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The dynamics of a level-band-level system is studied. The level populations are found as a 
function of the time, the strength of the interaction, the deviations from resonance, and the 
correlation properties of the matrix elements of the interaction operator. The resonance lines may 
become narrower as time elapses. The possible utilization of this effect in processes involving a 
resonant interaction of electromagnetic radiation with matter is discussed. 

A quantum-mechanical level-band-level system arises 
in a natural way in several physical problems involving the 
interaction of electromagnetic radiation with matter. An ex- 
ample is the two-photon excitation of an electronic term of a 
molecule which occurs when the conditions for an interme- 
diate resonance with states of a vibrational quasicontinuum 
are satisfied (Fig. 1 ). Another example is the application of 
electromagnetic radiation at  two frequencies to an atom 
(Fig. 2 ) ,  with the atom being excited into Rydberg or ioniza- 
tion states. One might also include here Raman scattering in 
intense fields (Fig. 3 ) .  From the quantum-mechanical 
standpoint, all these states correspond to the same level 
scheme (Fig. 4 )  in the quasienergy representation. 

The behavior of a quantum level-band system' at times 
shorter than the state density g in the band (in a system of 
units with fi  = e = 1 ) is well known. In this case the level 
population decays exponentially into the band. The behavior 
is well known at times greater than g (Ref. 2 ) ,  at which 
revival processesx4 -inverse fluxes of population from the 
band to the level-come into play. 

Level-band-level systems should be described in a simi- 
lar way. One should bear in mind the important role which 
may be played and indeed is played by the correlation prop- 
erties of the matrix elements of the operators representing 
the interaction of the level with the band. In the present 
paper we analyze the population dynamics in such a system 
under the assumption that only one level (the "lower level") 
is initially populated. 

We intend to treat the problem in its simplest formula- 
tion, under the assumption that the interaction is turned on 
"instantaneously" at the time r = 0 and under the further 
assumption that this interaction does not give rise to addi- 
tional transitions directly between states of the band. In oth- 
er words, we are assuming that the operator structure of the 
perturbation causes transitions only between the levels and 
the band, while the states of the band interact with each 
other in such a way that there is no change in the positions of 
the levels in the band. Without any loss of generality, we can 
assume that the external fields are in the same direction. We 
will focus on finding the population of the "upper level" as a 
function of the time, the statistical properties of the matrix 
elements, and A, (the deviation from resonance). 

We are interested in the course of the process both at 
relatively early times and in the limit r -  CO. In the first of 
these cases, the solution of the problem is insensitive to the 
details of the spectrum, being universal in nature and being 

determined only by the gross characteristics of the system 
(in particular, the binary correlation function of the matrix 
elements of the interaction operator). In the second case, 
i.e., in the limit r-  m, in contrast, the behavior of the popu- 
lation is considerably more complex. In this second case the 
nature of the energy distribution of the levels becomes im- 
portant. A natural way to study this asymptotic behavior is 
t o  ensemble-a~erage,~ which allows one to calculate average 
characteristics of the system which are insensitive to details 
of the spectrum. The actual form of the ensemble distribu- 
tion function is of course determined by the particular prob- 
lem. 

We carry out an analytic solution of the problem of the 
level-band-level system in the asymptotic limit r- CO.  We 
have managed to find this solution for the case in which the 
position of each of the levels of the band is statistically inde- 
pendent (the case of a so-called Poisson ensemble), with a 
model distribution function of the magnitude of the matrix 
elements of the interaction operator. A description of this 
sort is, strictly speaking, valid only for a system in which the 
band forms as a result of complex, multidimensional mo- 
tions which do not fully interact with each other, as may be 
the case, for example, for a multidimensional vibrational 

FIG. 1 .  Two-photon excitation of molecules. 
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FIG. 2. Two-frequency action on an atom. 

motion corresponding to an excited electronic term of a mol- 
ecule. However, we believe that the results derived below are 
clearly of more general applicability, since-although we are 
not claiming a quantitative agreement-they do show the 
qualitative behavior of the population as a function of exter- 
nal parameters ( the deviation from resonance and so forth), 
and they are pertinent to the description of the asymptotic 
behavior of other physical systems [Rydberg atoms, "de- 
structive" quantum numbers (or integrals of motion), tun- 
neling transmission, etc. ]. 

It seems worthwhile to examine this question in more 
detail. The vibrational spectrum of a polyatomic molecule is 
a complex object. The energy position of each level is deter- 
mined by a large number of parameters, so the specific rela- 
tive positions of levels are quite different even in spectral 
regions lying quite close to each other. Under these condi- 
tions, even a relatively small change in the frequency of an 
electronic transition (caused by, for example, the Doppler 
effect) is capable of causing a substantial change in the par- 
ticular picture of level positions near the resonance. Taking 
an average over such changes in frequency is of course equiv- 
alent to averaging over all possible realizations of the spec- 
trum near the resonance. In other words, taking an average 
over one parameter is equivalent to taking an average over an 
ensemble of different realizations. 

FIG. 3. Raman scattering ( ( o , , ,  are the frequencies of the corresponding 
transitions). 

spectra, and there can naturally be arbitrarily small differ- 
ences in the distances between neighboring levels. The situa- 
tion is typical of spectra formed as the result of a quantiza- 
tion of multidimensional motions which are independent in 
the different directions. This situation can be modeled by a 
factored ensemble distribution function which assumes a 
statistically independent position of each of the levels. This 
particular situation lends itself to a systematic analytic solu- 
tion, and it is the subject of the present paper. 

In the quasienergy representation, in the resonance ap- 
proximation, the Schrodinger equation takes the following 
form after Fourier time transforms are taken: 

There is the important question of the nature of the 
ensemble probability distribution of such realizations, i.e., Here q,,, are the wave functions of the lower and upper 

the distribution of the probability of realizations of different levels; q,, is the wave function of level n in the band; A,,  and 

relative positions of the levels in different parts of the spec- AH are the deviation of the upper level and that of level n in 

trum. One distinguishes between two limiting statistics: the the band from resonance; E is the electric field; PA,, and p,,, 
case of a "hard" spectrum and the case of a "softM spectrum, are the matrix elements for dipole transitions (k ,  1 = 1 ,2 ) ;  & 

Hard spectra form as the result of an intense interaction, is the energy variable of the '4' function; and the term i/2a in 

such that the pattern of level positions is formed as a result of the first equation in ( 1 ) means that only the lower level is 

a mutual revulsion of states. In such an interaction, the prob- initially filled. A solution of system ( 1 ) for q 2  is 

ability for neighboring levels to lie close together is low. 
Hard spectra are realized for motions which are fully sto- e-A,, e - LI ,, 
chastic. 

A different situation arises in the case in which states x 
interact with each other only slightly. The spectrum formed 
in the process is essentially a superposition of independent ( 2  

L- - - -- 4 A -2- FIG. 4. Energy levels in the level-band-level system in the quasien- 
-- 
-- 7 ergy representation. 
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From this point on the analysis depends on whether we 
are interested in times which are much shorter than the level 
density in the band ( ~ < g )  or much longer ( r s g ) .  In  the 
early stage, by virtue of the uncertainty principle, AEAT- 1, 
the band can be treated as a continuum, and the summation 
in (2)  can be replaced by an integration over the deviation 
from resonance. The result of this integration can be ex- 
pressed in terms of the correlation functions of the matrix 
elements: 

After the roots of the equation quadratic in E in the denomi- 
nator in (2 )  are found in the particular case of a small devi- 
ation from resonance and a small difference between the cor- 
relation functions, we find, through the use of inverse 
Fourier transforms, 

We see that in the case ( p  , I) (p,') - ( p  ,p2) '  #0, the popu- 
lation of the upper level reaches its maximum value 
[ ( p I p 2 ) / ( ( p I 2 )  + ( P ? ~ ) ) ] ' ,  in a time ~ - [ 2 7 ~ g E ' ( ( p , ~ )  
+ (p?') ) ] - I  and then falls off as T -  m, under the condi- 

tion A? = 0, with a time scale ( (p , ' )  + (p,')) [4g77E 
( ( p 1 2 )  (p7?) - ( p  ] I .  For nonzero A2, the upper lev- 
el decays more rapidly. The frequency characteristic of the 
density ofstates of the upper l e v e l , ~ ? ~ ( A ? ) ,  is Gaussian with 
a time-dependent width [47~gE '( ( p  ," + (p?') )/TI 'I2. The 
formal replacement of the matrix elements of the dipole mo- 
ment, p,,, -p,,, E,/E, solves the problem of the excitation of 
a system by two fields differing in intensity and the problem 
of two-photon excitation with different frequencies. 

In the late stage, it is no longer valid to replace the sum- 
mation over levels by an integration over the deviation from 
resonance. The temporal behavior of the system in this case 
depends on the details of the spectrum, the energy positions 
of each of the levels, and the size of the corresponding matrix 
elements. The behavior of the level population on the aver- 
age over time is relatively insensitive to such  detail^.^ In this 
case we are justified in using an ensemble average,4v6 in 
which the explicit expression for the quantity of interest 
here,p,, (T, {A,,), {pin), {p2, I) ,  can be written in afinite 
analytic form after an average is taken over an ensemble with 
the distribution function G({A,); {pI, 1, {p2, 1) 
X ndA, ndp,, ,  ndp,, , which determines the probability for 
the realization of a system with certain sets of values of the 
detuning A,, and with matrix elements p,, , p,, . The ensem- 
ble distribution functions depend on the nature of the pro- 
cesses which lead to the formation of the bands. 

In the present paper we use the following ensemble dis- 
tribution function: 

G =n { I  r - 1 0 ( ~ , t + r / 2 ) o ( ~ , , - r / 2 ) ~  [ ( ( 1 - ~ ) 8 ( p , ~ - p ~ , , )  
+a6 (pI,+pzn) ) p,,, exp (-pl,,2/p2)'/2p21), r-+oo (4 )  

[ 8 ( x )  is the unit step function, r is the width of the band, 

andp2  is the mean square ofp:,, and pi, 1. We are according- 
ly adopting the following assumptions: ( 1 ) The energy posi- 
tion of each of the band levels has a statistically independent 
distribution' over the wide (in the limiting case, infinite) 
interval from - r / 2  to r / 2 .  ( 2 )  The values of the matrix 
elements of the dipole moments p ,, and p,, have a distribu- 
tion which is statistically independent (independent of the 
energy position of the level). We are assuming that p,, and 
p,,, are highly correlated with each other, always have iden- 
tical magnitudes, differ in sign with a probability a, have the 
same sign with a probability 1 - a. 

We use expression ( 2 )  and write Y2 in a form conven- 
ient for subsequent averaging over the ensemble: 

Here we have used the relation 

(ab-c2)"=-n-' Serp[ia (r2+y2) +ib ( z W )  

-2ic(xz+yt) ]dx dy dz dt. 

We denote by Q,, the expression in square brackets in (5 ) .  
The ensemble average of the population of the upper level is 
found by multiplying (5 )  by its complex conjugate and tak- 
ing an average with the distribution function (4 ) .  The vari- 
ables x ,  ..., t i n  the integral representation of the function Y: 
analogous to (5 )  are denoted by x', ..., t ', respectively. We 
replace ,y by the variable $: 

Since the ensemble distribution function, expression (5 )  for 
the population Y, , and the corresponding expression for Y: 
all factor, i.e., all break up into a product of functions for 
individual levels, the procedure of taking an average can be 
carried out as follows. Each of the n cofactors corresponding 
to a given level, 

differs only slightly from unity by virtue of our assulnption 
r - w , and we can use the expression 

r, 2 

where the ellipsis (... ) in parentheses means the argument of 
the exponential function in (6) .  The expression which we 
have found does not depend on n. Consequently, the popula- 
tion, which is proportional to the product of factors a,, , con- 
tains a factor 

r/2 
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whereg = N / r  is the density of all the levels in the band (N 
is the total number of levels), and g ( p ,  ,p2 ) in (6)-(8) rep- 
resents the expression in the second set of square brackets in 
(4).  In the course of the transformation, the contour ( C )  of 
the integration over dA undergoes changes. By subtracting 
one from the exponential function, we can get rid of the sin- 
gularity at infinity. As a result, C becomes a figure-eight 
circumventing the essential singularities A = E and A = {. 
Integrating over d p , ,  dp,, and dA; making the change of 
variables 

and introducing the two-dimensional vectors 

X= (LIEp)'" {x+z ,  y + t ) ,  y= ( p / E y ) ' " { x - z ,  y - t ) ,  

x'= (LIEp)"' {x'+zl,  y r f  t r ) ,  y'= ( ~ / E p ) l h { x ' - ~ ' ,  y r - t ' ) ,  

we find the following expression for the population of level 2: 

Let us use expression (9) in the asymptotic limit T- w 
to study the behavior of the population of the upper level as a 
function of the deviation from resonance, A,, and as a func- 
tion of the parameter a ,  which is the probability for "non- 
coincidence" of the signs of matrix elements p,, and p,, of 
the transition dipole moment. We assume that the number of 
levels in the band which are in resonance is large: rgEp 9 1. 
Near the resonance (A, 5 Ep),  for the case of fully correlat- 
ed matrix elements of the dipole moment ( a  = O), the popu- 
lation of the upper level is 1/4 (see Appendix 1 ). If the corre- 
lation is not complete (a4 1, but n-agEpS 1 ), the 
population falls to a value (2a rgEp)  - 2 .  At deviations 
1 A, 1 > Ep with a = 0 (see Appendices 2 and 3 ) , the popula- 
tion of the upper level is 4/(3rgEp) ,. For O < a 4  1, with 
an-gEp) 1, the population is (21~agEp) - '. With a = 0 and 

far from the resonance ( I A2 / > E p  ) , the population of level 2 
decreases with increasing deviation from resonance, in pro- 
portion to (2Ep/A, )'. With a f O  and a r g E p S  1, this re- 
gime sets in at /A2 I > agEp. 

Figure 5 shows the population of the upper level as a 
function of the time and the deviation from resonance. 
Curve 1 corresponds to the case of fully correlated matrix 
elements for the (lower level) -band and band- (upper level ) 
transitions. Over times T- (8n-gE 'p2) - ' the population in- 
creases from zero to its maximum value. The spectrum of the 
population (the population as a function of A,) then be- 
comes Gaussian with a time-dependent width 
(8n-gE *p2/r) 'I. In other words, as time elapses the spec- 
trum starts to become narrower, without a decrease in 
height. It reaches a steady state over a time2 r-g. Curve 2 in 
Fig. 5 corresponds to the dynamics of the excitation with 
slightly uncorrelated matrix elements, 1 % a $  (n-gEp) '. In 
the early stage, r g g ,  the line of the spectral characteristic 
not only contracts but alsoshrinks in amplitude, and at times 
T 2 g the spectrum becomes broader because the resonance is 
"smoothed out." 

It should be kept in mind that after a time 
T-  (n-gE 'p2) - I half the population is localized in states of 
the band, and at r in the interval (Ezp'g) '<rgg this is 
true of an ever-increasing fraction of the population, while 
there is an ever-decreasing fraction in level 2. However, for a 
system with a deviation A, # O  from strict resonance the 
fraction of the population which is in level 2 falls off expon- 
entially. In other words, the selective filling of level 2 be- 
comes more pronounced, in accordance with 
exp( - A: T / ~ E  'p2), while the absolute value of the "yield" 
falls off as exp( - E *p2agr).  This behavior might be uti- 
lized for isotope separation: Level 1 would be the ground 
state of atoms having an isotopic shift, and level 2 an excited 
state of these atoms. The band would be the fairly closely 
spaced Rydbergstates, which would be coupled with levels 1 
and 2 by lasing transitions. The weak dependence of the tran- 
sition matrix element on the index of the Rydberg level sug- 
gests that the correlation function a would be approximately 
zero and that this method, supplemented with a process for 
calculating the number of atoms in state 2, might allow a 
high population (yield) p2, = 1/4 to be combined with a 
high selectivity of the process. 

Let us summarize the results of this study. 
1. The population of the upper state increases to its 

FIG. 5. Population of the upper level, p??, as a 
function of the time 7 and of the deviation from 
resonance, A?. I-a = 0; 2-a#0. Dashed 
lines) A? = 0; dot-dashed lines) sections at 
identical times T, - (8?rgE'p2) ', 7, < r2 < g ,  
7, 2 g .  
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maximum value over a comparatively short time 
T, - ( 8 r g E  ,p2). 

2. At times greater than r l ,  at resonance (A, = 0) ,  with 
a complete correlation of the matrix elements for the level- 
band and band-level transitions (p ,,, = p,,, ), the population 
of the upper state remains p,, = 1/4. This conclusion fol- 
lows from the symmetry of the problem. If there is a partial 
correlation, the population of the upper state remains finite 
at T) rI , although it does fall off with increasing number of 
"decorrelated" levels which have reached resonance. The 
asymptotic value of the population of the upper level is zero 
only if there is no correlation at all. It is this particular case 
which was studied in Ref. 7. 

3. When there is a deviation from resonance (A, #O), 
the population at each fixed time falls off with the deviation 
from resonance in a Gaussian fashion with a half-width in- 
versely proportional to the square root of the interaction 
time. As a result, the spectrum becomes narrower as time 
elapses. 

Oneofus (E. P. G.) wishes to thank A. M. Dykhnyafor 
useful consultations. 

APPENDIX 1 

Let us evaluate the integral in expression (9)  in the case 
A' = 0 in the limit of an infinitely long time ( 7 ' 4  co ). For 
this purpose we switch to new integration variables: 

x2=z-X, x"=z'-9, yZ=t+x, yp2=tr+*. 

Correspondingly, the measure of the integration, 
d 'xd 'x'd 2yd 'y ' ,  becomes r4dzdz'dtdt '. In this notation, 
p,, ( T' 1 becomes 

We integrate over dl;l in this expression, obtaining a factor 
8&(z + t - z' - t I)/{, as a result. We then differentiate 
with respect to the parameters x and $: 

1  
pZ2 ( r l ) =  - j d t  dtr  dt66 ( t - t ' )  

16n 

1 
-I- - J dz dz' df c6 (2-2') 

16n 

1 + - 5 dz dt' dg 66(z- t ' )  exp [ - f - t ' z + i t r f - g f 6 z ]  
16 2 

The last two terms in (A2)  make vanishingly small con- 
tributions at long times. In the first two terms we change the 
integration variables z, t = ir2/f and, using the asymptotic 
expression 

exp ( ibz ' )  /%=2ni6 ( b )  +O ( I / % ' ) ,  (A3 

we integrate over d<: 

x { e x p [ -  (I-a) g'r] - exp ( - a g ' r ) ) .  (A41 

We thus see that we have p,, ( cc ) = (2ag') for 
1 & a g l < ( l  - a ) g l  and p,, ( cc ) = 1/4 for 
a g l < l < ( l  - a ) g l .  

APPENDIX 2 

Let us evaluate the integral in (9)  in the limit a = 0. 
Evaluating the Gaussian integrals over d 'x and d ,x', we 
switch to the new integration variables t and t ' which were 
introduced in Appendix 1 : 

( t - t ' )  '--i ( t + t r )  
-g'f [ ( t - t r + - ~ i ( t + t / ) - - i ] '  1 

In  this expression we differentiate with respect to the param- 
eters tC, and X :  

i exp(iE.cf) 
pz2 (Tr l l=  - J 

8nz q 2 - f 2  
d q  db 

i -- A' 

i d t ldg 6 .  +- J d t -  
2 S n 9 z - b 2  

A' ' i A' ' 
x ( q + t  - x)exp[ - i -6 (q+6  - =) t + i % r l - g r i t ]  

1 d t  A '=  A' + - J at  atf - 6 z ( 9 + ~  - -) ( 9 - 6  - -) 
27n2 +-b2 q+c  q-6 

A t 2  i 
x e x p { t  6 ( q + 6 -  s+f -) t  - t ( q - t  - 

( t - t ' )  z-i(t+t')  
+'tr'-g1f ( t - t f  j ~ - 2 ~ ( t + t ~ ) - i ] ~  

The first term in (AS) is 1/4. In the second term we inte- 
grate first over d t  ' and then over df and dl;l: 

1 d q  d t  'Id[ (q-E)"A' ' 1  exp ( i t r ' )  --I- =-- 1  
4 

+..., 
8na 1'-6' g f ( q - 5 )  f i / & i [  (11-%)'-Af 'I 

(A61 

where the ellipsis (...) represents vanishingly small terms in 
the limit T'- C C .  In the limit of long times the third term in 
(A5 ) also gives us a value of - 1/4. The range of integration 
in the fourth term in (AS) can be broken up in a natural way 
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into two subregions over the variables <and 7 .  The contribu- 
tion to the integral from the first subregion, 5 = 0  = 7,  is 
1/4. In the second subregion, 5 # 0 # ~ ,  we switch to new 
integration variables in accordance with 

0<0<n, t-t'=r cos e l%,  t+ t'=irz sinZ 0 /2bZ .  

The measure of the integration, dtdt ', in these new variables 
is - ir2sinedrde /25 '. The expression for the population is 

r2 A' 
xexp [- - sin' 0( I t -) 

8 9"c2 

Using the asymptotic expression (A3)  in (A6),  we carry out 
the integration over dc. We then ignore the term in the argu- 
ment of the exponential function which is quadratic in r by 
virtue of the relation g') 1, and we integrate over dr: 

In this expression we use the approximation 
1/2sin28 + cos28 = 3/4 and then integrate over the angle 
dB: 

For "small" deviations from resonance, 1 4  [A'l <g', for 
which large values of 7 are important in (A9) ,  the popula- 
tion is p2, ( co ) = 4/9i2 .  For large values of the deviation 
from resonance, lA'1 >g') 1, at which small values of 7 are 
important in (A9) ,  the population is p2, ( co ) = 4/A'2. 

APPENDIX 3 

In this section we evaluate the integral in ( 9 )  for long 
times under the conditions ag') 1 and /A1l) l .  For this pur- 
pose we switch to variables z, z', t, t ', as in Appendix l ,  and 
we introduce the two angles g, and g, ': 

xy= [ (2 -X)  ( t+x)  1'" cos r p ,  x'y' = [ (2'-9) (tl+$) I " cos rp'. 

The measure of the integration in these variables is 
dzdz'dtdt 'dpdp ' .rr2/4. After integrating over dy,  we rewrite 
(9) in the new notation: 

m a ,  m m  

xcos  rp- ( (2 ' -$ )  ( t l+$))"  cos q' ]  

(z-z') '-i (z+z') 
a g ' 5  [ (2-20 2-2i(z+zf) -1 IV 

( t - t ' )  '--i ( t+t l )  
- (l-1 g'5 [ ( t - i f )  z-2i (t+t')  - 4  ]I/¶ 

In this expression we differentiate with respect to $and X :  

- j dz d t r  db 6 d q ~  drpt 6 (z-t') 
2~ 

(2-t)  ( 2 ' 4 ' )  
+ $ $ l d z d ~ ' d t d t f  ( ~ z ' t t ' )  '" d t  b3 drp 

i 
xcos rp  drpr cos rpl 6 ( z f t - z l - t l )  exp[- 4 5' ( z f t - z t - r ' )  +i5rr 

i 
+-5A'[  (zt) '" cos cp- (z ' t ' )" cos r p ' ]  

2 

z-t 
- sj dz d t  d t f  - 

( z t )  '" 

i 
X d5 t z d p  cos rp  drpt 6(z+t-t ')  e x p [ -  5'(z+t+t') +i5r' 

4 

i + - 2 GA' ( z t )  " cos rp-ag'tz 

2-t +& j d z h ' d t -  (z t )"  db fVrp cos rp  drp' 6 ( z S t - z ' )  

i i 
X,?xp [- 62(z+1tz1)  + i 5 ~ '  + - 5 A f ( z t )  " cos rp 

4 2 

2'-t' 
X- drp drp' cos rp' dc  f26(t-2'-t')exp 

(z ' t ' )  'I* 
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The third and fourth terms in (A10) are vanishingly small. 
The sixth and eighth are equal to the first, with the opposite 
sign, while the seventh and ninth are equal to the second, 
again with the opposite sign. We will demonstrate this point 
using the sixth term as an example. Since we have z-{ - -  ' 
and t- f I, the term a g ' Q  in the argument of the exponen- 
tial function is negligible in comparison with 
i{A1(zt) ' / 2 c ~ ~ p  /2, while the term - ( 1/4) i{ 'zis negligible 
in comparison with i{ '(t + t ')/4. Replacing z + t - t ' by 
t - t '  in the argument of the 8-function, and replacing 
( Z  - t )  (zt) by ( t  /z) 'I2 in the coefficient of the expo- 
nential function, we integrate over dz: 

(t-t')'-i ( t + t l )  
+ L % T ' -  ( I -a )g1G 

[ (t-t ')'-2i ( t + t f )  - I ]  'v, 
} ( A l l )  

We turn now to the fifth term in (A10). We integrate over 
d p  and d p  ' by the method of steepest descent. After a long 
time, the nonvanishing constituent term (which we denote 
by A , )  of the fifth term in (A10) is 

A, = " J d t  a t r  L L' ( z - t )  (zl-t1)'(zz't t ')-Xdt g 2 .  
2'x3 

i  - - tA ' [  (zt)'"- (z't ')"] 
2  

- ( t - t ' )  2-i ( t+ t r )  
('-a)g'' I ( t - t1 ) z -2 i ( t+ t f )  -ip 1. (A12) 

In (A12) we consider the limiting case 
1 < lA'l <ag '< (1  - a ) g f .  For this purpose we switch to the 
new integration variables 

Correspondingly, the measure of the integration, dzdz'dtdt ', 
becomes dududu'dv'/4[ '. Using the asymptotic expression 
(A3),  we can then integrate over d<: 

(v -v ' )  
A. = - gJ du dv du' dv1  6 ( u + u f )  

2'n ( u v ' ) ~  

i v-v' u2--iv uZ-iv' 
+ -A'u- -ag '  

4 (vv')'" (uz-2iv)  % 
- ( 1 - a ) ~ '  (u2-2iv.) 

(A131 

The integral over du' in this expression can be eliminated 
with the help of the S-function. Since we have u2-iv', we 
switch from the variable u to 7' = u(ivf) After this sub- 
stitution, we retain only the terms which are linear in 7'. We 
are then in a position to integrate over d ~ ' :  

i  + - A' ( iv ' )  I" V-U' i  (v ' -v)  
4 

- ag' - 2 i ( i - a )  g'q' 
( v v ' )  " [ i ( v l - 2 v )  1 %  

v -v  
x 6 (A' 4(vv.;U - 2 ( i - a ) g f )  

i i  v-U' 
X crp [- ( v + v f )  4- - A' (iv1)'" 

4 4 (v-v' )  % 

Using u s  u', we eliminate the integration of dv in (A14) with 
the help of the S-function: 

In the latter case, we use the change of variables u' = 2ir2: 
0. 

We thus have p2, ( w )  = (2ag') under the condition 
IA'I <agf .  

We now consider the next limiting case: 
a g ' < l A I J < ( l  - a ) g f .  In this casewe must add to (A13) a 
term 

B, = 2 Jdz dz' (zz ' )  ' (tt ')  -' dt dt l  dS 5.8 (z-z ' )  
2~ 

f A'[ (zt)Ih- (z't') "'1-ag'g 

(A171 

which is found from ( A  12) in the region of "small" values of 
t and t '. We change integration variables in (A17): 

Evaluating the Gaussian integral over the variables x and x' 
over the half-interval, we find an expression which is the 
same as the second term in (A10). In this limiting case we 
thus have p,, ( w ) = 4/A'2, as follows from (A16). 

" A  statistically independent distribution of the energy positions of each 
of the levels-a Poisson ensemble-arises if the system is not fully sto- 
chastic-if not all the degrees of freedom have been drawn into in the 
chaotic motion. 
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