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The effect of an electric field on collective excitations in the superfluid B phase of He3is studied by 
functional integration. It is found that the electric field causes a threefold splitting of the real 
squashing (rsq), squashing (sq) , and pairbreaking (pb) modes. The effect found is very similar 
to the dispersion-induced splitting of collective modes which has been seen previously for the rsq 
mode. Specifically, a threefold splitting of the sq and rsq modes is also seen in the latter case. The 
frequencies of these modes fall in the order En > El > E, . In addition, the ratios of the distances 
between the J, = 0 branches and the branches with I J, I = 1.2 for the rsq and sq modes are the 
same ( 1 :4) as in the case of the dispersion-induced splitting. Fields of order 5 .  lo5-5. lo6 W/cm 
(depending on the pressure) are required for observing the electric-field-induced splitting of the 
spectrum of collective modes. For this reason, the predicted splitting should be observable in part 
of the phase diagram (at pressures which are not too high). The electric field does not alter the 
spectrum of Goldstone (gd) modes, simply changing their velocity. 

INTRODUCTION 

Although the magnetic dipole interaction in the super- 
fluid phases of He3 is small ( E D  - 10 - ' K),  it leads to sever- 
al interesting effects. Examples are a frequency shift of the 
transverse nuclear magnetic resonance (NMR) in the A 
phase and a longitudinal NMR in the A and B phases at 
frequencies RA zz a,. In the B phase, this interaction is also 
involved in the appearance of a gap of order a, in the spec- 
trum of longitudinal spin waves, E ~ c , k . 5 ~ ' * ,  and also the 
oscillator strength for nonphonon spin modes, 
E  = ( 8 / 5 )  "'A, which tend toward zero if the dipole interac- 
tion is ignored.' 

In the absence of an external electric field, the electric 
dipole interaction in He3 is zero, since the He3 atoms do not 
have an electric dipole moment. An external electric field 
polarizes the He3 atoms, and their dipole moments begin to 
interact with each other. This interaction, like the interac- 
tion of the magnetic dipoles, leads to several interesting ef- 
fects. For example, Delrieu2 and Maki3 have shown that an 
electric field causes an orientational effect in the anisotropic 
A phase: The orbital angular momentum of the Cooper pairs 
becomes aligned perpendicular to the field in fields on the 
order of lo4 W/cm. The Fermi-liquid corrections4 increase 
the field to lo5-lo6 W/cm, depending on the pressure. 

Brusov and Popov5 have studied the effect of an electric 
field on collective excitations in the superfluid A and B 
phases of He3 by a functional-integration method. Con- 
structing a hydrodynamic action functional, and using it to 
calculate the Bose spectrum of the system, they reached the 
conclusion5 that an electric field does not alter the spectrum 
of nonphonon modes (which have a gap at a zero excitation 
momentum). It alters only the acoustic mode, whose veloc- 
ity falls off in directions other than the field direction. Bru- 
sov later showed6 that this conclusion was reached because 
the electric-field-induced deformation of the order param- 
eter was ignored in Ref. 5. 

In the present paper we examine the effect of an electric 
field on collective excitations in He3-B. We show that incor- 

porating the field-induced deformation of the order param- 
eter leads to a substantial restructuring of the spectrum of 
collective modes: All the nonphonon modes (sq, rsq, and 
pb) undergo a threefold splitting in an electric field. We esti- 
mate the electric field which would be required for an experi- 
mental observation of this splitting. 

1. HYDRODYNAMIC-ACTION FUNCTIONAL OF SUPERFLUID 
He3 IN AN ELECTRIC FIELD 

The action functional of ~e~ in an external electric field 
is 

d 

+ (po+aoF)f .  (x) X. (x) ) 5 d r  d3X d3Y UE (x-Y) 

where 

is a binary-interaction potential with an admixture which 
describes the interaction of the induced dipole moments of 
the He3 atoms in the electric field E; a, and p, are the "seed" 
values of the susceptibility and the chemical potential, re- 
spectively; f ,  (x)  and x5 (x) are anticommuting Fermi 
fields; x = ( x , ~ ) ,  r = x - y; and r = Irl. 

Taking a functional integral over the "fast" Fermi fields 
f s l  (x) andxS, (x), which are given by 

where p = (k,w) and w, = ( 2 n  + 1)n-T, we find the func- 
tional exp S ( X ,  (x), xa, (x) ). It depends on the "slow" Fer- 
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mi fieldsj, (x)  andx, (x). The momenta of the slow Fermi 
fields are concentrated in a narrow layer k < Ik - k ,  1 near 
the Fermi sphere. 

The functional 5 in this model differs from Sin ( 1.1 ) in 
that the seed values a, and p, are replaced by their renor- 
malized values a and p. Another distinction is that the fol- 
lowing replacements are made: 

a,( .) ,  x .  ( x )  - j idO(x) ,  X . ~ ( X ) ,  

In addition to this "classical long-range" term we need to 
consider the "contact" term, characteristic of quantum me- 
chanics: 

2na2E2 J d r  d3xp ( x ) p  ( 3 ) .  (1.10) 

This term must be added to ( 1.9 1. 
We now take the integral over the vector transverse 

Bose field E (x )  = E(x,r)  through the functional integral: 

In this model, the quantity t (x - y)  in the momentum repre- The condition of transverse orientation is incorporated in 
sentation, the 6-function 6 (div E (x )  ). We now introduce the shift 

t=g  (nl-nz,  n,-n4) (1.6) 
E ( x ) + E ( x )  + 4 n a ( p  ( z ) E ) l ,  (1.12) 

is the product of the negative constant g and the scalar prod- 
where (p(x)  E), is the transverse part of the vectorp(x)E. 

uct (n, - n,, n, - n, ), whereni = ki /kF ( i  = 1,2,3,4) are 
unit vectors proportional to the momenta of the particles 

After the shift ( 1.12), the expression for E ( x ) / 8 ~  becomes 

near the Fermi sphere. 
Following Ref. 4, we introduce the Bose field c, (P), 

which describes Cooper pairs of fermions; we take the Gaus- 
sian integral over the new Bose field through the integral 
over the slow Fermi fields: 

(this result is meaningful only if g is negative). We then 
introduce a field shift: 

E 2 ( x )  + a ( E  (z) , E )  p ( x )  +2naa ( (p(l.1, E ) L ( P  (z), E ) L ) .  
8n 

(1.13) 

We have omitted the subscript 1 from the second term in 
( 1.13 ) , in p (x)  E, since a scalar product is formed from this 
vector and E (x)  . 

We now consider the integral 

- Jdrd3x 2naz((p(x),~)r(p(x).~)r) 

- - 2 n d  i d r  d3z  d 3 y ( ~ i p ( x ) E j p ( ~ ) ) 6 : ;  (I--Y), (1.14) 

g 
c i s ( p ) + c i t ( p ) f  --(BV)-"' where 

2 
6i : (x-y )  = (2n)-' j e"ksx-k) (8 i ,  - --i;)d3k kikj (1.15) 

( n t i - n ~ i )  (a+(~z)a+(Pt)-a-(Pz)a-(P*)), is a "transverse 6-function." Using 

we can put ( 1.14) in the form 
x l  

-2na2E2 J d r  d3x p ( x )  ,I ( x )  

& P,+P,=P which cancels out with ( 1.9) + ( 1.10). As a result of this 

Here a * (p) = a, (p) are the Fourier coefficients of the manipulation of the expression ( 1.8), along with ( 1.12), we 
eliminate the terms of fourth degree in the slow Fermi fields, 

fieldsx, (x)  . The shift in ( 1.8) annihilates the fourth-degree 
and the integral over these fields becomes Gaussian. After 

form in the slow Fermi fields 2, and X, which contains we evaluate the Gaussian integral, we find a hydrodynamic 
t(x -Y).  (effective) action functional: 

We now transform the expression for the dipole-dipole 1 
interaction, which can be written in the form S A ( ~ ~ + ( P ) .  % ( P )  . E ( - p ) ) =  - x c i a t ( P ) c i a ( p )  

P , I , O  

a 
- - j d r d 3 x d 3 y P ( x ) P ( y ) ( ~ 2 ~ - 3 - 3 ( ~ d 2 r - 5 ) ,  2 (1.9) 

- (83x1 -' r, ( E  (PIE (--P) 

where +I/, In det (c,.+(P), c t a ( p ) E ( p ) )  
@ (O,0 ,0)  

9 

where 
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Here { = c,(k - k,), c ,  and k, are the Fermi velocity and 42' 
A,, ( p )  =-6,g- '  - M,-'M,- i ( io ,+El)  (io2+E2) nlinu. Fermi momentum, respectively, a, are two-dimensional p v  V , + ~ . P U  

Q P , P ,  = 

- .  .. . 
Pauli matrices, w, = o, = (2n + 1 )TT, /3 = T - ', V is the 
volume of the system, ni = ki/kF, and Z is a normalization B,(p)  = - 4Z2A2 M1-'M2-' ( 2 n 1 . n 1 ~ - - S a ) n l i n ~ .  
constant. P v  u,+D.-D 

' - 2 - I  (to1 - & + a E 2 )  6p,,,  + n,,  - n2i 
a (BV)% oncia (Pl + P , )  + - 0% E ( P I  - pa)) 

(B'V)h I n11- n2i a c+ ( -- Z-I (- io ,  + El - a E g )  Sprp, - 
(BV)X 

n ia PI S- ~ 2 )  a -- 
(BV)X 

(El E (P2 - Pl))  

- .  -. - 
To calculate the Bose spectrum we use a method devel- 

42%' oped previously (see Ref. 7 and the bibliography there). In ~ ( p )  = - g Ml-1M2-i(  ( ial+E1) ( - ia2+g2)  - A ~ ) ,  
the functional Sh we introduce a field shift by the condensate p v  P I + P ~ - ~  

function c,$" (p) : 

cio(p) 'c,a(P)+ci:' ( P ) .  

We then separate from Sh a quadratic form in the field E ( p )  
and in the fields c,: (p) and c,,  (p)-fluctuations of the origi- where 

nal fields around their condensate values c,: 'O' and cj:'. In a Mi=o,V-gi2+A2. (2.4) 
first approximation, the Bose spectrum is determined by the 
equation det Q = 0, where Q is a matrix of quadratic form. For small values of p = (k,w) the function D,, (p) is 

The quadratic form Q depends on the condensate function proportional to @a,, . As a result, only the variable 
cj:' (p), which differs from phase to phase. cii ( - p )  -cii ( p )  =2iv ( p )  , (2.5) 

2. SPECTRUM IN THE ABSENCE OF A DEFORMATION OF THE 
ORDER PARAMETER 

We turn now to the calculation of the spectrum of col- 
lective excitation in He3-B. As a first step, we will go through 
this calculation without consideration of the deformation of 
the order parameter; this deformation will be taken into ac- 
count later (Sec. 3). 

In the B phase the condensate function c!:' (p) is 
( 0 )  cia ( P ) =  (pV)'"GpoSioc, (2.1) 

where the constant c determines the density of the conden- 
sate. The quadratic part of functional Sh turns out to be 

which corresponds to an acoustic mode, appears in the last 
term in (2.2), which describes the interaction of the collec- 
tive modes with the electric field. In this approximation- 
without considering the deformation of the order param- 
eter-the electric field thus affects only the acoustic mode of 
the collective excitations. It does not affect the other collec- 
tive modes. 

To find the acoustic spectrum of the system in an elec- 
tric field, it is sufficient to set the following in (2.2): 

We then replace (2.2) by 

For smallp = (k,w) we have (at T =  0) 

Here 
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Substituting (2.8) into (2.7), we find 

This expression shows that the following are dynamic vari- 
ables: 

where El = E sin 8 is the transverse component of the elec- 
tric field E and is directed perpendicular to the excitation 
momentum k. In (2.9) we identify a quadratic form of vari- 
ables with 4-momenta + p with the matrix 

Here 

Zza'kp8 o a k p Z Z 2  
a ( p ) = ( 4 n ) - l - - - -  

n8cp b ( p ) =  zn2 Ac,, EL, 

The determinant of (2.11) is 

Using the replacement iw - E, and equating the determinant 
to zero [this process reduces to equating the second factor in 
(2.13) to zero], we find the acoustic spectrum: 

4Z2a2 kp2 
3 

E' sin' 8). 
n CF 

We see that when the electric field is applied the spectrum 
becomes anisotropic, and the sound velocity decreases in di- 
rections other than the field direction. 

3. INCORPORATION OF A DEFORMATION OF THE ORDER 
PARAMETER; THREEFOLD SPLITTING OF THE SPECTRUM 
OF NONPHONON MODES 

In the preceding section of this paper we found a fairly 
weak effect of an electric field on the spectrum of collective 
excitations. As we mentioned back in the Introduction, the 
reason for this result is that we have been ignoring the elec- 
tric-field-induced deformation of the order parameter. In 
the present section of this paper we take this deformation 
into account. We show that this deformation changes the 
collective spectrum in He3-B substantially: all the non- 
phonon modes undergo a threefold splitting. 

The order parameter in He3-B is 

AU=A ( T )  Rij(n,  O)ei", (3.1) 

where RU (n,8) is the rotation matrix describing the rotation 
through an angle 8, of the spin coordinate system with re- 
spect to the orbital coordinate system around the n axis. In 
the absence of a dipole interaction, the gap A ( T )  is isotropic, 
and the direction of the rotation axis n and the angle 0 are 
both arbitrary. An electric field with an energy 

fixes nlE. It  leads to a deformation of the gap in the Fermi 
spectrum, increasing it along E and reducing it in the direc- 
tion perpendicular to E: 

The dipole interaction fixes the angle 

0 = arc cos - ' ] arc cos (-'/A). [ 2 (At+A2) (3.4) 

When we incorporate both the orientating and deforming 
effects of the electric field, we find the following order pa- 
rameter: 

(3.5) 

For simplicity in the discussion below we set 8 = 0 in this 
order parameter at this point. In a first approximation the 
Bose spectrum is determined by the quadratic part, which is 
found through a shift cia (p) -. c, ( p )  + c!:' (p) in S,, : 

The equation for the spectrum is det Q = 0, where Q is 
the quadratic-form matrix of (3.6). The tensor coefficients 
AM, and B,, are proportional to integrals (or sums) of 
products of the Green's functions of quasifermions: 
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Here 

f=n(niAi; n,Al cos 0+n,A, sin 0 ;  -n2Ai sin 0+nsA2 cos 0 ) .  

We turn now to the results of our calculations for zero mo- 
menta of the collective excitations (k = 0).  

Working from the equation det Q = 0, evaluating the 
integrals over the frequencies and momenta of the quasifer- 
mions, and restricting the analysis to terms - E ', since the 
corrections for the field are small in comparison with the 
frequencies of collective modes, we find the following equa- 
tions for the spectrum (the corresponding variables are list- 
ed at the right; v, = Im c, and u, = Re c, ): 

~ 1 { ( 1 + x z )  (1+4c) -4[ ( c ,  (1-x2))"+ ( ~ ~ 2 ) " '  J 2 ) d z = 0 ,  
0 

Here 

Results for k=O 

1 ) All four gd modes (sound, a longitudinal spin wave, 
and two transverse spin waves) remain unperturbed. 

2)  There is a threefold splitting of the rsq modes: 

E,Z=8/5A2+I'+E2, uIi+~22-2u3s, 
Ei2=8/5A2+'Izr+E2, u ~ S + U S ~ ,  U J ~ +  U S I ,  (3.9) 

E22=81sA2-I'+E2, u ~ Z + U ~ ~ ,  ~ i i - ~ z z .  

The subscript on the energy of a mode is equal to IJ, I ;  
8 6'" gz 

r + = - ( 3 f  105 5 (n - arctg (6 '") )  ):= 0 .25- ,  B o  

where Po = P,,, in the weak-coupling approximation; and 
uii = Re cii. The modes with projections * J, of the total 
angular momentum remain nondegenerate. 

3) There is a threefold splitting of the sq modes: 

where 

The threefold splitting of the rsq and sq modes is very 
reminiscent of the dispersion-induced splitting of these 
modes which has been predicted independently by Vdovin7, 
Shivaram et and Brusov and Popov10 and which has 
been observed experimentally by Daniels et al." The fre- 
quencies fall in the order E, > E, > E, . The ratio ( 1 :4) of the 
differences between the frequencies of the branches with 
J, = 0 and I J, I = 1,2 is the same for the dispersion-induced 
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splitting of the J = 2 modes and for the splitting of these 
modes in an electric field. 

4) There is a threefold splitting of pb modes: 

Eo+2=4A2, ~ l t + ~ 2 2 + ~ 8 3 ,  
E,1z=4A'+I'oE', ~1s-ua1, V ~ ~ + V S Z .  (3.11) 

Eo2=4A2-2roE2, V ~ ~ - V ~ , ,  

where 

The ratio of the frequency differences between the E, , 
mode and the Eo and Eo + modes is 1:3. The energies of all 
the pb modes lie between 2AmaX = 2(A2 + +roE 2, 'I2 and 
2A,,, = 2(A2 - $roE 2, 'I2. This result tells us that all 
three branches of the pb mode are moderately damped and 
could be observed in ultrasonic experiments, as resonances 
at the absorption edge, in addition to the absorption of zero 
sound as a result of pair-decay processes. This conclusion 
follows from the analogy with the case of the A phase," 
where the gap A = A,,, sin 0 is again anisotropic, and 
where excitations with energies below 2AmaX are moderately 
damped and can be observed as resonances. 

The pb modes can thus be observed in an electric field, 
as resonances at the absorption edge, in the manner in which 
they have been observed by Daniels et al." in a magnetic 
field. 

We can compare the maximum splitting Sumax for non- 
phonon modes. Using the formula 

where r is equal to any of r0 , r + , r - , we find the results 

r Ea pb:  fjom,=Y/2 -A = 1 /J--= g~ E2 gs  E2 0,IO - -- , 
O p b  $0 O p b  $0 A 

I'-E2 BE E2 g~ E2 
W: 60,, = - = 0,016 - - = 0 0 1  ---, 

$0 ow $0 A 
r + E Z  g , E 2  g~ E2 rsq: 6a , ,  = - = 11, -- = 0,20 
O r s q  $0 O v a q  $0 A 

We see that the maximum splitting ratios are 

It would thus be easiest to observe the splitting of the spec- 
trum in an electric field in the case of the rsq and pb modes. 

The maximum splitting of the spectrum is evaluated in 
the Appendix. 

CONCLUSION 

An electric field causes a threefold splitting of the spec- 
trum of all the nonphonon modes (rsq, sq, pb), leaving the 
Goldstone modes without a gap. The electric field strength 
which would be required for an observation of this splitting 
can be found from the following general arguments (see the 
Appendix for some more accurate estimates). Equating the 
dipole energy and the electric dipole energy, g, =gEE ', we 
find E,-- 1.5- 1O4V/cm. In order to observe effects of an elec- 

tric field in acoustic experiments, we would need fields 
stronger by a factor of 101", i.e., E z 5 -  lo4 V/cm. The Fer- 
mi-liquid corrections (see the Introduction) increase these 
fields to 5 10'-5. lo6 V/cm (depending on the pressure). 
Since the critical field E, in He3 is l4E, ~ 2 . 7 .  lo6 V/cm, the 
threefold splitting of the spectrum of nonphonon modes 
could be seen in part of the phase diagram (at pressures 
which are not too high). 

We wish to thank T. V. Filatova-Novoselova, M. 0. 
Nasten'ka, J. B. Ketterson, 2. Zhao, I. A. Fomin, G. E. Vo- 
lovik, and S. Kalbfeld for useful discussions. One of us 
(P.N.B.) is grateful to Northwestern University (Evanston, 
Illinois) for its hospitality. 

APPENDIX 

Let us estimate the maximum splitting for the rsq 
modes [we can then use (3.13 ) to do the same for the sq and 
pb modes]. 

For the rsq mode we find from (3.12) 

Taking account of the temperature dependence of the 
gap, 

we find 

From Ref. 12 we have 

Here g, is the dipole-interaction constant. From (A4) and 
(A5 1 we have 

Here we a = 2. cm3, 
N(0) = (0.561.26). lo3' erg- l.cm -. at a zero pressure at 
the melting surface, 

The Fermi-liquid corrections have been ignored in (A7); 
they are taken into account below. Using (A7), we can esti- 
mate the maximum splitting of the rsq mode in an electric 
field. 

1 ) If we ignore Fermi-liquid corrections we have 

gEE2 I3'O 1' APZ- 60,=0,2 - = 1,Pna2N ( 0 )  [ln --- 
BOA k, Tc 

We choose 
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E= 1O"/~rn=~/, i03 cgs/cm , 
p=10 bar,. 

We then have 

A,, = 1.76k,Tc ~ 4 . 4 4 .  10-l9 erg, 
N(0) =0,8.10a8 erg-'.cm-3, (A101 

Substituting (A9) and (A10) into (A8), we find 

This estimate of the splitting is close to the error level of 
ultrasonic experiments (5-10 kHz). Consequently, fields on 
the order of 10' V/cm would be required to observe the split- 
ting of the spectrum of collective modes in acoustic experi- 
ments if the Fermi-liquid corrections are ignored. 

2) We now take the Fermi-liquid corrections into ac- 
count. Fomin et aL4 have shown that the Fermi-liquid cor- 
rections reduce the energy associated with the electric field 
by a factor (R 2 ,  = 4.10 -3-4.8- 10- at zero pressure and 
on the melting surface, respectively. 

For So,,, we thus have the formula 

At critical fields E = 2.7. lo6 V/cm we find the following 
estimates for the maximum splitting of the spectrum of rsq 
modes in an electric field: 

60-),,, ~ 4 . 1  kHz, p = 0 bar, 
Sw,,, z 1.1 kHz, p = 10 bar. 

Taking into account the error level of the ultrasonic experi- 
ments, which we mentioned above (5-10 kHz for ultrasonic 
frequencies - 100 MHz ) , we conclude that it would be pos- 

sible in principle to observe splitting of the rsq mode in fields 
close to the breakdown field and at low pressures. 

We have found a fairly crude estimate of the splitting 
here, assigning several of the parameters values which are 
approximations in the Ginzburg-Landau region. If more- 
realistic values of the parameters were used in expression 
(A1 1 ), there might be an increase in So,,, , and it might be 
simpler to actually observe the predicted splitting (and to 
observe it over a broader pressure range and in weaker 
fields). 

An experimental study of the effect of an electric field 
on the spectrum of collective excitations in the superfluid B 
phase of He3 is presently being carried out in J. B. Ketter- 
son's laboratory at Northwestern University. We might 
point out in this connection that the first task is to study the 
splitting of the rsq mode at low pressures (nearp = 0) and 
thus at low temperatures and in fields close to the breakdown 
level. 

' P. N. Brusov, in Problems of the Theory of Quantum Liquids and Statis- 
tical Physics, Vol. 101 (ed. V. N. Popov and P. P. Kulish), Nauka, 
Leningrad, 1981, p. 28. 

'T. M. Delrieu, J. Phys. Lett. 35, 189 (1974). 
". Maki, Phys. Lett. A 56, 101 (1976). 
41. A. Fomin, C. J. Pethick, and J. W. Serene, Phys. Rev. Lett. 40, 1144 

(1978). 
'P. N. Brusov and V. N. Popov, Teor. Mat. Fiz. 57,249 ( 1983). 
6P. N. Brusov, Zh. Eksp. Teor. Fiz. 88, 1197 (1985) [Sov. Phys. JETP 
61,705 (1985)l. 
' Yu. A. Vdovin, Trudy MIFI, 94 ( 1962); see also K. Nagai, Prog. Theor. 
Phys. 54, 1 (1975). 

8P. N. Brusov and V. N. Popov, Zh. Eksp. Teor. Fiz. 79, 1871 (1980) 
[Sov. Phys. JETP 52,945 (1980) 1. 

91. S. Shivaram. M. W. Meisel, B. K. Sarma et al., Phys. Rev. Lett. 49, 
1646 (1982). 

lop. N. Brusov and V. N. Popov, Zh. Eksp. Teor. Fiz. 78,2419 (1980) 
ISov. Phvs. JETP 51, 1217 (1980) 1. 

" M. E. ~an ie l s ,  E. R. Dobbs, J. ~aunders, and P. Z. Ward, Phys. Rev. B 
27,6988 ( 1983). 

I'D. A. Dahl, J. Low Temp. Phys. 27, 139 (1977). 
"J. C. Wheatley, Rev. Mod. Phys. 47,415 (1975). 
14V. I. Panov and A. A. Sobyanin, in Proceedings ofLT-I 7 (ed. V .  Eckern 

et al .) ,  p. E16. 

Translated by D. Parsons 

655 Sov. Phys. JETP 72 (4), April 1991 Brusov et al. 655 


