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The nondegenerate Anderson model for mixed-valence impurities is used to derive an expression 
for the electrical conductivity which allows not only for radical changes in the energy spectrum and 
damping of the conduction electrons as a result of hybridization of the s and d electrons, but also for 
background scattering mechanisms. A theoretical analysis accounts for the "anomalous" change in 
the conduction electrons observed in Hg-Fe-Se semiconductors and dependent on the iron 
concentration. The anomalous change is explained without assuming the formation of a Wigner 
crystal from Fe' + ions at low temperatures. 

1. INTRODUCTION 

The system of compounds Hg, -,Fe,Se is attracting 
attention because of a number of interesting features exhibit- 
ed by the dependences of the physical quantities on the con- 
centration N, of the iron impurity. Numerous experimental 
 investigation^'^ have demonstrated that the majority of the 
physical properties of Hg-Fe-Se semiconductors are gov- 
erned by the position of the resonant level Fe2 + (3d 6, rela- 
tive to the bottom of the conduction band: for example, the 
density of free electrons is n ,  = Nd if 10" cm -'gNd gN,* 
(N,* = 5 X 1018 cm-') and the Fermi energy <, increases 
on increase in N, reaching the resonant level R, = 220 f 10 
meV. A further increase in Nd has practically no effect on 
the Fermi energy or on the density of the band carriers 
n, zN,*.  

The low-temperature dependences of the mobility 
p ( N d  ) and of the Dingle temperature T, (N, ) on the con- 
centration Nd are unusual. An increase in the iron concen- 
tration in Hg-Fe-Se increases the mobility p, which reaches 
its maximum at Nd = N,,,, , and rises in the process by a 
factor of 4-5, but a further increase in Nd reduces the mobil- 
ity p. According to Refs. 1 and 2, the Dingle temperature 
decreases on increase in N, and passes through a minimum 
at Nd - N,,,, , decreasing in the course of this process by a 
factor TD(N,*)/TD(N,,,, 1-3 - 4. 

A theoretical explanation of the anomalous dependence 
of the mobility on the iron concentration has been provided 
in the literature on the basis of the following models. 

1. In one model it is assumed that a localized Wigner 
crystal of charged Fe" ions forms in the range N, %N,* 
(Refs. 5 and 6 ) .  

2. In the other model it is assumed that the conduction 
electrons are scattered resonantly by the d impurities in the 
form of the Fe2+ ions, the Breit-Wigner formula is used, 
and it is assumed that the Coulomb gap in the impurity den- 
sity of states is the mechanism that weakens the resonant 
~cattering.',~ Clearly, in spite of the weakening of such scat- 
tering because of the formation of the Coulomb gap, it repre- 
sents an additional scattering mechanism and, in accordance 
with the Matthiessen rule, can only reduce the band carrier 
mobility. 

In spite of its attractiveness, the model of formation of a 
three-dimensional Wigner crystal from the Fe3 + ions is not 
free of shortcomings which force us to approach critically 

the suitability of this model in a quantitative interpretation 
of the experimental data.6 First of all, the experimental val- 
ues of the temperature at which the mobility anomalies dis- 
appear ( T >  100 K )  are far too high for the ordering tem- 
perature of the Fe3+ ions. Secondly, simple estimates show 
that the average distance between charged donors is compar- 
able with the screening radius. Obviously, under these con- 
ditions the screening weakens the Coulomb interaction be- 
tween the iron ions F e 3 + ;  obviously, one cannot expect 
formation of a completely regular l a t t i ~ e . ~  There are also 
experimental data which are not explained by the model pos- 
tulating formation of a Wigner crystal. For example, an in- 
crease in the iron concentration from N, - 1 x 1018 cm ' to 
N ,* increases-according to Ref. 1-the mobility by a factor 
of 2-3, but in this range we have NFe,, zN, and it is mean- 
ingless to talk of the formation of a Wigner crystal if an 
allowance is made for the random nature of the iron impuri- 
ty distribution. It should be pointed out that at present there 
is no direct confirmation of the Wigner crystallization mod- 
el. 

A common shortcoming of the theoretical treatments 
given in Refs. 5-8 is the absence of calculations carried out 
starting from first principles: the influence of the d level on 
the energy spectrum of the conduction electrons is ignored; 
the contribution of the various mechanisms to the transport 
relaxation time r ( E )  is allowed for on the basis of the Matth- 
iessen rule ( T  ' = Z,T,- ' ). We shall show that these ap- 
proximations and the use of the Breit-Wigner formula for 
the contribution of the resonant scattering (used in Refs. 7, 
8, and 10) fail to provide a satisfactory description of the 
transport properties of semiconductors containing mixed- 
valence impurities. 

We shall consider the scattering of the conduction elec- 
trons on mixed-valence iron impurities on the basis of the 
Anderson model" and we shall allow for the background 
scattering mechanisms (such as the scattering by charged 
impurities or defects); we shall also analyze the energy spec- 
trum and the damping of the branches of the conduction 
electron spectrum and calculate the density of states allow- 
ing for the hybridization of the d level with the conduction 
band states. We shall find the transport relaxation time of 
carriers for the scattering by mixed-valence impurities and 
we shall show that the Matthiessen rule is inapplicable when 
one of the scattering mechanisms is resonant. We shall adopt 
a model with a single fitting parameter, which is the s-d 
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hybridization constant, and explain qualitatively the experi- 
mentally observed'-4 dependences n, (N, ), 6, (N, ), 

p(N,  ), as well as the temperature dependencep( T )  for dif- 
ferent iron concentrations in Hg, - , Fe, Se compounds. 

2. HAMlLTONlAN AND ELECTRON GREEN FUNCTIONS 

The Fe2 + and Fe' + ions in Hg-Fe-Se have the 3d 'and 
3d electrons in the d shell. Using the Anderson model," we 
shall assume that the Fez + ion corresponds to the state with 
two d electrons ( d  ') and the Fe3 + ion to the d ' state; the 
stated corresponding to the Fe4 + ion is much lower on the 
energy scale than the states of the Fez + and Fe3+ ions and 
we can ignore it.'' Therefore, the d states of the iron impuri- 
ty can be occupied only by one or two electrons and the 
d ' s d  transitions govern the d-resonance energy'' 

The Anderson Hamiltonian" for a system of electrons 
interacting with randomly distributed iron d impurities and 
a random field of defects V,, , expressed in terms of the Hub- 
bard operators X "/' representing changes in the atomic con- 
figuration," is 

H=H,.+Hod+V.,+V.., H,. =z e k a k . + a k . ,  

v., = z ~ . k ~ a . . + a k ~ . ,  

k k ' o  

The stated: and the transitions to this state are ignored. 
Here, E,  is the dispersion law of the conduction electrons 
and is assumed, for the sake of simplicity, to be isotropic and 
quadratic; V,, is the s-d hybridization constant; Vis the vol- 
ume of the system; the symbols ( + , - ) correspond to the 
d-electron spins ( I ,  T ); V,,, is the matrix element of the 
interaction of the conduction electrons with charged centers 
and neutral defects (the phonon scattering mechanisms are 
included in V,, ). 

We shall calculate the electron spectrum and the elec- 
tron damping by writing down the equations of motion for 
the electron commutator Green functions'" 

00' ckk. ( E f  i e )  = ( ( a k , ~  ~ ; O , ) ) E *  

up to the third order in respect of thes-d hybridization con- 
stant V,.  

Decoupling of equations of the second order with re- 
spect to V, (Ref. 12) allows us to find the renormalized 
spectrum of charge-carrier quasiparticles and corresponds 
to the "mean-field" approximation. Decoupling of equa- 
tions of the third order in V, makes it possible to find cor- 
rectly the damping of the branches of the hybridized spec- 
trum and, consequently, the influence of fluctuations of the 
population of quasilocal centers on the carrier mobility. For 

example, in the third order in V,, we have 

The following decoupling is carried out above: 

( (aq,+aq~rXi-2 l a ~ , , ) ) ~ 6 q q ~ f q t ( ( ~ j - '  la;o,)). 

The solution of the system of equations ( 3 )  is as follows: 

i 
=A;" ((E )9 -- ( E ) ,  

2 

A different selection of the charge states made in the nonde- 
generate Anderson model, Fe2 + - d ', Fe3 + - d ', gives the 
same expressions for the Green function after the substitu- 
tions R, -E , ,  and 6- N, V i  ( ( X y )  + ( X j -  - ) ), whereas 
in the expressions for Z, ( E )  we have to replace the factor 
2 - fk with 1 + fk. 

We shall introduce the notation 
G E i = G & (E) .  An analysis of equations obtained 
of the fourth order in V, (we shall not give them here be- 
cause they are cumbersome) shows that the expressions for 
Z: become 

The expression ( 6 )  is essential for self-consistent calculation 
of the quantities A, and y, if an allowance is made for the 
influence of the correlation effects on the electron spectrum 
and on the structure of a d resonance. 
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3. INFLUENCE OF AdRESONANCE ON THE SPECTRUM AND 
DAMPING OF THE CONDUCTION ELECTRONS 

The spectrum and damping of the conduction electrons 
are found in the usual way from the condition 
{ G  2 ( E ) )  - = 0. Estimates obtained from the electron 
mobility in Hg-Se and Hg-Fe-Se showed that y, -0 .40.6  
meV and y,-0.1-0.2 meV (in any case, the inequality 
y, < y, is obeyed because otherwise the electron mobility in 
Hg-Fe-Se could only decrease relative to the mobility in 
Hg-Se). In the range of electron energies E- R, -<, - 230 
meV of interest to us we have y,(E)/E- 10 2 - 1 0  '. 
Therefore, ignoring the energy dependences Z$ ( E )  and 
2,' ( E ) ,  we find that the renormalized spectrum E,., and 
the damping TI,, are described by 

If - 01 % y + , 6, it follows from Eq. ( 7 )  that 

whereas if E, = R and 6 > ( y - /4) ,, we find that 

Consequently, as a result of the s-d hybridization the 
energy spectrum of the band carriers splits into two branches 
(Fig. 1 ) .  This form of the spectrum is typical of the s-d 
 system^.'^ It is clear from Fig. 1 that the damping of the 
renormalized branches of the spectrum does not exhibit a 
resonant peak in the vicinity of the d level (in contrast to the 
calculations based on perturbation theory of the spectrum 
and on the Breit-Wigner formula for the scattering'' ). Far 

FIG. I .  Energy spectrum and collisional broadening of electron states 
( y b  = 0.56 meV, y, = 0.14 meV, N ,  = 10Iq cm 9). 

from a resonance, if lE - iRI $6 "*, the electron states, for 
each of the branches of the spectrum are s-like and their 
damping is governed by the background scattering mecha- 
nisms: TI,, (E, ) cc y,,. In the vicinity of a resonance the elec- 
tron states are d-like and the values of T,,, (E, ) are governed 
by the width of the d level. 

4. TRANSPORT RELAXATION TIME AND THE DENSITY OF 
THE CONDUCTION ELECTRON STATES IN Hg-Fe-Se 

It is known that when the conduction electrons are scat- 
tered by impurities with a short-range potential, the differ- 
ential scattering cross section is equal to the total cross sec- 
tion and the transport relaxation time T(E)  can be expressed 
in terms of the lifetime or in terms of the collisional width of 
one-particle  state^'^.'^ T ( E )  = f i / r (E) ,  which is defined us- 
ing the imaginary part of the mass operator Z * (E) : 

Usually the transport relaxation time of the conduction 
electrons is calculated as  follow^:'^ the scattering amplitude 
is calculated for a conduction electron interacting with one 
impurity and then, assuming that all the d impurities make 
the same contribution, the result is multiplied by N, and this 
gives T ' (E) . It is assumed that introduction of d impurities 
into a crystal does not alter its electron spectrum. This ap- 
proach is justified in the case of metals (noble metals with d- 
element impurities), because the d level in a metal is located 
far from the Fermi level; moreover, the d-level width y, is 
large and it is considerably greater than the collisional 
broadening of the conduction electrons due to the other scat- 
tering mechanims. If this approach is used to find the poles 
of the Green functions G,, (E + i ~ )  in the limit E ~ O ,  the 
result for r,. ( E )  is 

The expression ( 10) corresponds to the Matthiessen rule for 
the total relaxation time of two scattering mechanisms and 
application of the Breit-Wigner formula for the resonant 
scattering by a d  level. The function T, ( E )  has a sharp peak 
at E = R; when the parameters have the values N ,  - lOI9 
cm- '  and y, -0.1 meV, we obtain the ratio I', (E) /O - 1. 
Obviously, in this case we do not need a self-consistent 
allowance for the damping in the vicinity of a resonance and 
the approach is unsuitable for dealing with transport phe- 
nomena in Hg-Fe-Se. 

An analysis of the energy spectrum of the conduction 
electrons shows that for all the values of E, the damping of 
the branches of the spectrum r,,, ( E ,  ) < y, (when y, > yd) 
varies monotonically and falls to y, in the vicinity of a reso- 
nance. 

Since the poles of the Green function G,, - ( E )  have a 
finite imaginary part, it follows that in order to find T ( E )  in 
accordance with Eq. (13),  we have to assume 

Then, by equating to zero the real and imaginary parts of 
{G,, - (E)} I, we obtain the following equations 
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E[r(E') - P ( E ' )  I find its solution T, ( E ' ) ,  and then deduce r ( E 1 )  - yb (E f )  + 
(E'-Q)2+'/i [ r ( E ' )  - y d ( E 1 ) ] "  = 0y ( 12) rM ( E  I )  = T, (E ' ) + y, ( E  ' )  in accordance with the 

Matthiessen rule, we find that 
where the quantities y, ( E  '), A, ( E  '), y, (E '), and A, ( E  ' )  
occurring in Eq. ( 12) are themselves functions of T ( E ) ,  for ( E ' - f l ) ' + l ( l  + y d / y , )  rnr ( E ' )  m y b  
example, ( E ' - a ) ' + (  (16) 

B,(Ef)= ~e zb (E' + $ ? ( E l ) )  3 
It is clear from Fig. 2 (curves 3 )  that r, ( E ' )  > y, 

( 13) throughout the investigated range and it has a maximum at 
i E ' = R. However, if y, > y, , then T ( E  ' ) has a resonance 

Y , , ( E ' , = ' / ~ I ~ z ~ (  E ' + - ~ ( E T ) ) .  2 peak at E ' = fl (curve 2 in Fig. 2),  but the value ofthe ampli- 

However, in view of the smallness of the values of y, and y, 
compared with the energy of an electron being scattered, we 
shall ignore this dependence. Consequently, Eq. ( 12) trans- 
forms into a cubic equation for T ( E ) ,  which has a unique 
solution given by the expression 

r ( E ' )  =(-q/2+Q")'h- (q/2+~*)'"+t/,( y,+2yd), ( 14) 

where 

( ) = ( p / 3 )  '+ ( q / 2 ) ' ,  p=(y-)'/3+4[g+ (El-Q)'] ,  

q=4/3r-[E-2(E'-$2)"(y-)2/18]. 

It follows from Eq. (14) that far from a resonance, 
where (E' - f 2 )  2>1, we have T ( E  ' )  a y, (E '), whereas in 
the limit lE - R /  -0, we have T ( E  ' )  - y,. An approximate 
expression for T ( E  '), which gives correctly these asymp- 
totes and reproduces to within -0.1% the solution ( 14) in 
the intermediate range can be represented in the following 
form, which is valid in a wide range of the parameters y , ,  y,, 
and <: 

The quantity T ( E )  has a minimum when y , ( E f )  < y , ,  
whereas r(E ' )  has a maximum at E ' = R (curve 1 in Fig. 2).  
Such variation of T ( E  ') accounts for the dependence of the 
mobility p ( N ,  ) and of the Dingle temperature on the con- 
centration of iron in Hg-Fe-Se by assuming that the Fermi 
level crosses the d level when the iron concentration is in- 
creased. It should be noted that neglect of the background 
scattering in the ground state and its inclusion in accordance 
with the Matthiessen rule gives a result which is qualitative- 
ly incorrect: in fact, if we assume that y, = 0 in Eq. ( 12) and 

tude of the peak differs from that calculated using the 
Matthiessen rule. 

We have thus demonstrated that both the Matthiessen 
rule and the approach based on the use of the Breit-Wigner 
formula are unsuitable for the calculation of the transport 
relaxation time of carriers if one of the scattering mecha- 
nisms is of resonant nature. It should be noted that actually 
the dependence T ( E )  in the vicinity of a d  resonance is more 
complex: for example, if we allow for the electron correla- 
tions (Kondo effect), we find that R = R, + A,(E,:T,:T) 
is a function of the electron energy, of r ( E )  , and of tempera- 
ture. However, an analysis of this effect together with an 
allowance for the expressions in Eq. ( 13) in the solution of 
Eq. ( 12) should be investigated independently. 

Using Eq. (9),  we obtain the density of states of the 
conduction electrons g ( E ) ;  

1 
s ( E ,  ~ l r )  = 2ni - [ Gkk- ( E )  -Grk+ ( E )  1, 

where 

E=E-A, ( E )  -E(E-Q) [ (E-Q)'+ (yd/2)']-' .  

The dependenceg(E) is shown in Fig. 3. A maximum of 
g ( E )  occurs at E = fl - y,/2 and its amplitude is 

g,=go ( Q )  [i+Nd/3ngo ( Q ) Q ]  I h ,  

whereas the width of the maximum is of the order of y,. We 
shall now estimate the number of "excess" electrons which 
can be placed in the region where states are pumped at T = 0 

TIE) 
' ~ b  

rd 
- 

0 .  I I I 
2 10 230 250 E, meV 

50 750 250 5 meV 
FIG. 2. Energy dependences of the collisional broadening of the electron 
states r ( E ) :  1) y, = 0.56 meV, y, = 0.14 meV; 2) y, = 0.56 meV, FIG. 3. Density of states in the conduction band (plotted for the same 
yd = 0.14 meV; 3) y, = 0.56 meV, y, = 1.1 meV (N,,  = 10"' cm - '1. parameters as in Fig. 1 ). 
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(shown shaded in Fig. 3 ) .  We shall do this by representing 
n, in the form 

If Nd - 1019 cm-3 and yd -0.1 mev, we find that 
A n , - 2 [ g ,  - g o ( f l ) ] y d - 1 0 ' 5  ~ m - ~ .  Since n , - 5 ~ 1 0 ' ~  
cm-3, it follows that An,/n,  4 1 applies throughout the full 
range of the concentrations Nd and the expression 

determines the relationship between the elecfron density n ,  
and the Fermi energy 6, for all the values of N d .  

5. CALCULATION OF THE ELECTRICAL CONDUCTIVITY OF 
Hg-Fe-Se 

We shall calculate the electrical conductivity of the in- 
vestigated system of compounds by applying the Kubo for- 
mulaI6 

I,, =Tr ( u Z 6 ( E - H ) v , 6 ( E - H ) ) , , .  ( 2 0 )  

Using the appr~ximation"~'~ 

I,, = Tr v , ( G  ( E - H )  ) . , ~ , ( 6  ( E - H )  )., 

we find that 

Here, 

f i  
.(E) = - r 

L' (E) { ' -  1 6 [ k + ( r / Z ) q " Q  

The expression ( 2 2 )  allows not only for the change in 
the spectrum and the density of states of the conduction elec- 
trons because of the s-d hybridization, but also for colli- 
sional broadening of the electron states due to the back- 
ground scattering mechanisms and due to the interaction 
with the d-electron iron impurities. The second term in the 
braces in the above expression for r ( E )  is usually small; it 
must be allowed for if the Fermi level lies in the region of 
"exhaustion" of the states and E< r ( E )  is obeyed. 

In an analysis of the change in the mobility 
,u(N,)  = u, / l e ln , ,  considered as a function of the iron im- 
purity concentration, we shall determine c , (N, , )  from the 
electrical neutrality equation 

n, = 1 d E  f ( E ) N ( E )  =NPea+=2n,Nd, Nd=N,,8+-tNPe~+. ( 2 3 )  

Here, 

n,=<Xj-->=(X,++>,  n ,=<Xjz z ) ,  n ,+n,=I .  ( 2 4 )  

The quantity n,  is found in the usual way:12 
n,=<X,"-Xj-*) 

1 
= - ~ E ~ ( E ) { < X ~ - ~ X - - - < X , - ~ X - . } .  2ni ( 2 5 )  

FIG. 4. Dependences of the conduction electron density and of the Fermi 
energy on the concentration of iron in Hg-Fe-Se ( T  = 4.2 K ) .  

Decoupling the system of equations for the Green functions 
((Xi- ']Xf - )), we find that in the second order in the s-d 
hybridization constant, the result is 

- - t x - -+X2 ' )  { V o  tX:+a > r+ exp ( - ik$)  
l - ~ r "  E-Qo-Zd ( E )  ( E - e k )  (X,--+X,'z> 

In view of the smallness of V,, we shall neglect the sec- 
ond and third terms in the braces in Eq. ( 2 6 ) .  This approxi- 
mation is equivalent to an allowance solely for the broaden- 
ing of the d level because of hybridization with the 
conduction band. Substituting Eq. ( 2 6 )  into Eq. ( 2 5 )  and 
allowing for Eq. ( 19 ) ,  we obtain 

The dependences of the Fermi energy 5, ( N d  ) and of 
the conduction electron density on the iron concentration 
(Fig. 4 )  demonstrate stabilization of the Fermi level 6,  and 
of the conduction electron density n ,  ( N ,  ) in the vicinity of a 
resonant donor level if Nd > N  $, in accordance with Refs. 1 ,  
3, and 4.  

It is clear from Fig. 5  that at iron concentrations Nd 
well below N,* the conduction electron mobility is governed 

FIG. 5. Dependences of the conduction electron mobility on the concen- 
tration of iron ( y, = 0.64 meV, y, = 0.31 meV), plotted for different 
temperatures: 1) T =  1 K; 2 )  T =  4 K; 3)  T =  25 K. 
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FIG. 6. Temperature dependences of the conduction electron mobility 
plotted for different values of the impurity concentration: 1) 
N,, = 3X 10" cm .'; 2)  5 x  10'"m '; 3) 6X 10" cm '; 4 )  1 3 ~  10" 
cm '; 5)  3 x  10'" cm '. 

by the background scattering mechanisms. If N, > N ; ,  the 
maximum mobility is given by p,,, (N,) = p, y,/y,. An 
increase in the temperature reduces the mobility p,,, ( N , )  
because of an increase in the number of electrons which con- 
tribute to the conductivity and whose transport relaxation 
time is governed by the background scattering mechanisms. 
This factor is also responsible for the reduction in the elec- 
tron mobility on increase in temperature observed for differ- 
ent values of N,.  The temperature dependences of the mobil- 
ity p ( T) (for N, = const) are nonmonotonic (inset in Fig. 
6). The presence of a maximum of the dependencep ( T) is in 
this case due to the fact that if 6, > a, we reach the region of 
"exhaustion" of the states (i.e., the region of a minimum of 
the density of states). An increase in temperature increases 
the contribution to the mobility made by those electrons 
whose transport relaxation time is governed by the d-level 
width, so that the mobility rises; a further increase in tem- 
perature results in predominance of those electrons whose 
mobility is determined by the background scattering mecha- 
nisms, which reduces the carrier mobility. 

The model based on the hypothesis of the formation of a 
Wigner crystal from the Fe3 + ions can predict only a mono- 
tonic rise of the mobility as a result of cooling with satura- 
tion in the limit T+O. On the other hand, an allowance for 
the valence fluctuations in the hybridized Anderson model 
yields a nonmonotonic temperature dependence p ( T), 
which is generally speaking observed when the mobility is 
measured at low temperatures such as T = 0.04 K, 1.5 K 
(Ref. IS), or T =  4.2 K (Ref. 1) .  

It follows from our model that we can explain the ex- 
perimentally observed dependences p (N, ), c ( N ,  ), and 
n, (N, ), and predict a new "anomaly" in the dependence 
p ( T). However, the final conclusion in favor of one of the 
models can be made only after additional low-temperature 
measurements of p ( T )  at T-0.1-10 K for N, 
- (2-10) x 1019 cm-'. 

CONCLUSIONS 

Calculations of the energy spectrum and damping and 
of the conduction electrons, and a self-consistent calculation 
of the transport relaxation time of these electrons, carried 

out using the Anderson model for mixed-valence impurities, 
provide a satisfactory explanation of the "anomalous" be- 
havior of the electron mobility in Hg-Fe-Se without invok- 
ing the hypothesis of formation of a Wigner crystal from the 
Fe' + ions at low temperatures. 

I t  should be stressed that the Hg-Fe-Se compounds 
represent a unique object for the investigation of the influ- 
ence of the correlation effects in the scattering of the conduc- 
tion electrons by the d-electron iron impurities (Kondo ef- 
fect) on the kinetic and thermodynamic characteristics of 
these compounds under conditions when the Fermi level 
crosses a resonant level. A radical change in the energy spec- 
trum of the band carriers at energies close to the d-level ener- 
gy, and also interference between a d resonance with a Suhl- 
Abrikosov resonance, can give rise to a wide range of inter- 
esting physical characteristics of the low-temperature trans- 
port and thermodynamic properties of these compounds. 

We ignored the influence of the correlation effects in 
calculation of the physical quantities because of the small- 
ness of the constant V, and because the density of states is 
much lower in Hg-Fe-Se than in metals. However, it is ob- 
vious that this approximation may be insufficient at tem- 
peratures T <  1 K. Since 

2 
A d ( L )  - - - 

3 
rdn[ln(TILf-l) 1, 

it follows that if the temperature is T< 1 K, we have y ,  < A, 
and, consequently, we can expect the characteristics asso- 
ciated with the Kondo effect to be manifested in the trans- 
port coefficients of Hg-Fe-Se at temperatures T <  1 K. We 
shall therefore assume that above all it is necessary to inves- 
tigate the structure of a d resonance under the conditions 
when the Fermi level crosses a resonant level and to allow for 
the energy dependences of the parameters y, (E) ,  y, ( E ) ,  
and A, ( E )  in calculation ofboth the energy spectrum and of 
the damping of the branches of the spectrum. 

I '  A different selection, Fe' + -d 2,  Fe2 ' -d I ,  Fe' + - d o ,  gives rise to 
the same physical results in the calculations. 
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