written for the case of a homoge- 
neous medium as 

Here 

in particular phenomena associated with a nonuniformity of 
the distribution function. They mentioned that fluctuations 
of the distribution function should in general increase the 
rate of coagulation and lead to a more rapid appearance of 
large particles. 

The equation for the coagulation of aerosol particles in 
a stochastic medium was first derived, under several simpli- 
fying assumptions, in Ref. 4. However, the corresponding 
stochastic equation was not solved there, even in that simpli- 
fied formulation of the problem. Consequently, corrections 
describing turbulent diffusion and coagulation were ex- 
pressed in terms of the Green's function of the fluctuating 
component of the distribution function in a formal way, so it 
was not possible to derive an explicit expression for the tur- 
bulent diffusion coefficient or for the effective coagulation 
kernel. It is also important to note that the term describing 
the Brownian diffusion of aerosol particles was omitted from 

0 the outset in that paper. 
is the particle collision integral, and f ( t ,  V )  is the size (or  In the present paper we carry out a systematic averag- 
volume) distribution function of the particles, which is relat- ing of the equation for nonuniform ~~~~~i~~ coagulation 
ed to the number of particles in the system by over the ensemble of realizations of the stochastic velocity 

The symmetric function S (  V,  , V, ) is the "coagulation ker- 
nel." I t  characterizes the probability for the coagulation of 
two particles and is determined by the particular features of 
the interaction of these particles in the medium. In the case 
of a Brownian coagulation, the following expression is or- 
dinarily used for S( V,  , V, ) : 

where R ,  and D( V, ) are respectively the radius and Brow- 
nian diffusion coefficient of particle a. 

An important question in coagulation theory is that of 
dealing with the effect of turbulent fluctuations of the disper- 
sion medium on the evolution of the particle size distribu- 
tion. A turbulence can evidently change the nature of the 
relative motion of particles, so most studies have been aimed 
at a description of the microscopic physics of the closing of 
two particles on each other in a turbulent medium with the 
goal of determining the corresponding coagulation kerneL3 
It  has usually been assumed that the medium is homoge- 
neous. 

Examining possible mechanisms for the effect of turbu- 
lence on coagulation, Voloshchuk and Sedunov' singled out 

field of the medium, using a generating-functional method. 
This approach makes it possible to derive an equation for the 
stochastic coagulation of highly disperse aerosol particles in 
the approximation of a weak turbulence under the most gen- 
eral initial assumptions. We treat the aerosol particles as a 
passive impurity; this is a good approximation for Brownian 
particles5 In addition, we assume, as in Ref. 4, that the co- 
agulation kernel S (  V ,  , V2 ) is independent of the turbulence 
fluctuations. Note that the calculations below impose no re- 
striction on the function S( v , ,  V2 ), but for definiteness we 
will restrict the discussion to the case of Brownian coagula- 
tion. 

2. GENERATING FUNCTIONAL OF THE DISTRIBUTION- 
FUNCTION FIELD 

Let us consider the kinetic equation for the nonuniform 
Brownian coagulation of particles in a stochastic medium: 

The function f(t ,  r,  V) in ( 3 )  is a nonuniform size distribu- 
tion function of the particles, and u( t ,  r )  is the hydrodynam- 
ic velocity of the medium. This velocity can be written as the 
additive sum of a regular component and a fluctuating com- 
ponent: 

u(t, r )  =(u( t ,  r )  )+6u(t, r ) .  (4 )  
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For simplicity we assume (u) = const. Here and below, the 
angle brackets ( (...) ) mean an average over an ensemble of 
realizations of the stochastic field u. For the analysis below it 
is convenient to forpally introduce a deterministic source 
density e ( t ,  r, V) and to transform to an equivalent form of 
the collision integral: 

{ f , f } = -  1 d v l l  ~ V ; P ( V .  vIf, v2~) f (v l f ) f (v , ' ) .  ( 5 )  

where 

Using this result, we can rewrite Eq. ( 3 )  in the comoving 
coordinate system as follows: 

a j ( V ) l d t - D ( V )  V ,2J(V)+6uVrf  ( V )  

Introducing the simplifying notation 

( t ,  r, lJ)=(l), V , , = V , ,  V , , 2 = \  ,', 
6(t,-t,)6(r,-r,)6(Vl-V,) =6(1-2) ,  

(d/at l -D(Vi)  V , v ( 1 - 2 ) = L o ( 1 , 2 ) ,  

6 u ( l )  V 1 6 ( 1 - 2 ) = ~ ( 1 ,  2 ) ,  

we can put Eq. ( 6 )  in a compact form which is convenient 
for the analysis below: 

As usual, a repeated index means an integration. 
From the symmetry property of the coagulation kernel 

S( V,,V3 ) and from the definition of the function 
P( V,  , V, , V,  ) follows a symmetry property of the function 
9. 

9 ( 1 , 2 , 3 ) = 9 ( 1 , 3 , 2 ) .  

Equation ( 7 )  describes the individual realizations of a 
stochastic field of a distribution function. From the math- 
ematical standpoint, this equation is a differential equation 
for the scalar field f with a random coefficient u and a nonlo- 
cal quadratic nonlinearity. Problems of this type can be re- 
formulated through the use of the concept of a generating 
functional and its path-integral representations. Formally, 
this procedure reduces the description of the classical sto- 
chastic problem to a quantum field theory, so one can con- 
struct a perturbation theory and derive corresponding Dy- 
son and Schwinger equations. In contrast with the 
well-developed case of an equation with a random source,697 
the equation under consideration here contains a random 
coefficient of the field function. This circumstance should of 
course lead to a new type of generating functional. 

Let us go through this procedure for the random fieldf, 
whose individual realizations are described by Eq. ( 7 ) .  By 
definition the generating functional is 

The cumulative mean fields f are determined in terms of 
In Wwith the help of the operation of variational differenti- 
ation: 

Writing the definition of the generating functional, we 
have 

~ 1 %  61 = ( e x p ( i q f ) ) = J  Df im[ f ,  q ] e x p ( i q f ) ,  

where 9 [f, .fi] is the probability density of state f in the 
presence of an external field i j ,  and Df means a functional 
integration over the fieldJ For brevity here and below, we 
omit the arguments from the functions and operators where 
it is possible to do so without causing any confusion. The 
probability density .? is expressed in terms of the mean of 
the 6-functional over individual realizations of the stochas- 
tic fieldf: 

YI f ,  4 1 = ( 6 ( f - f [ u ,  G I ) ) ,  

where the individual realizationfiu, 7j] is a solution of Eq. 
( 7 )  with the corresponding u and 6. 

Using the formal relation 

for the 6-functional and its representation as a Fourier func- 
tional integral, 

we find the following expression for W: 

We can show that in this case the determinant in ( 8 )  is a 
constant. For this purpose we note that we have 

6  
det [ - ( L 0 f + u f + F f j - i )  ] 

Sf  

The Green's function Go = L C  ' here is determined by the 
equation 

L o ( l ;  I 1 ) G o ( l ' ;  2 )  =6(1-2) ,  ( 9 )  

and it satisfies the causality principle, being retarded. The 
operator M is introduced by means of 

6( t*- t , )M(I ,  2 ) = u ( l ,  2 ) + 2 F ( I ,  I f ,  2 ) f  (1 ' ) .  

I t  follows that the operator M is t-local and does not contain 
time derivatives. 

The application of the operation tr to a series which is 
an expansion of a logarithm generates closed cycles of the 
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retarded functions Go. All such closed cycles which contain 
more than one function Go obviously vanish. The remaining 
cycle tr [Go ( l , l l ) S ( t  ; - t ,  )M( 11,2) ] requires a separate 
analysis, since the function Go is discontinuous when the 
times are equal. A cycle of this sort can naturally be rede- 
fined as zero.627 To  demonstrate the point, we note that a 
term of the type Go ( 1',2)F(2',3',11) formally contains 
S ( t  ; - t ; ) in the vertex F ,  but actually the physical pro- 
cess of the coalescence of field quanta ( the coagulation of 
particles) occurs over a finite time, and the termination of 
the interaction event cannot affect its beginning. I t  is thus 
necessary, strictly speaking, to introduce infinitely short re- 
tardation times in the determination of the vertices describ- 
ing the interaction. The cycle under consideration then 
makes a zero contribution. 

The determinant in ( 8 )  is a constant which (as is easily 
shown) is insignificant in a determination of correlation 
functions. I t  is thus possible to rewrite ( 8 )  as 

We further assume that the ensemble of realizations of 
the stochastic velocity field Su is Gaussian with a zero mean 
and a uniform pair correlation function 

One can then show that 

<exp(ifuf))=exp[-'l,f(l')f(2')K(1', 2', 3 ' , 4 ' ) f  ( 3 ' ) f ( 4 ' )  1, 

(11) 

where 

Using this relation, we find the representation of the generat- 
ing functional which we need: 

I t  has thus been shown that stochastic problem ( 7 )  with a 
Gaussian random coefficient of the field function is equiva- 
lent to a quantum theory of fieldsf, f with an action 

3. PERTURBATION THEORY AND DIAGRAM TECHNIQUE 

To calculate W by perturbation theory, one ordinarily 
uses the representation8 

In the absence of an interaction (,% = 0, K = 0 )  the 
generating functional is quadratic in the fields and can be 
evaluated by making use of the property that the path inte- 
gral is invariant under changes of integration variable of the 
functional-shift type, i.e.,&j' f 2, f- f + c, followed by a 

choice of functions i. and c on the basis of the condition that 
the terms which are linear inj'and f in the argument of the 
exponential function vanish: 

The function f, here is the solution of the homogeneous 
equation . 

Lo (I, 1') fo (1') =O. 
A perturbation theory is constructed by expanding the 

first exponential function in ( 13 ) in a power series in .% and 
K. It is convenient to associate graphical symbols-Feyn- 
man diagrams-with the cumbersome analytic expressions 
which arise in the perturbation theory. Feynman diagrams 
make it possible to interpret the various factors and terms as 
processes by which particles propagate and undergo conver- 
sions. 

We introduce the following notation: 
6 6 6 

wherem = 0 , 1 , 2  ,... a n d k = 0 , 1 , 2  ,... e x c e p t m = k =  1.We 
write the diagram for the values m = k = 1 separately: 

The case is singled out because this quantity describes 
the mean linear response of the field f to a unit external agent 
i j ;  in the case F = 0, K = 0 it is the Green's function of 
linear equation (9 ) .  To  demonstrate the point we use ( 14) 
and write 

Here (...),, means that generating functional W, is used in 
calculating the corresponding mean. 

We also assume 
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The dots here can be replaced by any combination of dia- 
grams with a single incoming or outgoing solid line, respec- 
tively. An operator vertex with a dashed line implies taking 
the gradient of the solid line coming into it. 

As usual, an integration is carried out over continuous 
arguments, and a summation is carried out over vector in- 
dices, at interior points of diagrams. 

An important property of this diagram technique is that 
all the diagrams which have only incoming lines vanish (cor- 
respondingly, all the mean values containing only the auxil- 
iary fields f vanish) : 

Consequently, any diagram which has only incoming lines 
necessarily contains a closed cycle of retarded propagator 
lines G,, and vertices .F. It is therefore zero. The properties 
of diagrams of this type are discussed in Ref. 6; see Ref. 9 
regarding the vanishing of the mean values which contain 
only auxiliary fields. 

4. SCHWINGER EQUATIONS OF BROWNIAN COAGULATION 
IN A STOCHASTIC MEDIUM 

It is preferable to construct a perturbation theory with 
the help of a generating functional rather than to repeatedly 
iterate the coagulation equation and then take an average, 
since it is necessary to calculate only the corresponding vari- 
ational derivatives. In addition, the field formalism makes it 
possible to construct exact equations which relate various 
correlation functions without resorting to a perturbation 
theory. The derivation of these equations in a perturbation 
theory requires summing infinite diagram series-a labori- 
ous problem for a nontrival theory. We will derive some 
equations which relate the various correlation functioris of 
this problem by making use of the invariance of the path 
integral under a change in the integration variable of the 
functional-shift type:)-+) + @, where @ is an arbitrary fixed 
function: 

6 + i 6 6 K(1, l', 2', 3') -- 
(-i)6; (1') i6q (2') i6q (3') 

We express the variational derivatives of the generating 
functional which appear in ( 15) in terms of the derivatives 
of the logarithm of this functional, and we set 7 = 0. As a 
result we find the following for our problem, in the absence 
of determinktic external sources (?j = O), and under the as- 
sumption (f) = 0: 

This equation is an exact variational-derivative equa- 
tion for the mean field of the distribution function of the 
aerosol particles. By analogy with quantum field theory, we 
call it a "Schwinger equation." The left side of (16) corre- 
sponds to coagulation equation ( 3 )  in the absence of fluctu- 
ations (Su = 0) .  Terms describing the effect of fluctuations 
appear on the right side of (16). 

In  diagram notation, the Schwinger equation for the 
mean field is 

In ( 17) and in the expressions to follow, we omit those 
diagrams which are zero in accordance with properties of 
our diagram technique. Schwinger equations determining 
the terms on the right side of ( 17) are found by analogy with 
the derivation of ( 16). In this manner we find a system of 
exact equations which relate different correlation functions. 

We can write Schwinger equations for the vertices on 
the right side of Eq. ( 17): 
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5. EFFECTIVE EQUATION FOR THE MEAN FIELD OF THE 
DISTRIBUTION FUNCTION 

Let us use these results to evaluate the diagrams which 
describe the effect of fluctuations in Eq. ( 17) for the mean 
field under the assumption that the turbulent fluctuations 
are small, i.e., 

where v,, = ( (Su') ) determines the amplitude of the ve- 
locity fluctuations, and R,, and r,, are a correlation length 
and a correlation time of the velocity field of the medium. 

To carry out the calculations, we use a perturbation 
theory in the correlation function B, retaining terms O(B). 
In addition, allowing for the condition for the applicability 
of the kinetic equation for Brownian coagulation, R " 4  1 
(Ris the mean density of the aerosol particles), we naturally 
include in the description only the terms of first order in the 
coagulation kernel Sand thus of first order in the vertex .7. 
Using Schwinger equations ( 18)-(20) and the correspond- 
ing equations for the other vertices in them, we find the fol- 
lowing for the diagrams on the right side of Eq. ( 17): 

The expressions in square brackets correspond to cor- 
rections O(B) to the effective coagulation vertex T, which is 
defined by 

<f ( l ) f  (2)f (3) >=2G(1,  1') I? ( 1 ' ,  2', 3')  G(2', 2 )  G ( 3 ' ,  3 ) .  

The vertex T is strongly coupled (one-particle-irreducible) 
and describes a coalescence (coagulation) of particles with- 
out consideration of effects which stem from the propaga- 
tion of individual particles before and after the coalescence. 
This approach is in complete accordance with definition 
(22) .  It is important to note that within O ( B F 2 )  the coagu- 
lation vertex does not depend on the mean field of the distri- 
bution function of the aerosol particles, being determined 
exclusively by the seed coagulation vertex F and by the 
correlation function B  of the medium. A dependence of the 
effective coagulation vertex on the mean field of the distribu- 
tion function arises in the following orders of perturbation 
theory. 

The diagrams on the right side of (21 ) correspond to 
nonlocal operators which are operating on the mean field. In 
addition to the nonlocality in terms of volumes V (this non- 
locality is also a property of the seed coagulation vertex), 
there is a nonlocality in terms of the spatial and temporal 
variables in these diagrams. For example, 

X K(4 ' ,  5', 6', 7 ' )  ( f  ( G ' )  > ( f  ( 7 ' )  > 
= P ( v , ,  V2' ,  V3' )Go( t t - t2 ' ,  ri-r,', Vzr)G0(t , - t3' ,  r1-r3', V3') 
XR,.,, (t,'-t3', r2'-r,') V a ' < f  (t , ' ,  r,', I r , ' ) > ~ P ' ( f  ( t3 ' ,  rsr ,  V 3 ' ) ! .  

Here 

Go( t , - t , ,  r,-r,, V , )  =0( t , - t , )  [ 4 n D ( V , )  ( t , -&)I -" .  
x exp[-- ( r , - - r2 )2 /4D(V, )  ( t , - t z )  I 

is the retarded Green's function of the diffusion ea_uation for 
an unbounded medium. The Green's functions GU and Go 
are related by 

Equation (21 ) thus gives us an exact expression for the 
diagrams O(B) + O(B.Y-), whose specific form can be cal- 
culated either analytically or numerically, if the pair correla- 
tion function of the velocity field of the medium is known. 

It is convenient to calculate the diagrams in the momen- 
tum representation, in which the functions go correspond to 
the following Fourier amplitude: 

For specific calculations we specify the pair correlation 
f u n ~ t i o n ~ ~ " ~  

Specifically, we have 
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where R = r, - r, and B, = ( 1 / 3 )  u i  . In other words, B, 
determines the strength of the velocity fluctuations. 

It is easy to see that the Fourier amplitude of this corre- 
lation function is 

It can be shown that the following conditions hold for 
many real aerodisperse systems: 

1. The correlation radius and time of the turbulent ve- 
locity fluctuations of the medium are much smaller than the 
characteristic length and the characteristic time, respective- 
ly, of the variations of the mean field, 

2. The characteristic spatial-correlation length is much 
larger than the distance over which the particle densities 
equalize as a result of Brownian diffusion over the correla- 
tion time 7,; i.e., 

These conditions make it possible to simplify the calcu- 
lations substantially and to derive approximate analytic ex- 
pressions for the diagrams of interest: 

Here 

A,  ( T I E )  =3/20 ( z )  f-' ( l + ~ / t ) - ~ ' 2 ,  

E='/,R02 [ D ( V Z 1 )  + D ( V S f ) ]  - l ,  

since the time scale of Brownian coagulation is (RDR) - '. 
Using conditions (27) and (25),  we find the following 

expression for the average collision integral: 

(-  1 ) 9 ( 1 ,  l ' ,  2 ' )  [1+'/sNI (l ' ,  2')  V l * , , ~ ,  V3."'+i l '2Vz-2]  
x ( f ( l f ) > < f ( a ' ) > ,  

where 

N ,  (1' ,2')=2Boto[D(Vi')  + D(V2') I-'RoZ, 

iVz=2Bo~02. 

The effective equation for the mean field of the distribu- 
tion function of the aerosol particles thus takes the following 
form when the turbulence velocity fluctuations are weak: 

- The expression for the effective diffusion coefficient, 

D,, =D ( V )  +DT, 

where D ,  = B,T, is the turbulent diffusion coefficient, is the 
same as the result found in a corresponding calculatior~ in 
first order in correlation function (23) for a diffusion equa- 
tion without coagulation (Ref. 1 l ,  for example). 

A further simplification can be achieved by assuming 
that the mean distribution function is a sufficiently smooth 
function of the spatial coordinates. Using condition (25), we 
can then ignore the third term in the effective collision inte- 
gral. As a result we find 

- 6 ( V - V , - V , ) l S T ( V l r  VZ)R02V<f  ( t ,  r ,  V , ) > V ( f  ( t ,  r,  V 2 ) ) .  

(29) 

Here 

is the renormalized kernel of Brownian coagulation in a tur- 
bulent medium. 

Using D (  V )  D,, and integrating over volumes in 
(29), we easily find a corresponding equation for the mean 
density of the aerosol particles: 

The second expression in (26) obviously localizes along a 
the spatial and temporal variables if it is assumed that the d t ( N ( t l r ) ) - D ~ ~ 2 ( ~ ( t ,  r ) >  
characteristic spatial-correlation length is much shorter - m 

than the distance over which the particle densities are equal- 1 
ized by Brownian diffusion over the characteristic time of =--.I d v I  ~ ~ V ~ I S ( V , .  ~ , ) ( f ( t .  r, v,)  > 
the variation of the mean field: 2 "  0 

This condition also corresponds to reality in several cases, ( 3 0 )  
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6. CONCLUSION 

It can be seen from the equation found for the mean 
distribution function of the aerosol particles that in the ap- 
proximation of the model of a passive impurity the case of a 
uniform coagulation ( V (  f )  = 0) leads to simply a renor- 
malization of the diffusion coefficient, having no effect on 
the collision integral. 

For passive impurities, all the coagulation effects of the 
turbulence are thus due exclusively to the nonuniformity of 
the mean distribution function. In addition, the nonnegati- 
vity of the turbulence correction in the collision integral con- 
firms the suggestion by Voloshchuk and Sedunov' that a 
coagulation of aerosol particles is accelerated in an inhomo- 
geneous stochastic medium. 

It is interesting to examine the structure of this correc- 
tion. For this purpose, we write it in the form 

where 
Q&(t, r, vi) =4nRo ~ D T V  (f ( t ,  r, V t )  >, 

Q R ( ~ ,  r, Vi, Vz)=43t(Ri+Rz) [ D (  Vi)+D(V2)]  V<f ( t ,  r, V Z )  ). 

It can be seen that the turbulence correction is propor- 
tional to the product of the mean quasisteady integral fluxes 
of aerosol particles to a correlation sphere ( Q R o  ) and to an 
absorbing sphere (QR 1. 

For Brownian coagulation, the condition 

s/sTKi~ 

usually holds, so the turbulence correction in the collision 
integral may play a governing role if the gradients of the field 
of the distribution function are sufficiently large. Conse- 
quently, the conclusion, reached in Ref. 4, that turbulence 
has a negligible effect on the coagulation term under condi- 
tions (24) is not generally correct, in our opinion. 
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