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The behavior of the electric double layer produced in the nonstationary electron emission from 
metals into a dielectric medium was studied. The parameters of the electron cloud and their time 
evolution were determined. The efficiency of conversion of the double layer energy into 
electromagnetic radiation was studied. 

Recently, a considerable theoretical and experimental 
effort has been focused on the formation and evolution of 
double electron layers.'-'o The interest in this problem is 
related to the effect of these double layers on the physical 
processes occurring in p l a ~ m a , ~ - ~  solid state electronics,' 
laser photoemi~sion,~ and in the generation of spontaneous 
electric and magnetic fields."' 

The present theoretical work is focused on the time- 
dependent problem of the behavior of the double electric 
layer formed in the surface electron emission from metals 
into dielectric materials. The motion of the emitted electrons 
is described by their drift in the self-consistent electric field 
and by diffusion. Unlike the problems studied in the refer- 
ences cited above (with the exception of Ref. 9) ,  this prob- 
lem is significantly nonstationary. This makes it possible to 
study the conversion of the energy spent in the formation of 
the double layer into radiative energy. Reference 8 solved 
the time-dependent problem of dipole emission from the lay- 
er formed during short-pulse photoemission into vacuum. 
The same formalism was also applied to the time-dependent 
processes in MDM-structures. So, for example, Lampert 
and Mark' calculated the resistance of the dielectric to an 
alternating current, and studied the distribution of high-am- 
plitude charge pulses. Unlike the work of Lampert and 
Mark,' in which a closed circuit with an external source was 
treated, and the total current was determined by the differ- 
ence between the electron ( "drift" + "diffusion" ) currents 
and the displacement current, in the present work the dis- 
placement current cancels out the sum of the two electron 
current components. 

Let us consider a plane semi-infinite layer of a uniform 
dielectric medium (x  > 0 )  interfacing a metallic surface 
(X = 0) ,  and an electron current J, ( t )  emitted from the met- 
al surface, due, for example, to a photoemission process. The 
system of equations that describes the electron distribution 
and the electric field inside the dielectric is 

where ( u )  is the average velocity of the emitted electrons. 
Initially, the field intensity and the electron density inside 
the material are equal to zero. 

Equations (1) and (2)  determine completely the time- 
dependent fields E(x,t)  and densities n(x,t)  when J, ( t ) ,  
( u ) ,  and the parameters E, p ,  and Tare  given. It is conven- 
ient to introduce dimensionless functions and variables. Let 
no be an arbitrary electron density describing the density of 
emitted electrons. All the other quantities are then deter- 
mined as follows: 

In dimensionless form, Eqs. ( 1 ) and (2 )  become 

where all quantities E ,  n, p, x, t, and yo are dimensionless. 
The significance of the parameter y,, is the following. If the 
thermalization time of the emitted electrons is large com- 
pared to the time of change of J, ( t ) ,  which may be the case 
for gases of sufficiently low density, then kT represents the 
characteristic emission temperature. Consequently, we have 
y,, Z E - ' ~ ,  t ,, ', where t, is the collision time of the emitted 
electrons, determined by their average velocity ( u ) .  Alter- 
natively, in the case of crystal dielectrics, the electrons start 
to diffuse with a thermal velocity u T <  ( u ) ,  and kT repre- 
sents the temperature of the medium. In this case, however, 
the range of emission currents is such that heating of the 
dielectric can be neglected. 

Let us consider first the stationary case, in which the 
effect of the way the emitted electrons move on the space- 
time structure of the double layer can be understood. As- 
suming 

E,=4neJ/e .  R , = - 4 n e n / ~ ,  
(1) J,(t) =J,,==const, I=--yonE-n.=O, 

cP =-,y . J=-pnE-ykTrz,, 

one obtains 
where E is the electric field intensity, p is the electric poten- 
tial, n is the electron density, J i s  the electron current, E is the nx=-yonE, EL=-n, n (0) =Jeolno(u>. ( 5 )  
dielectric permittivity (E = constant ), p is the mobility, and 

It is convenient to express the solutions of Eqs. (5 )  in dimen- 
p k T i s  the diffusion coefficient. 

sional form as follows: 
Within the range of validity of the diffusion a ~ ~ r o x i m a -  - A 

tion, in which J ( t )  2 J,  ( t )  holds and the characteristic emis- EE--- n =  nM Q=- E M  
sion time is much larger than the electron collision time, the l+x /LE '  ( I+X/L,)~ '  4n ' ~- 
boundary conditions for the system ( 1 ) are determined by 

q=-EmaxL, In (l+x/LE), 
the given density of emitted electrons on the boundary and 
by the normalization of the potential: where 
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L, is the Debye radius of the electron plasma, 

Emm=E0 (2no<u)/J.oyo)'1a-4nn,eL,/~'h, 

Q is the total charge, and n,,, = J , / ( u ) .  
The time required for the stationary regime to develop, 

t,,, is determined from the condition 

L,--el"LD- (p.kTt,)'"- ((u>Vt, t,)'", t , -e to( t0l t ,  ) . 

Thus, unlike the case of emission into v a ~ u u m , ~  in this case 
the field inside the layer decreases by a factor of and the 
thickness of the layer increases by a factor of i.e., the 
potential difference determined by the energy of the emitted 
electrons does not depend on E. The time 
t, -t,~(t,/t, ) > ~ ' / ~ t ,  (since L, ZE'/~L, > (u)t, and 
to /t, % E - ) increases. 

Numerical calculations for photoemission of electrons 
from a metal with work function W = 5 eV, quantum effi- 
ciency - lop2 ,  and photon energy - 10 eV give the follow- 
ing results: 

J,0=6.10'9 cm-' .s-:  no=6. 10'icm-3, to--2,5. 10-" s .  

F o r p k T ~  lo4 c m 2 . s ' ,  one obtains 

In order to solve the time-dependent system of equa- 
tions ( l ) and (2) ,  one can write it as a single equation for 
p(x,t):  

with the following boundary conditions: 

The first integral of equation (6 )  has the form 

where F ( t )  is an arbitrary function of time. Further, by using 
the well known Cole-Hopf transformation1' 

Eq. (7 )  is reduced to the linear thermal transport equation: 

Since F ( t )  can be specified to within a constant, let us as- 
sume F ( t  = 0 )  = 0, which, together with the initial condi- 
tions, gives 

From the first equation in (6') one obtains 

and from the second 

The function $(x,t), which is a solution of the thermal trans- 
port equation ( 9 ) ,  also satisfies the following equation: 

a s  
+(o, t )  =I -I 0 I ( o ,  t -s)-  ( n s )  % ' 

Equations ( 12) and ( 13) determine two functions 
$(O,t) = $, ( t )  and $x (0,t) = $ox ( t )  ($, (0) = 1, 
$,, (0) = 0).  Finally, the solution of the general problem 
(91, ( lo ) ,  and ( 12) is reduced to the quadrature 

where Q(x)  is the error function, and 
a ( x ,  S) = exp(x2/4s)/2(m) 'I2. 

Let us first consider the case in which the emission is 
switched on instantaneously: 

n(t<O) =0,  n(t>O) =no=l .  

Then, it is possible to calculate an approximate solution of 
Eqs. (12) and (13) for t-Oand t- m: 

The case of emission switched on instantaneously at 
time t,, n ( t < t , )  =no, n ( t> t , )  = 0 ,  can be treated in a 
similar way. In this case, it is assumed that t, >z-/2yo. With 
T = t - t, , the approximate solution of Equations ( 12) and 
(13) is: 

In this case (of emission switched on and switched off in- 
stantaneously ), the emitted radiation is treated in the dipole 
approximation. The dipole moment is given by the expres- 
sion: 

co 

Calculation of the second derivative of the dipole moment in 
Equations ( 12) and ( 13) clearly shows that the main contri- 
bution to the radiation comes from switching off the emis- 
sion. In this case, d,, is given by: 

d t t  ( t )  = (1 /2n2)  ( n y o / 2 ) ' " o o 2 q , ( ~ , ~ ) - " ' ,  

and the radiation intensity by 

P= (1/12n3c3) r0w04cpTZS2 ( w 0 ~ ) - 1 ~ ~ n 4 c p ~ 2 / 6 y ~ Z ,  

where p, = kT/e, and S is the area of the emitting surface, 
which in this case is approximately equal to 
S z  (~?c/y,,w, )2. The total energy of the radiation pulse, for 
a square emission pulse of length approximately equal to 
~/2y,w,, is 

n/ZTaoa 

B,= J P dt= ( n 4 c ~ T z / 6 ~ o ~ ~ ) l n [ n e / 2 y O ] .  
PC! 

The radiation spectrum is centered within the frequency 
range Aw = (2/z-) y,w,. If the emission pulse is monitored 

319 Sov. Phys. JETP 72 (2), February 1991 Afanasiev eta/. 31 9 



by a laser pulse, the energy conversion factor for the low- 
frequency dipole radiation is determined only by the energy 
of the laser photon, the work function of the irradiated sur- 
face (i.e. the emission temperature) and the quantum yield, 
and is equal to 

n(u>kT '= chv y v ,  

where Y,. is the quantum yield. Assuming hv = 10 eV, 
kT = 5 eV, and Y,. = 10 electrons/photon, the value 
q =  is obtained, and for go = lo4 W/cm2 and 
t ,  = 10W" s ,wehaveAw= 109s-I.  

If the emission source contains a variable component: 

n=l+n, sin ( c o t ) ,  

the average radiation intensity with frequency equal to the 
modulation frequency is given by 

where 

In conclusion, it should be noted that the relationships 
derived in this paper to within a numerical factor hold in 
general, since the physical mechanism for the motion of the 
emitted electrons is incorporated into these equations only 
through the dimensionless parameter y,. In fact, based on 

the results of Refs. 8 and 9, and of the present work, it is easy 
to demonstrate that yo =: 1 holds for emission into vacuum, 
yo =: w,, /ao < 1 for emission into a collisionless plasma, and 
yo --,mot, < 1 for the diffusion motion of the electrons. In  
general, in this case, the efficiency of conversion of the laser 
energy into low-frequency radiation does not depend on the 
emission mechanism. 
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