
Solution of the Derrida model for an arbitrary number of colors 
and an asymmetric distribution of the coupling constants 

D. B. Saakyan 

Erevan Physics Institute 
(Submitted 16 November 1990) 
Zh. Eksp. Teor. Fiz. 100,236-242 (July 1991) 

The Derrida model of a spin glass, with symmetry group Z(Q) with arbitrary Q, is analyzed. A 
solution is given for the case of a Potts interaction. The case in which there is an admixture of a 
ferromagnetic interaction is analyzed for the Potts interaction and also for a vector interaction. In 
the limit T-0 these models generate a coding method which is optimal from the standpoint of the 
Shannon theorems for channels with Gaussian noise. 

1. INTRODUCTION 

The Derrida model' is one of several spin-glass models 
which can be solved exactly. Gross and Mezard2 have found 
a solution on the basis of the Parisi theory. 

We assume that a system of Nspins is strongly coupled; 
in other words, any p spins of the N can interact. We then 
write 

where the j,,,. ,p obey a Gaussian distribution, i.e., 

The model in ( 1.1 ) , ( 1.2) was solved in Refs. 1 and 2 for the 
casep- CU, N$p. It was found that the exact solution of this 
model describes a breaking of replica symmetry even in first 
order. 

The model ( 1.1 ), ( 1.2) was subsequently generalized3 
to the case a, = exp(2n-ik /Q), and the spin interaction was 
assumed to be a vector interaction. In Ref. 4, the limit T-0 
with (J) + O  was linked with the problem of optimal coding 
for the transmission of information over noisy channels. 

In the present paper we first consider the case of a mod- 
el with a Potts interaction of spins in a magnetic field with 
(j) = 0. We then take up models with a Potts interaction and 
with a vector interaction with h = 0, (j) . fO (h is the mag- 
netic field). 

2. SOLUTION OF THE MODEL WITH A POTTS INTERACTION 
FOR ( j ) = O  

The Hamiltonian of the system is 

where a, = exp (2n-ik /Q), k = 1, Q, and the coupling con- 
stant T is distributed uniformly over the Q values of a. The 
quantity j obeys a Gaussian distribution: 

(Zn)= exp {q [n (9-1) + ( ~ 2 ~ - '  )?] 
a+@ r-1 

Q a ~ - r h ~ ~ - 7  - 
2 

+ In Tr exp [+ ~ Z Q - ?  o,,'obr 
aSh6.r o+b,r 

where B is the inverse temperature, and are Lagrange 
multipliers. 

We first consider the case in which replica symmetry is 
conserved. 

We introduce 

ha2Q-T=h,, Q L ~ - ~  =q,. (2.4) 

From (2.3) we then find 

n(n-I )  1 - - prhr+ln Tr exp [-Z- ZLU:UP-' 2 
r s l  (I.b 

From the condition for an extremum with respect to q, we 
find 

For q, < 1, p- m ,  we have 

Expanding the exponential function in (2.5) in A, we find 

In the mean-field approximation we find (F is the free energy) and thus 

132 S0v. Phys. JETP 73 (I), July 1991 0038-5646/91/070132-04$03.00 @ 1991 American Institute of Physics 132 



03 OD 

qr=[exp (Bh)-I] 'I[exp (Bh)+ (Q-I )]  ' I I + -- d o  d o  e x  ( 1 r 1 d ~ t  dzr(. 
-BF='I,BLP(Q-l)'+ln [exp (Bh  (Q-1) ) In n-- r m-m 

+ (Q-1) exp (-Bh) 1 . (2.9) Xexp(- (zr l  1 ' )  ~ e ~ p { [ 2 ( h r t - ~ o ) 1 ' ~  Re LO 
L 

We turn now to the case in which replica symmetry is 
broken. Xexp@cpk) + (2hro)% Re zro exp( iqk)  +Bh(QGr,i-i)). 

The solution (2.9), (2.10) is valid up to the value B,, at (2.13) 
which the entropy vanishes. Let us assume that the replica 
symmetry group n is broken to subgroup m. We denote by At the point of the extremum 

q, , A, the quantities q,, , A,, for a and b from different sub- hro=t / z~2~pq: -1  , 
groups, while we use q , ,  A ,  for the case in which they are 
from the same subgroup. We can then write h l = t l z ~ z ~ p q ~ - t  

We then perform the following transformation: 

nlm - 

are self-consistent, with 

qro<l, qri=l, hro+O, hri-+w. 

We now consider 

In the limit A,, - co we find 

Evaluating the integral over z,, , we find 
xdz.; exp( -  E 1zrk~2)exp [E (~r-hor)* 

rn , 
m 

( A , , - A ~ ~ )  + LI-J J dzro dzr; exp(- 1 z r o  1 ') 
X ( z 2 ! R e z r h o ; ) ] = e x p ( - ~ ) ) I I  T f -m j dzrodzr.. 2 r  rn , - m  

ea x ln ): exp [mBh (Q6w-l)+m (2A.o)bzro' exp(irqk) 1. 
m k 

xexp  (- 1 zro 1 ' )  {: j asl  dzrIb exp (-- I 1.1 I ') 
- m 

m n/m (2.17) 
[ T r , , e ~ ~ ( % ) ~  2 Re z..oar+ (ht-hr0)."2 Re ZT1od)]  } 

Expanding in powers in A,, we find 

In the case n - 0 we find m z  (kt-hro)+ fz hro{l - [exp(mBhQ)-I]' 
k [exp (mBhQ) +Q-1 I ' 

1. exp (G hno;O;-') = 3 x hrl 1 
a.6.r r - +-ln{exp[mBh(Q-l)l+(Q-l)exp(-mBh)}. m 

m - 
n 1 (2.18) +-- ~ d z . o d z . ~ e x p ( - ~ z r o ~ ' ) l n ~ L ~  dirt 
m n , d-m 

The condition for an extremum yields the relations 

Taking logarithms in (2.12), and using (2.1 1 ) , we find 
B2J2 1 

(Q-U7 - ln{exp[mBh(Q-I) ]+exp(-mBh)) 

Bh exp (mBhQ) - I 
+ ( Q - l ) ~  exp (mBhQ)+Q-1 

= 0. (2.21) 

- l z  [ (nt-I)  pr,~i-m~nqro 
2 r From (2.21) we find an equation for B, = mB: 
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JZB, 
= ( Q - I ) - - -  - exp (WB,) -1 

2 h(Q-') exp (hQBc) +Q-I ' 

3. SOLUTION WITH A POTTS INTERACTlON FOR u) $ 0  

We consider the Hamiltonian (2.1) with the coupling 
constants 

[ y (  P! )?'I 
p ( i l I c c  exp -- - J NP-' 

In place of (2.3) we then find 

1 
+h Tr# exp (T A ~ Q - ~ o ~ ~ o : - ~  + taroar ) ] , 

a+b 5.'' 

where Sand t are Lagrange multipliers. 
In the case in which replica symmetry is conserved we 

find 

+ln ~ r .  exp [f ~ . o . ? f ~ +  t.oar] . (3.3 
a#b,f 0,' 

From the condition for an extremum we find 

t r = p ~ l o ~ ~ - '  , (3.4) 

h r = i i z p ~ 2 ~ q , P - :  (3.5) 

For S, < 1 we have the self-consistent expressions 

t,=O, Sr=O, L,=O, q,=O, (3.6) 

-BF==t/,B2F (Q-I)+ In Q.  (3.7) 

In the case S, = 1 we have 
0 - 4  

Even for q, = 1, we have t ,  $A,"2.  Taking the leading term, 
corresponding to k = 1, in (3.8), we find 

qr= l ,  SI=l, -BF=BJO. (3.9) 

We turn now to the case in which replica symmetry is 
broken. Proceeding as in the derivation of (2.13), we find 

XRe 2.t exp (irq.) +Re (2h,o)Lz,o exp ( i r ~ ~ )  +t, exp(irlpk) ] } 
(3.10) 

At the point of the extremum we find 

For S, < 1 we find t ,  = 0; we then find the situation dis- 
cussed in Sec. 2. For h = 0 we have 

qro=o, q, t=l ,  

Bc2=4 In Q / [  ( Q - 1 ) P ] ,  (3.12) 

-F='/,(Q-1) J2B,= [(Q-1)ln Q ]  'IV. 

We turn now to the case of absolute zero, i.e., B -  a. 
Obviously, under the condition 

a transition occurs from (3.12) to (3.9). At values of the 
ratio J, / J  large in comparison with ( 3.13 ), complete mag- 
netization arises. At smaller values, there is zero magnetiza- 
tion. This result agrees with the results of Ref. 4. Bear in 
mind here that we are using Q - 1 numbers for each bond. 

Let us consider a vector interaction of spins. We are 
interested in the case 

The calculation is similar to that in the case of a Potts inter- 
action, but in this case there is no summation over the index r 
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( r =  l ) ,  andB2J2(Q- 1)/4 is replacedby B2J2/4. (In Q )  '"J=Jo. (3.18) 
We thus have the following phases: 

This result agrees with the ideas of Ref. 4. 
S=O, q=O, -BF='/,BZla+ ln Q ,  (3.15) I wish to thank S. G. Matinyan for a useful discussion. 

S= f ,  q = l ,  -BF=BJ,, (3'16) 1B.Derrida,Phys.Rev.B24,2613(1981). 

'D. J. Gross and M. Mezard, Nucl. Phys. B 240.43 (1984). S=O, q,=O, q,=l ,  -BF=B(ln Q)'"J. (3'17) 'D. B. Saakyan, Teor. Mat. Fiz. 83, 141 ( 1987). 
4N. Soarlas, Nature 339,693 (1989). In the limit B- co , a transition occurs from ferromagnetism 

phase (3.16) to spin-glass phase (3.17) at Translated by D. Parsons 

135 Sov. Phys. JETP 73 (l), July 1991 D. B. Saakyan 135 


