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The problem of the average resistivity 6, of a randomly inhomogeneous medium in a strong 
magnetic field is analyzed for the case in which fluctuations of the Hall (antisymmetric) 
components of the microscopic resistivity tensorb are much larger than the diagonal elements of 
this tensor. A possible anisotropy of the inhomogeneity stemming from a difference between the 
length scales A, and A, (respectively along and across the magnetic field) is taken into account. 
An anomalous bulk resistivity (p,, ,p, ) arises at A,/A, , @A2) - ', wherep, is the microscopic 
resistivity, p) 1 is the Hall parameter, and A is the relative fluctuation in the quantity p o p  
(DA % 1 ). The reason for the anomalous resistivity is the pronounced twisting of the current lines, 
whose distribution may be both quasiuniform and fractal [under the condition A,/A, 
$ ( p  /A) '"1. The effective resistivity reaches a maximump,, zp ,pA at the transition between 
these two regimes. A variational principle is formulated for the Hall current flow. Size effects ( a  
dependence ofp,, on the longitudinal dimension of the sample, b, ) are studied in the various 
regimes. The use of these results to describe plasma current opening switches is discussed. 

1. INTRODUCTION 

The classical problem of the average characteristics of a 
conducting medium with random fluctuations in its micro- 
scopic conductivity tensor is still far from final solution. 
Aside from the trivial case of layered (one-dimensional) in- 
homogeneities, most of the progress on this problem has 
come from the work by Dykhne.'.' The problem of the aver- 
age conductivity of a two-dimensional, two-phase system 
was taken up in Ref. 1. For the case in which the arrange- 
ments of these phases are statistically equivalent, an exact 
result was found for the effective conductivity: 
a,. = (a, uz ) where a, and a, are the conductivities of 
the two phases. This result was generalized in Ref. 2 to the 
case of a two-dimensional, two-phase Hall medium. A "Hall 
medium" is to be understood here as an anisotropic conduc- 
tor in a (uniform) external magnetic field which has a local 
resistivity tensor 

(1 )  

where 8 %  1 is the Hall parameter. In the case of a plasma 
described in electron M H D , ~ , ~  for example, we would have 
p, = m/(ne2r,,) and fi = w ~ , T , .  (here m, e, and n are the 
mass, charge, and density of the electrons; 7 ,  is the collision 
rate; and a,,. is the electron Larmor frequency). 

A next step was taken in Ref. 3:  A Hall medium of a 
general type, inhomogeneous in three dimensions, was ana- 
lyzed. The primary result of Ref. 3 was the development of a 
methodology based on a transformation from an analysis of 
Ohm's law, 

j=6E, div j=O, rot E=O , (2 )  

to the problem of the diffusion of a passive scalar p ,  

which can be treated by a variety of qualitative analysis 
methods. This ansatz is important, so we will repeat the cor- 

responding calculations. Breaking up the conductivity ten- 
sor u,, into a symmetric part a ), and an antisymmetric part 
a y,, we write Ohm's law ( 2 )  with E = - V p  in the form 
d(a , , ap  /ax, )/ax, = 0. This equation is equivalent to ( 3 )  
in the case d p  /dr = 0, with 

The "flow" which arises here is incompressib1e:~iv v = 0. 
By finding the asymptotic (effective) diffusion D,  in con- 
vection-diffusion problem ( 3  ), ( 4 ) ,  we can thus find the ef- 
fective conductivity in our original problem: 

This conductivity relates the average values of the current 
density and the electric field: 

where the angle brackets mean a spatial average. 
A similar problem was attacked from a completely dif- 

ferent direction in Refs. 4 and 5: Conservation laws, the most 
important of which are associated with the approximate 
freezing of the magnetic field B in the electrons, 

dB 
-= 
a t rot [ v,B I - rot (Dm rot B) , (7 )  

were used to analyze the current flow through an inhomo- 
geneous plasma. Here v ,  = - c curl B/(4ren)  is tile elec- 
tron current velocity ( the ions are assumed to be immobile), 
D,,, = c"(44?ra(, ) is the magnetic viscosity, a,, = l/p(,, and c 
is the velocity of light. In the terminology of electron M H D  
(EMHD) ,  the meaning here is that the energy and the mo- 
mentum, which are concentrated for the most part in the 
magnetic field component ( B  ,/8n-) nmuS/2 and 
lneA/cl, nmu,, respectively; B = curl A ) ,  are entrained by 
the electron flow and are scattered by various obstacles. The 
effect is an increased dissipation, for which the term 
"EMHD resistance" was introduced in Ref. 4. In particular, 
if all the magnetic energy" B 2 /8 r  is dissipated at an elec- 
trode or at a plasma-vacuum interface, a plasma diode ac- 
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quires a surface EMHD resistance 

RmB/ [4nenc max(b,, b,)] , 

where b,, by,  b, are the dimensions of the system along the 
coordinate axes; the external magnetic field B is assumed to 
be directed along the z axis; and the current I is flowing 
along the x axis. If there is no external magnetic field B, or if 
the magnetic field of the current is dominant, S B 2  B, the 
result in (8 )  becomes dependent on I. The following formula 
was thus proposed in Ref. 4 for the EMHD resistance of a 
plasma current opening switch in the EMHD stage of the 
opening: R = u/c2 = 30u/c [R 1,  where u is the average elec- 
tron current velocity. 

Although expression (8 )  can formally be written in 
terms of a resistivity, 

we should bear in mind that this is a surface resistivity, 
which is "connected in series" with the bulk EMHD resistiv- 
ity due to the plasma inhomogeneity. The latter is totally 
unrelated to (9 ) ;  in particular, it may be much higher (more 
on this below). 

In this paper we systematically study the average resis- 
tivity of a randomly inhomogeneous Hall medium (the bulk 
EMHD resistivity in the case of a plasma). The inhomogene- 
ities are assumed to be three-dimensional and, in general, 
anisotropic, with different length scales A, (along the mag- 
netic field B = Be, ) and A, (in the perpendicular direc- 
tion). Our result agrees with that of Ref. 3 in the case of 
isotropic three-dimensional perturbations (f=A,/A, = I ) ,  
but the results are different in the two-dimensional case 
(A, = C O ) .  

The paper is organized as follows. In Sec. 2 we evaluate 
the anomalous Hall resistivity of an unbounded current ran- 
domly inhomogeneous medium, making use of a convection- 
diffusion analogy, ( 3 ) .  If the anisotropy of the inhomogene- 
ity is not too pronounced, ( 9  (B/A)'/ ' ,  the current 
distribution is characterized by the same transverse (with 
respect to B)  correlation length as characterizes the fluctu- 
ations of the medium (A, ). The opposite case [> (B/A) 'I2 

corresponds to a fractal distribution of the current, charac- 
terized by anomalously large transverse correlation lengths 
for the current. Analysis of that regime requires invoking the 
methods of percolation theory.'-' 

In Sec. 3 the geometric reasons for the occurrence of an 
anomalous resistivity, which are associated with the nature 
of the current paths, are discussed. In this connection, a vari- 
ational principle is formulated for the current flow in an 
inhomogeneous Hall medium. 

In Sec. 4 we examine the size effect for the bulk anoma- 
lous resistivity, i.e., the effect of the boundaries of a Hall 
conductor of finite size. In Sec. 5 we briefly summarize and 
discuss the results. 

2. ANOMALOUS RESISTIVITY OF A BOUNDED, RANDOMLY 
INHOMOGENEOUS MEDIUM IN A STRONG MAGNETIC FIELD 

In this section of the paper we make use of the convec- 
tion-diffusion analogy,' which reduces Ohm's law (2)  to the 
problem of the transport of a passive scalar, (3) .  

According to ( 1 ), the microscopic conductivity tensor 
s=p-l is 

We are thus dealing with the diffusion of a passive impurity 
in an incompressible flow, specified by (4 )  (we recall that 
we havepB 1): 

with a seed diffusion tensor 
8-2 0 0 

0 0 1, 

We denote the length scales of the variation of the 
stream function $ along and across the z axis by A, and A,, 
respectively, and we denote by A the characteristic depth of 
the relative fluctuations in $(x, y, z) .  The convection veloc- 
ity in ( 11 ) can then be estimated from 

The convection effect in ( 3 )  outweighs the transverse seed 
diffusion if the Peclet number is large: P=A, u/D = PA B 1. 
We will make use of this inequality below as the major large 
parameter of the problem. 

We begin with the case in which the anisotropy is not 
too large, f rA,/A, < (@/A) "'. This case corresponds to 
the situation in which the time scale of the longitudinal diffu- 
sion over a distance equal to the size of the inhomogeneity, 
t, = A :/a,,, is shorter than the transverse convection time 
t, = u/A,  ; i.e., t, < t , .  We thus have the important time in- 
terval t, < t < t, , in which the velocity v can be assumed inde- 
pendent of x and y ; i.e., v = v(z).  To  analyze the behavior of 
the passive impurity at these time scales we consider the 
auxiliary problem of the convection-diffusion transport, 
( 3 ) ,  in a shear flow v = v(z)le,. We need to find an effective 
transverse diffusion. We introduce the new stream function 

and we initially assume that Y is bounded (without any loss 
of generality, we can assume that two averages over z vanish: 
(v), = 0, (Y), = 0 ) .  This problem was solved by Zel'do- 
vich9 in the particular case of a periodic plane-parallel flow, 
Y = ex sin (kz). In general we would have, in place of ( 3 1, 

Proceeding in the spirit of the quasilinear theory, we sepa- 
rate the impurity density p into a smooth component and an 
oscillatory component: p(x, z, t )  = (q, ), + $. After a suf- 
ficiently long time t ) t , ,  the oscillations become small, 
@<(p),, and (13) yields 
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aq d~ azq azq - + - V (cp>,=Dao - + D,,-. 
at dz d r ,  arb dzZ 

Under the condition t $ t,, we can use a quasisteady approxi- 
mation in ( 15), in which we can discard the first term on the 
left side. Also asymptotically small is the first term on the 
right side, which describes the seed transverse diffusion. 
Omitting these terms, and expressing @ in ( 15 ) in terms of 
( p  ),, we substitute @ into ( 14). As a result we find a diffu- 
sion equation for ( p  ), in the (x, y )  plane with an effective 
diffusion tensor 

The result in ( 16) is also valid for a shear flow in a layer 
O<z<b, whose boundaries are impenetrable to the impurity 
p ,  under our earlier condition that there is no average flow, 
Y (0)  = Y(b, ). In this case the average in ( 16) is over the 
interval [O, b, ] . We will make use of this comment in Sec. 4. 

Going back to our average-resistivity problem, we re- 
call that Y (z) is proportional to the integral of the randomly 
oscillating bounded function \V(z). Consequently, Y in- 
creases without bound, in the manner of a coordinate of a 
Brownian particle: (Y2(z))  = (u2)A,z. According to ( 16), 
the transverse displacement of the impurity particle is given 
bv 

r12 ( t )  = ( Y Z ( z ( t ) ) >  t z -  ooA a,zo ,,z. 
D z z  PAL 

[Here we have used (11') and z(t)=.  (D,,t)"', D, =a( , . ]  
We wish to stress that the motion of the particles in this 
regime is a "superdiffusion" motion.' 

Equation (17) describes the motion of the impurity 
particles as long as we can ignore the dependence of the ve- 
locity on the transverse coordinates, i.e., at r ,  ( t )  <A,. Be- 
yond this point, a decorrelation sets in. The correlation time 
t,. can thus be found from the equation r, ( t ,  ) = A ,  : 

At t > t,, the impurity transport becomes a diffusion with an 
effective diffusion coefficient (or  an effective conductivity) 

The first of these inequalities corresponds to the requirement 
that the effective diffusion exceed the seed diffusion. The 
second of the inequalities was discussed above. In the iso- 
tropic case, with g = 1, result ( 18) corresponds to that de- 
rived in Ref. 3. 

The case of highly anisotropic fluctuations, 
> (B/A) "', is less trivial, since over the longitudinal diffu- 

sion time t, a particle manages to traverse a transverse dis- 
tance which is greater than the transverse correlation length 
of the medium, r ,  (t, ) >A,, and the fractal structure of the 
current lines, i.e., the contour lines $(x, y, z)  = const at a 
given z, becomes important. We know6.' that among the 
contour lines of a random function there are both short-cir- 
cuited lines (with a diameter on the order of A, ) and perco- 
lation lines (with a diameter much greater than A,) .  The 
longer the contour lines, the smaller the fraction of the area 
they occupy. Nevertheless, in convection in the presence of a 

weak seed diffusion it is the percolation current lines which 
dominate the transport, despite the relatively small number 
of these lines. 

We first consider the two-dimensional case, A, = CO. 

The corresponding problem of the effective diffusion in a 
random two-dimensional incompressible flow v(x, y )  was 
solved in Ref. 6 under the assumption that there is a unique 
length scale of the flow, A,. The following asymptotic 
expression was found for the effective diffusion in the limit of 
a large Peclet number: 

where D = a,/D2 is the seed diffusion, and the exponent 
3/13 is expressed in terms of the critical exponents of the 
two-dimensional percolation problem. 

The case of finite A, can also be dealt with by means of 
( 19), with a suitable renormalization of D. We note in this 
connection that a diffusive motion of a particle along the 
coordinate z corresponds to an additional diffusive displace- 
ment of the particle with respect to the separatrices of the 
flow:" 

6=z(t)h,/h,= ( o o t ) " ' / ~ =  ( D t ) "  . D=moo/E2. 

We thus find (19) with D=.uo/flZ + a,/g2: 

Switching from the effective conductivity tensor to its 
inverse, the effective resistivity tensor, we write the results in 
(18) and (20) in the following form: 

where 

Figure 1 shows the effective transverse resistivity as a 
function of the degree of anisotropy of the fluctuations, g. 
Note the unexpected maximum in the resistivity, 
pel (6) zpoBA,  at 6~ @/A) which is equal in order of 
magnitude to the fluctuations of the Hall components of ten- 
sor ( 1 ) .  We turn now to a discussion of the reasons for this 
behavior. 

3. VARIATIONAL PRINCIPLE; QUASIUNIFORM AND 
FRACTAL DISTRIBUTIONS OF THE CURRENT 

The average resistivity tensor (21),  (22) thus by no 
means reduces to a simple spatial averaging of microscopic 
tensor ( 1 ). The transverse resistivity p,, may be many times 
p,. Since the Joule dissipation power 

( Vis the volume of the medium) is determined exclusively 
by the symmetric part of the microscopic resistivity, 
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FIG. 1 .  Effective transverse resistivity as a function of the degree of ani- 
sotropy of the fluctuations. 

P : ~  = p,,S,, , the anomalous average resistivity in (22) can be 
explained in terms of an anomalous microscopic current dis- 
tribution j (r) .  

It is well known that in the case of a symmetric resistiv- 
ity tensorb = b', for the actual current distribution, the dis- 
sipation integral in (23) has a minimum under the condition 
that incompressibility (div j = 0 )  is retained. If there is an 
antisymmetric component, $"#0, the situation changes. An 
elementary calculation shows that the second variation of 
(23) is again positive definite, while the first variation is 
given by the generally nonzero expression 

6w=-2 J(jp8j)d3r. (24) 

Using the condition div j = 0, we reach the conclusion that 
(24) vanishes, i.e., that W has a minimum, for a certain class 
of current variations, which satisfies the auxiliary condition 

rot (pa6j) =rot pop[6j, e,]=O. (25) 

Condition (25) is none other than Ohm's law for a purely 
antisymmetric resistivity tensorb = b". In the limit of inter- 
est here, 1, this part is dominant, and the substitution 
9 = p  represents the zeroth approximation for Ohm's law. 
Since the solution of this problem is multivalued in this ap- 
proximation, the variational principle which we have formu- 
lated may be thought of as a principle for selecting the "cor- 
rect" zeroth approximation in the current percolation 
problem. This correct approximation should be regarded as 
that "zeroth" distribution of j which minimizes the ohmic 
dissipation. Throughout the rest of this section of the paper, 
we are implicitly using this requirement. 

We turn now to the geometric reasons for the anoma- 
lously large average resistivity. We introduce 
u(x, y, z )  = pop j  (in the plasma case, u would be propor- 
tional to the electron current velocity). We write the exact 
microscopic Ohm's law in the form 

In the zeroth approximation in f l  - ' we have 

du,/a~=O, div u,=O, (27) 

and thus, by virtue of div j = 0, 
I 

I t  follows from the second equation in (27) that in the 
two-dimensional case the current flows along contour lines 
of $(x, y ) ,  whose pronounced twisting may substantially 
increase the resistivity. In the three-dimensional case, an ad- 
ditional degree of freedom arises, and the current may also 
flow around obstacles along thez axis. For random perturba- 
tions, however, the current must undergo a random walk 
along the z direction over a very large distance (more on this 
below). The current channels contract, since their volume 
(the product of the cross-sectional area of the channel and 
its length) is fixed by virtue of the incompressibility of the 
current. The ratio of lu, I to lu, I gives the factor by which the 
length of the channels increases (and the cross-section area 
of the channels decreases) in comparison with the corre- 
sponding value for planar current flow. According to the 
discussion above, the average resistivity increases by a factor 
of (u , /u ,  )' in comparison with that in the planar-flow case. 
In the zeroth approximation, this factor is infinite: For ran- 
dom perturbations of $, the integral in (28) diverges in dif- 
fusive fashion, 

so the next approximation must be considered. We introduce 
the longitudinal current correlation length a,, which deter- 
mines the dependence of u, on z, which is not present in the 
zeroth approximation: Idu, /dzl z 1 u, I/a,. The integration 
in (28') should then be limited to this dimension: 

A more rapid increase in u,/u, would contradict the vari- 
ational principle. 

We thus find 
A2h,a, 

pelmpo ( n l / ~ ~ ) 2 m  PO - h,ta,. 
hLZ ' (30) 

The limitation written out here corresponds to the assump- 
tion that the integral in (28) has a "Brownian behavior." 
This inequality also expresses the relatively slight sensitivity 
of the transverse current component j, to the fluctuations of 
$, telling us, according to the variational principle, that 
there is no substantial tangling of j,. In accordance with this 
picture, we call the current percolation regime at a, >A, 
"quasiuniform." 

To determine a, we replace the zeroth approximation in 
(27) by a first-approximation equation which follows from 
(26):  

Setting d / d z z  ]/a, in ( 3  1 ), and using (29),  we find 

Substituting (32) into (30),  we see that a result derived 
above, (22a), is valid. 

At g=A, /A, =: (p /A) the dimensions A, and a, are 
comparable. As 6 increases further, the longitudinal correla- 
tion length of the current, a,, becomes smaller than A, 
(more on this below), and the currents are forced to adjust 
in each cross section z = zo to accommodate the perturba- 
Itions of the medium, running approximately along the con- 
tour lines of $(x, y, zo ). Although this situation could be 
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analyzed by an approach like that taken for the quasiuni- 
form limit, it is simpler to invoke a convection-diffusion 
analogy here. According to the results derived above and in 
Refs. 6 and 7, it can be concluded that most of the current is 
concentrated in a "hot region" with a characteristic width 

6=A,h=h, (z ) "" < A,, D=ol/12+o./B2. (33 ) 
h,v 

The intersection of this region with the (x, y )  plane is a web- 
shaped fractal whose dimension in our approximation of a 
single transverse length scale for the fluctuations, A,, is 
d, = 7/4 (Refs. 6 and 7 ) .  In the more general case of a pow- 
er-law spectrum of inhomogeneities we would haves 
1 (d,  <7/4. An upper limit on the inertial interval of self- 
similarity (the transverse correlation length of the currents) 
is given by 

In contrast with the quasiuniform case, we call this regime of 
an anomalous resistivity [{> (B/A) a "fractal" regime. 

The fractal regime is subdivided into two distinct subre- 
gimes. The first, which is sensitive to the size of the longitu- 
dinal inhomogeneity, A,, corresponds to the case in which 
the first term in expression (33) for D is predominant, and it 
exists under the condition (@/A) <{<P. A distinctive 
feature of this regime is a pronounced twisting of the current 
lines both in the ( x ,  y )  plane and along thez axis." Another 
feature of this regime is that there are two length scales for a 
longitudinal random walk of the current lines (Fig. 2). The 
smaller, ii,, is equal to the longitudinal displacement of the 
current line accompanying a corresponding transverse dis- 
placement A,. The large scale a,, which sets the maximum 
amplitude for the longitudinal random walk of the current 
lines, corresponds to a displacement of these lines in the (x, 
y )  plane over a transverse correlation length a , .  The size a, 
can also be taken to be the minimum distance for which the 
pattern of $ ( x ,  y, z,, ) contour curves with a diameter on the 
order of (34) is indistinguishable from the +(x, y, z,, + a, ) 
contour curves. According to Ref. 7, we have a, -A,h. Us- 
ing (33), we thus find 

The dimension ii, can be found as the distance over 
which a particle of the passive impurity is displaced along 
the z axis over the time corresponding to a transverse con- 
vection over a distance A,: ii, =: (DA,/v) 'I2, i.e., 

The factor by which the average resistivity increases, which 
is related to the longitudinal random walk of the current, is 
determined by specifically this dimension. The ratio u,/u, 
can be estimated from ( 3  1 ) and (28), in which we should set 
IV,  I = : i / ( ~ , h ) ,  a/az=: l/a,: 

Again, we wish to stress that in this A,-sensitive fractal 
regime an anomalous resistivity is caused by both the longi- 
tudinal random walk of the current and the twisting and 
contraction of the current in the (x, y )  plane. According to 
(37),  the longitudinal anomalous-resistivity factor disap- 
pears at the upper boundary of this f interval. In the second 
fractal subregime ({ > o ) ,  there is thus no substantial ran- 
dom walk of the currents along the magnetic field 
(u , /u ,  < I ) .  This situation corresponds to the transition to 
the purely two-dimensional case. In this limit, the longitudi- 
nal correlation lengths a= and 6, no longer have a definite 
meaning. 

We conclude this section of the paper by pointing out 
that the existence of a maximum of the effective resistivity 
p,. (6) (Fig. 1 ) does not look particularly surprising in light 
of this discussion, particularly in view of the modification 
made in the variational principle for current flow in the Hall 
case. 

4. SIZE EFFECT 

Up to this point we have been discussing an unbounded 
Hall medium. In this section of the paper, we consider the 
average resistivity of a Hall medium which is bounded along 
the z d i r e~ t ion .~ '  

We assume that our medium fills the region O<z<b, 
(nonplanar boundaries do not introduce any new effects"' ). 
The boundary condition 

can obviously have a significant effect on the average bulk 
characteristics only if the sample has a fairly small dimen- 
sion: a <a ,  or  a <ii,, where the dimensions a and ii, are 
given by (32),  (35),  and (36).  In theopposite case, the cur- 
rent could undergo a random walk along the z coordinate 
over most of the volume, in accordance with "its own 
needs," not sensing the boundary T. In addition, in ihe first 
fractal regime [ ( (B/A) < { <B)  ] with ii, < 6, <a,  there 
is no strong size effect. In other words, the expression for the 
average resistivity can differ from that in the case of an un- 
bounded medium only by a numerical factor on the order of 
unity (more on this below). 

This section of the paper is also convenient place for a 
discussion in terms of the diffusion of a passive scalar q, [see 
(3)  and (4)  1. It is easy to see that in these terms the bound- 
ary condition (38) means that there is no flux of q, across the 
boundary: 

FIG. 2. Longitudinal random walk of the current lines in the case 
( P / A ) " 2  <{<P .  
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We will take the average in transport equation ( 3 )  in 
two steps. We first take an average over z in the region 
0 < z < b,. Our arguments are identical to those used in the 
derivation of Eq. (16),  except that now the velocity aver- 
aged over z is nonzero, and it introduces an additional con- 
vection term in the effective diffusion equation. (q, ),: 

This procedure is valid as long as the oscillatory component 
of the velocity (oscillating along z )  can be regarded as inde- 
pendent of x and y, i.e., under the condition vb :/go <A,, 
which holds in all cases in which there is a pronounced size 
effect. 

The three-dimensional problem thus reduces to a corre- 
sponding two-dimensional problem in which the "seed" dif- 
fusion D ,  is given by ( 16), in which we should set 

Y ( z )  = [ ~ ( z ,  y, 2')  -vo (x, y )  ] dz'. D,,7uo. DI=ua/pI 
0 

Introducing the dimensionless parameter 7 - b,/A, for 
brevity, we have 

According to ( 16), we then have the modified seed diffusion 

D P ~ ~ o l P z + Y f  7ol,. (42) 

We have thus reduced the problem of the average resis- 
tivity of a bounded Hall medium with random three-dimen- 

sional inhomogeneities to the known problem of the effective 
diffusion in a two-dimensional random flow, (39), with seed 
diffusion (42). The solution of this problem is given by ( 19), 
in which we should set v - v, and D- D , .  Some caution must 
be exercised in making this replacement, since the interme- 
diate effective diffusion D, can arise over a finite time b i/uo, 
which must be small in comparison with the particle revolu- 
tion time in the velocity field v,: A, /u,. This requirement is 
the same as a requirement which we used above in the deriva- 
tion of an expression for D,. In addition, it is necessary to 
satisfy the condition that the displacement of the particle 
due to the velocity component which oscillates alongzover a 
time b f /uo be smaller than the width of the diffusion bound- 
ary layer, (33).  This requirement of a spatial establishment 
of D ,  is satisfied at b, < a,.  

Figure 3 illustrates the limiting cases of this result. For 
a thin conducting layer, the current flow always occurs in a 
fractal regime, even if the corresponding bulk flow is qua- 
siuniform at the same value of &. 

5. CONCLUSION 

We have thus examined, at  the level of estimates, all 
regimes of the anomalous resistivity of a randomly inhomo- 
geneous medium in a strong magnetic field. The strongest 
assumption which we have used here and which might re- 
strict the applicability of the results is the assumption that 
the spatial distribution of the fluctuations of the medium can 
be characterized by simply two parameters: the inhomoge- 
neity length scales A, and A,. In principle, there would be no 
particular difficulty in examining fluctuations characterized 
by power-law spectra of length scales (although such an 
analysis would be extremely laborious). The basic problem 
of a passive scalar was solved in Ref. 8 in that formulation. In 
addition, it was shown there that the single-scale approxima- 
tion can be of fairly broad applicability if the Fourier spec- 
trum of the fluctuations has a sufficiently sharp maximum. 

Again in the example of the problem of the anomalous 
resistivity of an inhomogeneous Hall medium, we find two 
types of collective transport processes in random media: 

FIG. 3.  Regimes of an anomalous resistance of a randomly inhomo- 
geneous Hall medium which is bounded along z. The double lines 
separate bulk regimes I-IV, which correspond to the approxima- 
tion of an unbounded medium. The solid lines separate different 
regimes of the strong size effect. When any solid line is crossed, the 
expressions for the effective resistivity change literally. The dot- 
dashed line is the line of the weak size effect. When it is crossed, the 
average resistivity changes by only a factor of a few units. Here are 
the expressions for y = p , ,  /p,, in the various regimes: I-y = 1; 

2 10/13. 11-(22a); 111, 111'-(22b); IV-(22c); V-y= (DAr) 2 j 3/,,, 
VI-Y =PA (fl 1 ~ ( 2 T  2/3 ) 3/12. , V I I - ~ = ~ A ( P - ' A ( ~ I )  . 
Here are the equations for the boundaries between regimes: V/VI- 
r) = (A() ; I - I -  = A / '/'; IV/VII--7 = (A() -. I"; 
III/VII-,I = (A(2/fl) III/IIIr-r) = (A( 2/fl) -"I3. 
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quasiuniform and fractal. A similar classification would be 
meaningful for several other problems, such as two-dimen- 
sional turbulent diffusion7 (the high-frequency and low-fre- 
quency cases) and the anomalous transverse thermal con- 
ductivity of a plasma in a stochastically perturbed magnetic 
field" (the quasilinear and percolation limits). 

In contrast with the first type of transport, the transport 
in the fractal regime is characterized by anomalously large 
correlation lengths, with the correlation length of the flow, 
a, being much larger than that of the medium, A. On the one 
hand, this fact discourages attempts to apply standard per- 
turbation-theory methods and averaging methods; on the 
other, it leads to the appearance of a broad inertial interval 
[A, a ]  in which the transport has scale-invariant properties, 
i.e., is of a fractal nature," since there are no other length 
scales. If we introduce the concept of a hot region as the 
minimum volume which is responsible for half the total flow, 
we find that its fractal dimension for single-scale fluctu- 
ations is5' d,,,,! = 2.75 (according to the discussion above, 
we would have 2<d,,,, ~ 2 . 7 5 )  in the multiscale case), while 
in the quasiuniform regime we would have d,,,, = 3. We 
wish to stress that the dimension d,,,, does not change upon a 
variation of the parameters of the system; all that changes is 
the width of the inertial interval, which determines the range 
of applicability of the concept of a fractal dimension (in the 
quasiuniform regime we would have a, =A, ) .  

With regard to the quasiuniform regime of current flow 
in a Hall conductor in the interval (flA2) ' < & < (f l /A) 
the large longitudinal mixing length in (32),  a, >A,, does 
not make the hot region a fractal region (d,,,,, = 3) ,  but it 
does give rise to a scale-invariant longitudinal random walk 
of the current lines. In this approximation, the behavior of 
these current lines in the inertial interval [A,,  a,] is identical 
to a plot of a Brownian function (Fig. 2) .  The fractal dimen- 
sion of the current lines is therefore 1.5 (Ref. 12).  

One field of application of this theory is the field of 
plasma current opening switches, which are used to create 
steep-front, high-power electrical pulses for inertial fusion 
and other  application^."-'^ According to the scenario de- 
scribed in Ref. 4, as a plasma suffers erosion ( a  decrease in 
density) because of current flowing through it, the plasma- 
filled gap at some point goes into an EMHD regime. This 
transition is accompanied by a sharp increase in the resis- 
tance of the gap. The magnetic field in the opening switch is 
usually the field of the current flowing through it, but there 
are also arrangements with an external magnetic field.I5 The 
maximum average resistivity of a randomly inhomogeneous 
plasma with A z 1 is max (p,, ) z p , , f l z  B /nec, the same as 
the surface EMHD resistivity in ( 9 )  in the absence of small 
geometric parameters (i.e., in the case by z b ,  z b , ) .  At 
large values of b, ,  volume effects outweigh the surface ef- 
fects. It should also be noted that for inhomogeneities of 
certain special types, e.g., for layered inhomogeneities of a 
plasma across the average current, the average resistivity 
may increase far more rapidly, to a levelp,, ~ p ,  (BA) ' (Ref. 
4) .  

Another field of application of this theory might be the 
magnetoresistance effects in nonuniformly doped semicon- 
ductors, which are of the same plasma nature.I6 

A diagram of the size effect (Fig. 3 )  shows that sup- 
pression of the anomalous resistivity of an inhomogeneous 
Hall medium by no means requires that all the dimensions be 
greater than the length scale of the inhomogeneity of the 
medium; in particular, the anomalous bulk resistivity is ob- 
served even under the condition 6, <A,. 

"More precisely, the part of the magnetic energy due to the current, 
B6B/4v, where 6B is the field of the current I flowing through the 
plasma. 

"Actually, it is not a matter of the particle undergoing a displacement 
with respect to the flow, but instead a change in the flow itself. This flow 
depends on z. Correspondingly, expression (20) could be derived in a 
different way, by examining how the separatrices of the time-varying 
velocity field v[x, y, z ( t ) ]  reconnect.' The result is the same. 

"This situation is quite natural, since in the quasiuniform regime there is 
a twisting of the current only in thez direction, while in the purely two- 
dimensional case ({ = m ) there is a twisting only in the (x,  y )  plane. In 
the intermediate regime which we are discussing here, these two types of 
random walks coexist. 

4 )  The size effect in terms of b, was analyzed in Ref. 6 for the case of two- 
dimensional inhomogeneities ({ = oc ) .  

"The fractal dimension of a nondegenerate planar cross section of a 
three-dimensional fractal is smaller by one than the dimension of the 
entire fractal." We recall that the fractal dimension of two-dimensional 
percolation contour lines is d,, = 1.75. 
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