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In narrow-band crystals with strong electron-phonon interactions, electrons form bound pairs 
that are localized at lattice sites, i.e., small-radius bipolarons. We show that for arbitrary 
concentrations of these pairs the properties of these systems can be described using an equivalent 
Bose Hamiltonian. For arbitrary bipolaron concentrations we find the upper critical magnetic 
field Hc, ( T ) ,  including anisotropy. Our predictions of the temperature dependence of the field 
Hc2 explain the unusual behavior of this field in the high-temperature superconductors. 

INTRODUCTION 

The discovery of the high-temperature superconduc- 
tors by Miiller and Bednorz' and by Chu and his collabora- 
torsZ has given a powerful impetus to the development of an 
ever-increasing number of theories for high-temperature su- 
perconductivity. 

References 3 and 4 contain discussions of a large 
amount of experimental data which appear to confirm that 
superconductivity in the compounds Bi-Sr-Ca-Cu-0, 
K-Ba-Bi-0, Y (RE)-Ba-Cu-0, and other metallic oxides, 
is well described by multipolaron strong-coupling theo- 
ries. 

When the condition for formation of small-radius po- 
larons is fulfilled, 

(here A is the electron-phonon coupling constant, z the co- 
ordination number of the lattice. w the characteristic 
phonon frequency, and g2 the Froehlich interaction con- 
stant), a substantial reconstruction of the electronic spec- 
trum takes place, a notable feature of which is the exponen- 
tial contraction of an original electron band of width 2 0  into 
an extremely narrow polaron band. 

As the quantity g increases, the effective attraction be- 
tween carriers due to the static deformation of the lattice also 
increases; for two electrons on the same site, the magnitude 
of this shift is g2w, i.e., the polaron shift. This attraction is 
strong enough to balance the Coulomb repulsion, and leads 
to the formation of bound pairs localized either on a single 
lattice site (single-site bipolarons) or on two such sites (dou- 
ble-site bipolar on^).^.^ In Refs. 5 and 6 it was shown that 
small bipolarons are transported throughout the crystal, 
forming narrow bipolaron bands. In this case the band mo- 
tion takes place by way of transitions to virtual depairing 
states, and the interaction, along with the usual Coulomb 
and phonon-exchange interactions, includes the exchange of 
virtual polarons as well. 

Taking into account the polaron effect qualitatively 
changes the nature of the superconducting state: in the inter- 
mediate region A -- 1, the normal BCS type of superconduc- 
tivity is replaced by polaronic supercond~ctivity,~ and in the 
strong-coupling limit A $D 1 it is replaced by bipolaron super- 
cond~ctivity.~ In Ref. 7 it was shown that the behavior of the 
electron-phonon system with strong interactions is identical 
to the behavior of a charged interacting Bose gas for arbi- 

trary boson concentrations. Along with the earlier Ref. 5, 
this paper also contains an investigation of the critical mag- 
netic field of a condensate of charged bosons interacting ei- 
ther among themselves7 or with lattice impurities.' How- 
ever, all these calculations were carried out in the limit of 
low bipolaron concentrations, so that the bipolaron commu- 
tation relations were almost Bose-like. 

In this paper we will describe a method that can be used 
to determine the temperature dependence of the upper criti- 
cal field Hc2 for the spatially homogeneous state of the bipo- 
laron system.' This state is obtained either in the case of a 
weak dynamic interaction u<t for arbitrary concentrations 
n, of bipolarons or in general for low bipolaron concentra- 
tions n, <t /u (where t is the bipolaron overlap integral). It 
is found that Hc2 differs from zero even in the absence of 
dynamic interactions between the particles, due to kinematic 
interactions that emerge as a consequence of the bipolaron 
commutation relations. 

1. GREEN'S FUNCTION FOR SMALL BIPOLARONS IN A 
QUANTIZING MAGNETIC FIELD 

The representation obtained in Ref. 7 for the bipolaron 
Hamiltonian in terms of Bose operators cannot be used as 
the basis for a diagram technique that is convenient for cal- 
culating the properties of this system. Hence we will use the 
diagram technique developed in the preprint Ref. 8 for ferro- 
magnetic systems. 

Let us rewrite the bipolaron Hamiltonian in terms of 
the pseudospin formalism:' 

where 

here p is the chemical potential, t(m - m') is the bipolaron 
overlap integral, v(m - m') is the effective bipolaron inter- 
action, b ,+ and b, are creation and annihilation operators 
for bipolarons, and m labels the lattice sites. 

In order to formulate the rules of the diagram tech- 
nique, let us write another Hamiltonian: 
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where 

and a f  and a ,  are the usual Bose creation and annihilatior 
operators, while f f and f ,  are Fermi creation and annihila- 
tion operators. By direct verification we can show that the 
operators 3 ;+ satisfy the same commutation rules as Sk* . 

The space in which the new operators act is infinite- 
dimensional, in contrast to the initial space (which is finite- 
dimensional because only one bipolaron can sit on a given 
lattice site). Using the commutation properties of Si*  we 
can show that the average of a product of spin operators Si*  
calculated over the physical space can be expressed in terms 
of an average of S',' using the following relation: 

( . . . S m + . .  . S ; - .  . .S ; , ' . .  .> 

h 

where P = exp (ia8J f f ,  ) is a projection operator onto 
the physical space and (...) = Sp{ ... exp( - flZ))/ 
Sp{exp( - PA?) 1, with P = 1/T (here and in what follows 
wese tk ,= f i=c=  1 ) .  

Let us introduce the Bose Green's function: 

where T is the "imaginary" time, and the Fermi Green's 
function 

We note a number of properties of the function F,,, (T) : the 
h 

presence of the projection operator P implies that 
Fmm,(.;cO) =F,;(~+fi), 

(8) 

i.e., the expansion of the function F i n  terms of the Matsu- 
bara frequencies is the same as the one for the Bose Green's 
function. Since only the products f f f ,  enters into the de- 
finition (3),  we find that 

From this we see that the initial system of bipolarons 
described by the Hamiltonian (2)  is equivalent to a system of 
two interacting Bose and Fermi fields a ,  and f,, with the 
unique features mentioned above. In the representation (4)  
the Hamiltonian ( 3 )  will appear as follows: 
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In a weak magnetic field (eHa2< 1, where a is the lattice 
parameter) the overlap integral of the bipolarons can be 
written in the following form:' 

t (m, m') =t (m-m') exp [2ieA (m) (m-m') 1, ( 1 1 ) 

where A(m) is the vector potential. 
Let us convert the lattice-site representation of the op- 

erators (4) to a coordinate representation 

'I, 

f m  = (2) j rp (r) 6 (r-m) dr, 

where v ,  is the volume of a unit cell and N the number of 
these cells. The Hamiltonian can be rewritten in the new 
representation as follows: 

X $+ (r 19 (r '1 + $ dr art$+ (r) $+ (r) $ (r) t (r, rf ) (r I )  

In deriving this we have used the fact that 

t (1. r') = YC xt (m-m') exp [2ieA (m) (m-mt ) ] 
Nm.m.#m 

x 8 (r-m) 8 (r'-m'), 

The fundamental thermodynamic properties of this sys- 
tem are determined by correlations over distances Ir - r'I 
that are larger than the lattice constant. In this case we can 
write t(r, r') in the following form: 

t (r, r') ~8 (r-r') t (-iV -2eA (r) ) . (14) 

Near the band edge we obtain from expression ('14) 
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[ V - 2 e i A ( r ) l d  
t ( r ,  r v )  =6 (r-r') { t o  - 

2m" 

where to = 6r (for the case of a simple cubic lattice), and 
m** = 1/2ta2 is the bipolaron effective mass. Assuming that 
the Coulomb repulsion is screened over distances r-a, the 
effective interaction v(r - r') can be treated as short-range. 

For specific calculations we will turn to a new represen- 
tation: 

where thex, are eigenfunctions of the Schrodinger equation 
in a uniform magnetic field [ A  = ( - Hy, 0,O) ] : 

here I = (2eH) - ', v = (p, , p,, n); p, andp, are the bipo- 
laron momenta, n labels the Landau levels, and H,, ( x )  is a 
Hermite polynomial. The wave function is normalized to 
unity. 

Although the bipolaron is located in a crystal and, con- 
sequently, momentum is not a good quantum number, we 
need not consider umklapp processes if we limit our calcula- 
tions to one reciprocal lattice cell, i.e., impose the condition 

Then the Hamiltonian can be rewritten in the following 
form: 

where 

Because of what was said above the Hamiltonian ( 16) does 
not contain umklapp processes. Since the overlap integral 
was chosen in the form ( 14), in the representation ( 15) it 
becomes 

Let us introduce E ,  = - p  - t,, once more rewriting 
the Hamiltonian: 

and choose the unperturbed temperature Green's functions 
in the following way: 

We formulate some general rules for the diagram tech 
nique. The elementary vertices are shown in Fig. 1, while 
Fig. 2 illustrates a few of the diagrams up to second order for 
G, (mi); the wavy line denotes the kinematic interaction 
r ,  + v,. In Fig. 2 we do not include diagrams that lead only 
to a change in the chemical potential. The function F, (oj ) 
contains diagrams of the type shown in Fig. 3. Perturbation 
theory, together with Eq. (9) ,  shows that F, (aj) = F(oj) 
holds to all orders. Therefore we can write F(o j  ) in the fol- 
lowing form: 

F (a j )  =I i ( iw , -X) ,  (18) 

where X is the self-energy part for the Fermi field, while the 
fermion density is 

nr= 1 )  -1. ( 1 9 )  

The vertex factor Yz;3  is easy to calculate; however, in 
the discussion that follows we will consider only 'interactions 
between particles in the lowest Landau level, in which case 
Y zi, becomes 

where 6k,,k,, is the Kronecker symbol. 
Now consider the bipolaron Green's function, which is 

defined as follows: 

If we substitute the representation ( 13) for the spin opera- 
tors in terms of Bose and Fermi operators into (21), we 
obtain 

G:,, (r)=G,,,  ( t )  +G::, ( 2 )  +F::V (T) , (22) 

where 

XI G,,, ( t )  = - (PT,a,(O) a,,+ ( z )a , -+  ( t ) a , .  ( 7 )  >, 

~2: .  (7 )  = -4( PT,a,(O) am,+ ( r )  f , , + ( t )  f,. ( r )  ) 

are the corresponding two-particle Green's functions. A few 
diagrams used to calculate these Green's functions are 

FIG. 1. Bare interaction vertices. 
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G=- + + 
FIG. 2. Several first-order diagrams for the boson 
Green's function (the dotted lines denote the fer- 

/ T - .  mion Green's function F ) .  

shown in Fig. 4. Repeating the entire procedure of convert- 
ing from the lattice site representation to the representation 
( 15) for the bipolaron Green's function, and using the diag- 
onal property discussed in the Appendix, we obtain an 
expression similar to the one derived in Ref. 8: 

where the strength operator A, (0 , )  is a sum of diagrams 
starting with the third diagram (Fig. 4) .  Expression (23) 
shows that the spectrum ofexcitations is entirely determined 
by the Bose functions. 

In calculating the diagrams for the bipolaron Green's 
function, we encounter vertices associated with the presence 
of three operators all evaluated at the same instant of time 
and space. A factor - v, Y::'j' (where v,, v, refer to the 
outgoing vertices and v, v ,  refer to the incoming vertices) is 
associated with such a vertex in G", while a factor of 
- 2u, Y :I(' is associated with an F" vertex of this kind. 

2. CRITICAL MAGNETIC FIELD OF A CONDENSATE OF 
SMALL BIPOLARONS FOR ARBITRARY CONCENTRATIONS 

As we noted above, the energy spectrum can be deter- 
mined completely once the Bose Green's function, which 
will be discussed below, is known. The diagrammatic series 
for the self-energy part I,, (a, ) can be conventionally divid- 
ed into two groups of terms: the first group consists of dia- 
grams that allow us to isolate the strength operator A, (0, ), 

while the second consists of all the remaining diagrams (e.g., 
the fourth diagram in Fig. 2) .  A similar division allows us to 
write the Dyson equation for G,, (0, ) : 

Since we are discussing the band edge, the bare spectrum can 
be written as follows: 

In analogy with Ref. 7, let us write the Bose Green's function 
for the lowest Landau level in the neighborhood of the phase 
transition [i.e., for T 2  T, ( H )  1 in the following way: 

GpZ-'(O)= J l p z l o +  p', a<l, (25) 

w h e r e p l = p +  to - [2n, - A o ( 0 ) ] ( t o  +v,)  -2 , (O)  is 
the renormalized chemical potential and 

is the renormalized spectrum. 
In the lowest Landau level, the fundamental contribu- 

tion to the renormalization of the energy spectrum for the 
boson Green's function comes from the region of small mo- 
mentap,. In this case the kinematic interaction may be treat- 
ed as pointlike, so that we may replace t, by to. In order to 
solve Eq. (26) we will isolate that collection of diagrams in 
the self-energy part X, (0 )  that can be split into two parts 
joined by three boson Green's functions with wi = 0, n = 0. 
If we do not include vertex corrections, summing these dia- 
grams leads to the following equation: 

Using the expression derived in the Appendix for calculating 
X,,v2,., 1 Y K:,, 12, we obtain the following equation for the self- 
energy part at small momenta in the lowest Landau level: 

where g2 = vc2(to + v, 12/1 4(2n-) 4. For small momenta p, 
<a - ' the region of integration can be extended to infinity. 
In Eq. (28) E,  is the renormalized spectrum. Exactly the 
same contributions give a result for A,,(O) analogous to 

F = -2--- + (28).  The renormalized energy spectrum (26) is found from 
the nonlinear integral equation: 

m 
1 

/--\ 
\ 

- + A+*&*-*+-* 
' k - 2  

(29) 

The solution to equations of this kind, which were discussed 
FIG. 3. in the review article Ref. 7, is sought in the form 
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FIG. 4. 

E~ = J  lplu + p 2 / 2 f i ,  where f i  = m**/ [ 1 - 2nb + A ,  ( 0 )  ] 
is the renormalized bipolaron mass. 

The upper critical magnetic field is determined from the 
condition that a Bose condensate of bipolarons forms, corre- 
sponding to vanishing of the renormalized chemical poten- 
tial ,ul = 0  in the Bose Green's function G, ( 0 ) .  It is simpler 
to compute Hc, ( T )  from the equation for the total number 
of bipolarons obtained from Eqs. ( 2 3 )  and ( 2 4 ) :  

I-2nb+Av (aj) 
na= -T 

( 3 0 )  

Equations ( 2 9 )  and ( 3 0 )  allow us to determine the spectrum 
and the critical field. In order to make the problem easier, we 
distinguish the term with w, = 0  and n  = 0  from the sum 
( 3 0 ) ;  since we may assume eH/m** T g  1, we can replace the 
rest of the sum by an integral. In this case it is convenient to 
rewrite Eq. ( 3 0 )  in the form 

where n', ( T )  is the critical concentration of bipolarons at 
the temperature T. 

For small momenta p, the strength operator A p z ( 0 )  
does not have any sharp singularities; summing over p,, we 
obtain 

cs 

From Eqs. ( 3 2 )  and ( 3 0 )  it is easy to find J  and Hc2 : 

where @, is the magnetic flux quantum. 
Within the framework of the ladder approximation, the 

strength operator A,  ( 0 )  entering into Eq. ( 3 3 )  can be de- 
scribed in the following way: 

where G ,  (wj  ) is the renormalized Green's function ( 2 5 ) .  
The fundamental contribution to the sum comes from terms 
with wj = w,! = 0 .  However, in contrast to the integral equa- 
tion that determines the spectrum, in the limit 

J ( 2 f i J )  ' I 3  g 2eH /m** 4 T  under consideration here it is 
not correct to neglect all but the zero Landau level in this 
sum. 

In these results the overlap integral acts as an interac- 
tion constant for the particles in the limit v, (t,;.in addition, 
this overlap integral determines the kinetic energy of the 
bipolarons and accordingly the Bose condensation tempera- 
ture. In Ref. 5  it was shown within the random phase ap- 
proximation that n', ( T )  has a temperature dependence that 
differs from the corresponding dependence for an ideal Bose 
gas, and under conditions where the dynamic interaction is 
absent we have for the critical temperature 

Taking into account the expression for the effective mass 
m** = 1/2ta2, we can write the expression for Hc, for the 
case of a cubic lattice in the form 

where 

Let us now discuss the upper critical field for the case of 
small bipolaron concentrations. In this limit ni (T) and 
f( nb ) can be replaced by the corresponding expressions for 
an ideal Bose gas: 

For small concentrations the strength operator satisfies 
A,  ( 0 )  - n;I3 and, consequently, we may neglect it. As a re- 
sult, we obtain for H, 

( D o  nblk 
Ho=0,14 -- . 

a2 1-2nb 

3. DISCUSSION 

Since no condensate forms in an ideal charged Bose gas 
in the presence of a magnetic field, in our previous papers6s7 
we have studied systems of bosons with various types of in- 
teractions. 

Reference 6 contains a discussion of a charged Bose gas 
interacting with impurities in the lattice. It was found that 
the presence of defects causes smearing of the Landau levels 
and elimination of the quasi-one-dimensional singularity in 
the density of states, which in turn leads to nonzero Hc2 ( 7'). 
The quantity Hc2 (7') calculated in Ref, 6 had the following 
form: 
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where K = 2~(2m**  Tc ) - is the de Broglie wavelength 
and I, is the mean-free path of the particles. 

Reference 7 contains a discussion of a charged Bose gas 
in which the Coulomb interaction between bosons is 
screened; this allowed us to treat the interaction as short- 
range. In this case elimination of the quasi-one-dimensional 
singularity for the lowest Landau level is a result of renor- 
malization of the energy spectrum, as it is in the analysis 
presented here. This leads to a temperature dependence 
Hc2 ( T) similar to (36): 

where 

In this paper we have investigated a system of small single- 
site bipolarons for arbitrary average bipolaron concentra- 
tions per unit cell. We have shown that in all concentration 
regions the bipolaron Green's function may be expressed in 
terms of a boson Green's function, and we have also calculat- 
ed the upper critical field Hc2 when the dynamic interaction 
is absent. Our results prove that the difference between bipo- 
laron statistics and boson statistics gives rise to the existence 
of a finite critical field even in the absence of bipolaron-bipo- 
laron interactions. 

Despite the differing interaction mechanisms, the func- 
tions IIcz ( T) given in (33), (36) and (37) share certain 
general features: 

(1) they are all nonlinear near the critical point Tc: 
specifically, Hc2 ( T) a ( Tc - T) 3/2; 

(2)  they all possess positive curvature. 
In addition, the critical fields (33), (36) and (37) all 

depend on the interaction constant in a similar fashion. The 
general properties of these systems indicate that the tem- 
perature dependence of Hc2 is determined by the type of 
statistics, and consequently the type of phase transition, and 
not the form of the interaction in a quantizing magnetic 
field. 

The functions Hc2 (TI we have obtained differ both 
from those calculated within the mean-field approximation, 
i.e., Tc - T, and those calculated by using a phenom- 
enological functional that takes fluctuations into account, 
i.e., H :: a ( T, - T )  4/3. Since the superconductivity of bipo- 
larons is analogous to superfluidity in He4, we might expect 
that the region of applicability of the mean-field approxima- 
tion will be small. The results obtained in this paper are valid 
within the temperature range ( 1 - T/Tc ) 'I2 $0.05ny [for 
(37) we have 1 - T/T, $0.0377; see Ref. 71, which is inter- 
rupted by a region in which fluctuations play a significant 
role. Therefore, as a function of anisotropy and the interac- 
tion of the bipolarons, the function Hc2 ( T) observed in rea- 
lity may be described in the following way: 

( 1 ) in the immediate vicinity of Tc we have the function 
Hz: ( T), which changes into H,, ( T )  a ( Tc - T) 3/2 as the 
temperature decreases; 

(2)  in the intermediate temperature range we have yet 
another function H zf( T).  In what follows we will discuss 
and evaluate the experimental data concerning the upper 
critical field of the metallic oxides. 

All the high-temperature superconductors discovered 

to date, with the exception of the recently discovered 
KBaBiO, exhibit strong anisotropy between the ab planes 
and the c axis.9-'' By repeating all the calculations presented 
here with the approximation of an anisotropic effective 
mass, we may obtain the following expression for H, : 

(Do tofu', '" n," 
H O = O , ~  - u, (- mB" ) T,[I-2n,+AO(0)] ' 

where mg* is the effective mass of a bipolaron in the direc- 
tion of the magnetic field, mg* = (mf*cos26' + mT*sin29), 
and 6' is the angle between the c axis and the direction of the 
magnetic field; the labels ((I)) and (((I)) denote values 
along the c axis and in the ab plane. In this model the overlap 
integral satisfies t, = 2tl, + 4t,. In what follows we will as- 
sume t, $ tll , which follows from the strong anisotropy that 
is observed in the experimental measurements of the field 
H,, and the resistivity p of single crystals. The term A, (0)  
entering into these formulae can be estimated from expres- 
sion (34), assuming that the basic contribution to this sum 
comes from eigenvalues in the region of large n, and A, (0)  is 
found to be of order unity. The function H, (6) is conve- 
niently written in a form that does not contain either the 
bipolaron overlap integral or the effective mass explicitly: 

H ,  (8) =HCzL ( T )  (E' cosZ 0+sin2 8) -", (38) 

where E = (mi;*/mT*) I". It is clear from expression (38) 
that within the approximations used here the angular de- 
pendence of Hc2 is similar to Hc2 (6') calculated within the 
Landau-Ginzburg theory with anisotropic coherence 
lengths g,, , {, In experimental measurements of the ani- 
sotropy of H,, it is observed that12-l5 

In our estimate of the critical field H,, we will use a 
value of the concentration of positive carriers equal to its 
measured Hall-effect value, i.e.,p = 6.102' cm - 3, (Ref. 16). 
Then we have n, =pvc/2-0.5, and the lattice parameters 
satisfy a l l  = 11.674, a, = 3.891 b; (in these compounds a 
and b differ by small amounts which may be neglected). 
Therefore, near Tc we obtain for H :2 (in tesla) : 

The first communications to appear in print on mea- 
surement of the critical magnetic field reported a low value 
for H,, linear growth near Tc and a weak positive curvature 
(see, for example, Refs. 10 and 17). Subsequent measure- 
ments of Hc2 in rather good single crystals come close to the 
absolute magnitude of H, given by Eq. (39), e.g., H, = 700 
T for YBa2Cu,07-, (Ref. 14), 300 T for (Ho, Gd) 
B a 2 C u , 0 7 ~ ,  (Ref. 13), 810 T for EuBa2Cu,07-, (Ref. 
15), etc. 

By now the number of reasonably plausible experiments 
is large enough to allow us to recognize certain distinctive 
features in the behavior of the new high-temperature super- 
conductors [including more recent data on the compounds 
T1-Ba-Ca-Cu-0 (Ref. 18) and Bi-Sr-Ca-Cu-0 (Ref. 
19) 1 in a magnetic field. 

( 1 ) For all the anisotropic hole-doped metallic oxides 
the resistive transition does not shift when a magnetic field is 
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applied, in contrast to normal superconductors; although 
the transition is broadened, its beginning is almost unaffect- 
ed by the field. 

In contrast, for the system KBBO (Ref. 20), in which 
anisotropy is absent, the curve for the resistancep( T) under- 
goes a parallel shift in a magnetic field as the field H in- 
creases, as in ordinary superconductors. In the strongly an- 
isotropic electron-doped metallic oxide Nd, -. Ce, CuO, -, 
(Ref. 2 1 ) both types of behaviors of p (  T) were observed, 
i.e., broadening of the dependence ofp ( T) in a field H 'and a 
parallel shift in a field H I1. 

( 2 )  Independent of the criterion for determining 
Tc (H),  the temperature dependence H,, (T)  exhibits posi- 
tive curvature. 

(3)  In the majority of papers9-'5~'9-23 a nonlinear in- 
crease was observed for H,, ( T) near T,. The measurement 
of the critical exponent Y, which is defined as the exponent in 
the power-law function Hc2 (T) a (1 - 7) ,", gives a scatter 
of values from 0.65 to 0.8. In this case the indices for H ?, and 
H i  are different: 2vll = 1.32 from Ref. 12 and 1.3 from Ref. 
14, while 2 ~ ,  = 1.48 from Ref. 12 and 1.6 from Ref. 14. 

Since the coherence length calculated from the BCS 
equations is small, lll - 6 A, the region of fluctuations is con- 
siderably larger than in standard superconductors: 
1 - T T  - (Tc/EF)4. Using the phenomenological 
expression for the free energy which includes fluctuations, 
we can obtain Y = 2/3 for the critical exponent.,, The same 
result is also obtained for strongly localized electrons,25 in 
which the superconductivity is similar to superfluidity in 
He4 (e.g., for bipolarons). The region of fluctuations ATf for 
such systems is bounded: 

this is confirmed by measurements of the behavior of the 
specific heat AC of the high-temperature superconductors 
near T, [ATJz0.2 K, Y = 0.75 (Ref. 22)]. In Refs. 12 and 
14 the measurements were carried out up to rather large 
fields of about 20 T, and over a large temperature range up to 
25 K$ATf. 

FIG. 5. Temperature dependence of the upper critical field h,, near T,: 
A-Ref. 23, &Ref. 13, A-Ref. 16, @-Ref. 12. In this experiment the 
field was perpendicular to the c axis. 

FIG. 6.  Temperature dependence of the field h,, for EuBa,Cu,O,-, 
(Ref. 17) (@is  for the field parallel to the c axis and H, = 30 T )  and for 
Ba, ,, KO ,, BiO, (Ref. 20) (0 is for H = 9 T);  the solid line is the theoreti- 
cal curve (35).  

Although anisotropy can broaden the region of fluctu- 
ations, the critical exponent cannot be larger than 2/3 in this 
theory. In the experiments, however, a rather large region 
was observed with H,, a ( 1 - T/T, )"' (see Fig. 5).  From 
this we see that the observed nonlinear dependence of Hc2 
cannot be explained by the influence of fluctuations. The 
decrease in the value of 2~ to 1.3 in the direction of the c axis 
can be explained either by twinning [which leads to a de- 
pendence H !, a ( T, - T) (see Ref. 26) 1, or by an en- 
larged region of applicability of the mean-field approxima- 
tion. Furthermore, the quasi-one-dimensionality of the 
bipolarons in a magnetic field leads to the possibility of bipo- 
laron localization, especially along the c direction, where the 
overlap integral tll is small. Apparently, the low value of H ?, 
found in Ref. 15 for the compound EuBa, Cu, 0, _ , is con- 
nected with this (Fig. 6).  

Because of the large critical fields H,, we did not suc- 
ceed in mapping out the entire curve H,, ( T). Figure 6 shows 
an almost complete profile of H,, for EuBa, Cu, 0, - , and 
KBBO, and the theoretical curve Hc2 ( T). The lack of agree- 
ment between the experimental points and the calculated 
curve apparently is due to the poor coupling between the 
layers in the direction of the c axis, which corresponds to a 
function p ( T) of semiconductor type. l 5  

FIG. 7. Comparison of the experimental2' and theoretical functions 
H,, ( T ) ,  the latter from (37),  for Li,,Mo,O,, for cases where the field is 
perpendicular (0) and parallel (@) to the c axis. 
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Note that unusual behavior of H,, (T)  has been ob- 
served previously, e.g., in the low-temperature anisotropic 
metallic oxide Li,, Mo,O,, , (Ref. 27), where agreement 
with our theoretical curve is better (Fig. 7).  

If we assume that the same sort of superconductivity 
exists in thesystems KBBO, Y (RE)BCO, NCOO, TBCCO, 
etc., the similar behavior of the curves H,, ( T) cannot be due 
either to the layer-like structure or to broadening of the re- 
gion of fluctuations. 

APPENDIX 

In calculating the bipolaron Green's function we have 
used the diagonal property of the self-energy part 2, in (24) 
and the strength operator A ,  in (23). Consider an arbitrary 
diagram of order N for the self-energy part which contains 
both pointlike dynamic interactions and the kinematic inter- 
action t , . :  

Since G :  and t,, depend only onp, and n, let us separate 
out the sum overp,, . It is clear from ( 16) that at each vertex 
Y the law of conservation of the momenta p, and p, is ful- 
filled, and consequently 

Making use of the definition ( 16), we can sum over all 
the momentap,, and obtain 

where x i  is the coordinate of the ith vertex (nondimensiona- 
lized by I), 

LnIpn is a Laguerre polynomial, and the product is extended 
over all lines that connect the 1 th vertex to the mth. Let us 
pass to a new system of coordinates: 

N N 

Then taking into account that the number of incoming and 
outgoing lines is the same at each vertex except the Nth, in 
the new coordinates we obtain: 

The expression given here does not contain x; ; therefore, we 
can integrate over x; and evaluate the following integral 
over y ;  : - 

1 
[L'N(2n+n'n!nf!)"(2n)2N-a1z]-'-N dyl l  erp[ip=lxN'--p,'lz 

- = 

Let us make the substitution 

which finally leads to 

In the remaining part of the integral (A2) we will pass 
to polar coordinates 

X R I ' = P R ~  cos vlr, yhir=pk1 sin (P,, 

and obtain the following expression: 

.Ipzi dp21. . . ~ N I  dpNi d ~ 2 . .  . 

For lines that connect the I th vertex to the first vertex, we 
have 
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With the help of the change of variables 

Qz=rpz-rpn,. . . , rpn-i=g)~-t-cPn 

we can integrate (A4) with respect to p, and obtain 

P ' - 6 y y . ,  EW# (aj) =EY ( ~ j )  isVV.. ( - 4 5 )  
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