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The interaction of waves with media having a diagonal bipolar nonlinearity is studied 
theoretically. The properties of parametric coupling which arises between waves having different 
frequencies when permittivity gratings are excited are discussed. The conditions of efficient 
energy exchange in the region of optical anisotropy of the crystal, including for a frequency- 
degenerate interaction, are found. In the general case weak waves are amplified in a certain range 
of pump intensities. Then the gain is also found to be limited. However, there exists an interaction 
geometry in which these restrictions are removed. 

INTRODUCTION 1. DIAGONALLY BIPOLAR OPTICAL NONLINEARITY 
It is well known (see, for example, Refs. 1-4) that the Let an ordinary and an extraordinary waves ( 0  and e 

exchange of energy between light waves is possible only waves, respectively) propagate in opposite directions along 
under certain conditions, which are determined by the con- the z-axis in an optically uniaxial medium ( ~ i ~ .  1 ) : 
servation laws. E(z)  =e,[E,(z)exp(-ik,z)+E,(z)exp(ik,z)] 

There are four known ways to avoid the conditions pre- +e, [E, (z) exp (-ikzz) +E, (2)  exp (ikzz) 1 .  
venting energy exchange:' the response of the medium to the 

( 1  

light waves must be nonlocal in time ( 1 ) or space (2) ;  the 
waves undergo self-diffraction and high orders of diffraction 
appear ( 3 ) ;  and three or more beams interact under condi- 
tions of spatial synchronism. In particular, the requirement 
that in isotropic media the interaction must be local in space 
and time means in practice that energy exchange between 
two oppositely propagating light beams is forbidden. This is 
also found to be valid for the case when the waves are ellipti- 
cally polarized and induce birefringence in an isotropic me- 
d i ~ m . ~  

In Refs. 6-8 it was observed that stationary exchange of 
energy between two oppositely propagating waves having 
the same frequency becomes possible in media whose nonlin- 
ear response has certain properties (for example, in some 
photorefractive and liquid crystals). In Ref. 8 it was found 
that dissipation of the light energy can bring about such a 
nonlinearity. In this paper it is shown that such dissipation 
with a thermal nonlinearity mechanism can remove the ani- 
sotropy of the optical properties of the crystal and thereby 
fundamentally alter the formulation of the problem. The 
possibilities of efficient wave interaction (i.e., achievement 
of complete synchronism) in the "anisotropic" phase of a 
nonlinear crystal are also discussed. The main purpose of 
this work is to investigate in detail the so-called diagonally 
bipolar optical nonlinearity. 

In Sec. 1 the diagonally bipolar nonlinearity is defined 
and the basic equations for oppositely propagating waves 
having different frequencies are presented. In Sec. 2 it is 
shown that for waves having the same frequency the energy 
flux is conserved. It is proved that the diagonal bipolar non- 
linearity is not Lagrangian. In Secs. 3-5 different geometries 
of amplification of weak waves are investigated and the con- 
ditions when this is possible far from the "phase transition" 
point are found. In Sec. 6 the interaction for which the limi- 
tation of the pump intensity can be removed owing to excita- 
tion of permittivity gratings is discussed. 

Here ei are the unit vectors of a Cartesian coordinate system. 
The slow z-dependence of the complex amplitudes of 

the electric fields Ei (z) of the waves is determined by the 
nonlinear interaction in the medium. We assume that the 
optical axis n lies in the yz plane. Then k, and k, will be the 
wave vectors of the e and i waves respectively. 

We shall define as follows the optical nonlinearity of the 
medium by the following relations: 

8eW=8e,=O, Ge,=CoQ (z) , Ge,,=C,Q (z) , (2)  

where SE, are the permittivity perturbations produced in 
the medium by a change in some parameter Q of the medium; 
C, and C, are real coupling constants: 

FIG. 1 .  The interaction geometry: The light waves propagate in opposite 
directions along thez-axis of a Cartesian coordinate system in an optically 
uniaxial medium: k, are the wave vectors, E, are the intensities of the 
electric fields of the waves (E, and E, are extraordinary waves and E, and 
E, are ordinary waves), n is the unit vector along the optic axis of the 
crystal. The optic axis lies in the yz-plane and makes an angle a with the z- 
axis. 
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Q ( z ) = A o { ( E i ( z )  l Z + ( E s ( z )  12+bo[EtEs* exp( -2 ik , z )  
+ c . c . l ) + A e { I E z ( z )  12+iE4(z)  l 2  
+be [E,E,* exp ( -2ikzz)  +c.c. I 1, ( 3  

where A,, A,, b , ,  and b, are real coefficients. 
Such modulation occurs, for example, when the me- 

dium is heated, and then the difference of the coefficients A, 
and A, is determined by the dichroism of photoabsorption 
and the coefficients b, and 6, determine how efficiently the 
stationary thermal gratings are recorded as compared with 
uniform heating ( b <  1 ) . 

The condition (2 )  means that the nonlinearity is dia- 
gonal. We shall impose also the bipolarity condition 

As will be shown below, the most interesting phenomena 
occur precisely when this condition is satisfied. 

Under the assumption Iql = I k,  - k ,  / k , ,k ,  the inter- 
action of the waves will be described by truncated wave 
equations for the slowly varying amplitudes: 

d n - ~ , = - i  - Co [ E ,  ( Q , + ~ ~ A ~ I ~ )  +beAeEzE~'E~e-ZiqzI 9 

dz hlno 

where Q, = A,,(II  + I , )  + A, (I, + 1,) (here I, = jEi 1,) in 
the case of the thermal mechanism of nonlinearity" is the 
change in the temperature of the medium; A, and A, are the 
wavelengths of the o and e waves, respectively; and, n, and 
n, are the indices of refraction for the o and e waves, respecti- 
vely. We thus presuppose that identically polarized waves 
have the same frequency. 

The system of equations ( 5 ) describes the coupling re- 
sulting between two orthogonally polarized waves when two 
permittivity gratings are recorded in the medium as a result 
of the interference of identically polarized waves. Indeed, in 
the mechanism of nonlinearity (2 )  and ( 3 )  which we are 
studying each grating is read by waves having both polariza- 
tions. In the process the e-wave reading of an e-wave grating 
results in a change of phase of the oppositely propagating e 
wave, while e-wave reading of an o-wave grating gives rise to 
parametric coupling between the e and o waves. 

2. CONSERVATION LAWS AND THE NONLAGRANGIAN 
CHARACTER OF THE NONLINEARITY 

The system of equations ( 5 )  admits the conservation 
laws 

which show that photon exchange can occur only between 
waves having the same polarization. The expressions ( 6 )  
actually express the laws of conservation of energy fluxes for 
both identically polarized waves and for the system as a 
whole. 

From the system of equations ( 5 )  there follows for the 

number of photons propagating, for example, along the z- 
axis 

Obviously, if 

then the flux along the z-axis is conserved. In the case of 
waves having the same frequency this would correspond to 
prohibition of energy exchange between oppositely propa- 
gating waves. In order to understand the physical meaning 
of the condition ( 8 )  we shall construct the free-energy func- 
tion F(E,E *), variation of which with respect to the inten- 
sity of the electric field determines the nonlinear i nd~c t ion :~  

For the present nonlinearity mechanism, substitution 
of the expression for SDi, determined with the help of Eqs. 
(2 )  and (3 ) ,  into Eq. ( 9 )  gives a system of equations for F: 

It follows from Eqs. ( 10) that the condition for the existence 
of the function F 

is satisfied only if the condition (8)  is satisfied. 
Thus the condition (8 )  is the condition for the existence 

of the free-energy function for our system, and in this case 
exchange of energy is forbidden by the conservation laws, as 
shown in Ref. 4. Under the bipolarity condition ( 4 )  the con- 
dition (8 )  for the free energy function F to be Lagrangian is 
not satisfied, and the expressions ( 6 )  and (7)  show that in 
our case the law of conservation of momentum of the system 
is not satisfied. 

Therefore our "non-Lagrangian" mechanism of non- 
linearity can only be dissipative. In addition, the energy dis- 
sipation can be so small that it can be neglected in the wave 
equation. 

We examine next the interaction of strong beams, 
which are assumed not to be depleted, with signal waves. 

3. AMPLIFICATION OF AN OPPOSITELY PROPAGATING 
WEAK WAVE 

Let the waves El and E, be weak compared with the 
waves E, and E4. Then Eqs. ( 5  ) can be simplified, retaining 
in them only the terms that are linear in El and E,: 
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where Q ;, = A,J3 + A, I,. 
Thus for strong waves only a change in phase occurs: 

E, (z)  =B, exp ( i P 3 z ) ,  E4 (2)  -Bk exp (iP4z) 3 (12) 

where B, and B, are complex constants. 
Substituting Eqs. ( 12) into Eqs. ( 11 ) and carrying out 

the transformation 

we obtain equations describing the parametric coupling of 
the weak waves E l  and E,: 

where 

The condition for the existence of the nontrivial solution 
B ,,, - exp(gz) of the system of equations ( 14) gives 

Thus the character of the interaction is determined by 
the sign of the square root: If it is positive, only phase modu- 
lation of the waves occurs. If, however, 

then g acquires a real part which gives rise to amplitude 
modulation also, i.e., amplification of the weak waves. 

The condition ( 17) can be satisfied only if s12s2, < 0, 
i.e., in the case of bipolar nonlinearity, C,C, < 0. In the case 
of thermal nonlinearity the bipolarity condition (4)  corre- 
sponds to the fact that when the crystal is heated the changes 
in the indices of refraction for orthogonally polarized waves 
have different signs. Such a situation, as we have already 
mentioned, is realized, for example, in nematic liquid crys- 
t a l ~ , ~  where the dielectric constant increases on heating for 
waves of the o type and decreases for waves of the e type, and 
as a result we have 

It is obvious that the gain should be highest in the case 
of synchronous interaction (PI  - P, = 0).  This means that 
the following condition for the total intensity, proportional 
to the quantity I = I, + I,, should also be satisfied for the 
parameter q = I,/(I, + I,): 

For fixed wavelengths the medium must have a certain 
combination of linear and nonlinear optical properties in 
order for the condition ( 18) to be satisfied: If the indices of 
refraction of the medium are such that R. ,n, - A,n, > 0, then 
the medium must also be characterized by the quantities 
C, > 0 and C, < 0 (and vice versa). We emphasize that for 
given optical properties the condition ( 18) can be satisfied 
by choosing appropriate wavelengths. 

Substituting Eq. (18) into Eq. (16) and using the 
expressions for the parameters s,, and s,, we obtain 

where 

f (qJ= [q (4-Tl) l"'I8. 

The expressions ( 18) and ( 19) simplify in some parti- 
cular cases. Let us assume, first, that the medium has a small 
anisotropy of the linear and nonlinear optical properties and 
grating permittivity perturbations have little effect: 

Then 

where 

Thus in this case Is does not depend on the parameter r ]  

andg,, is maximum for r ]  = 0.5, i.e., when the strong beams 
have the same intensity. In the general case the maximum of 
the function f ( 7 )  is determined by the relations between the 
parameters of the medium. 

In reality there exists a region of intensities I for which 
exponential amplification of weak waves is possible. This 
region is determined from the condition (17) and has the 
form 

The parametric amplification phenomenon which we 
are studying can also occur in the case when, for example, 
the waves E, and E, are weak and the waves El and E, are 
strong, i.e., opposite to each strong wave a weak wave propa- 
gates having the same polarization. 
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4. CONDITIONS FOR EXCHANGE OF ENERGY IN THE 
CRYSTALLINE (ANISOTROPIC) PHASE OFTHE MEDIUM 

If the waves have the same wavelength, i.e., 
A, = A, = A, then the intensity I, of in-phase interaction as 
well as the gain are proportional to the anisotropy of the 
index of refraction n, = n, (A) - no(A). On the other hand, 
in the case of a thermal perturbation the heating of the me- 
dium by the light field Q~AIchanges  the anisotropy by the 
amount 

Thus it follows from Eqs. (22) and (23) that for inten- 
sity of the order of I, (A,  = A, = A) the optical anisotropy of 
the medium can vanish as a result of heating, if n, and no 
correspond to the principal values of the permittivity tensor 
n, = ~i',, and no = E:". For liquid crystals this corresponds 
to a transition into the isotropic state. 

Here heating of the medium up to the point at which the 
optical anisotropy vanishes can be avoided by the follow in^ 
methods: 

I. Rotation of the optic axis. If the optic axis makes an 
angle a with the z-axis (see Fig. I ) ,  then the intensity I,, 
determined by n, ( a ) ,  can be reduced by choosing an appro- 
priate angle a to values when Sn, < n, : 

Figure 2 shows the region of these angles in a section of 
the surface of wave normals. This limits the maximum possi- 
ble value of g, : 

2. Waves with drfferent frequency. In order to show that 
in-phase interaction of waves is in principle possible in the 
region of optical anisotropy of the medium we shall study a 
nondispersive medium whose optic axis is oriented along the 
y-axis (i.e., a = n-/2). Then it follows from Eqs. (21 ) and 
(23) 

As one can see from the inequalities (26), the longer one of 
the wavelengths the wider the range of possible frequencies 
of the other wave is. 

FIG. 2.  A section of the surface of wave normals to the plane yz for 
positive uniaxial crystals. The dashed circle has a radius of 0.5 (rill + n, ); 
the hatched region is the region where interaction is realized in the opti- 

FIG. 3. The geometry ofnoncollinear interaction. The axis n of the crystal 
is perpendicular to the plane of incidence xz. E,,, and E,,, are waves of the 
ordinary and extraordinary types, respectively; k, , ,  = 2 m , / / Z  and 
k,,, = 2nnI1 /A are the corresponding wave vectors, R is the wavelength of 
light in vacuum, and B is the angle of refraction of the strong wave in the 
crystal. 

5. INTERACTION OF NONCOLLINEAR WAVES 

By studying the interaction of waves which are not 
strictly collinear it is easy to show that wave synchronism 
can also be realized in an anisotropic phase. This is also in- 
teresting from the viewpoint of dynamic holography, where 
the signal wave consists of a collection of plane waves which 
make different angles with the pump wave and the relative 
efficiency of the interaction between these components and 
the pump wave is important. 

Of many possible geometries, for simplicity we shall 
study the geometry in which the period of the interference 
gratings is determined only by the angle of convergence of 
the waves. Namely, let the optic axis be oriented along they- 
axis and let the wave vectors of all interacting waves lie in the 
xz-plane (Fig. 3 ) . In this case the indices of refraction for the 
characteristic modes do not depend on the angle of refrac- 
tion 8. 

Then the complex vector of the total intensity of the 
electric field has the form 

E=e,[E,  exp(- ik,z)  +E,  cos0.exp(ik,z  cos 0  
+ik,x sin 0 )  ] +e , [E2  exp ( - i k l l z )  +E, exp(ikl lz  cos 0  
+ikl lx sin 0 )  ] +e,E, sin 0 .  exp (ik,z cos O+ik,x sin 0 ) .  (27) 

The expression ( 3  for the photoinduced change in the para- 
meter Q of the medium is modified as follows: 

Q=A, [ IE,12+1E3)2+bo (EIEs* cos O.exp{- ik,z( l  
+cos 0)- ik,xsin 0)+c.c.)]+A,[IE,12+1E,12 

+be (EZE,' exp {- ikl lz  ( l+cos  0 )  -ik,,x sin 0 )  4-c.c.) 1 .  (28) 

cally anisotropic phase. ness. 

Assuming that the waves E, and E4 are strong and not de- 
pleted and neglecting the appearance of new waves (the vo- 
lume-hologram approximation), the parametric-coupling 
equations can be derived from Eq. ( 14) taking into account, 
as follows from Eqs. ( 17) and (28), that 1 ) A ,  is replaced by 
A,,  , 2) E, transforms into E3 cose but the intensity IE3I2 in 
the expression for Q; does not change, 3) 
q =  (k,, - k,) cos2(e/2), and4) P,andP,increasebythe 
amount 1/ cose owing to the increase in the effective thick- 
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The expression for the pump intensity giving in-phase 
interaction 

I,=2n.nlln, (cos  O+cosZ 0) {A,q [Conll ( l+cos  8 
+b, cos3 0)-C,n,(l+cos 0)  ]+All (1-q) [Conll ( 1  

-t-cos O )  -C,n, ( i + c o s  O+bll cos 0 )  ] )-' (29) 

depends in a very complicated manner on the angle 8. How- 
ever this dependence simplifies significantly in the approxi- 
mation determined by the conditions (20) : 

2 ~ D ~ L ~ I I  1. -- ---- cos 0 .  
AC nll+n, 

The decrease in I, as the angle 8 increases results from 
the decrease in the wave vectors of the interference gratings. 

The gain, in this case, is equal to 

Thus the decrease in I, as 8 increases results, as expect- 
ed, in a decrease of g ,  . As we have already mentioned above, 
such a decrease in I, can be employed to achieve in-phase 
interaction while preserving the optical anisotropy of the 
crystal (for liquid crystals-without achieving the isotropic 
phase). In the simplified case studied above, this minimum 
angle is determined by the expression 

cos Omin.. (nL+nl l ) I  ( 2 n 1 1 n ~ ) .  (32) 

6. ENERGY EXCHANGE UNDER CONDITIONS OF LINEAR 
SYNCHRONISM 

In the wave-interaction geometry studied above permit- 
tivity gratings are excited with wave vectors that differ as a 
result of the optical anisotropy. Because of this, energy ex- 
change, which acquires a threshold character, occurs in a 
certain range of pump intensities, and this limits the maxi- 
mum achievable gains. 

It turns out that the interaction geometries for which 
the wave vectors of both gratings are equal in magnitude can 

FIG. 4. Energy exchange under conditions of linear synchronism. Two 
elliptically polarized waves are incident on the crystal symmetrically rela- 
tive to the optic axis (which is normal to the surface of the crystal). E,,, 
are extraordinary waves and E,,, are ordinary waves; the angle 6 takes 
into account birefringence; Bis the angle of convergence of the waves; and, 
the z-axis is oriented along the direction of refraction of the weak e-type 
wave. 

be realized even with the help of two waves incident on the 
crystals. Namely, consider a crystal slab whose optic axis is 
oriented along n and let two elliptically polarized waves be 
incident in the yz-plane on the crystal slab symmetrically 
with respect to the optic axis (Fig. 4). Each wave initiates 
refracted waves of the e and o type, propagating at some 
angle S with respect to one another. The z-axis is chosen in 
the direction of refraction of the weak e wave. In this case 
the condition of linear synchronism is satisfied (ki are the 
wave vectors, neglecting nonlinear corrections) 

and the truncated equations in the inexhaustible-pump ap- 
proximation assume the form 

d n 
-El=-i-  C,[E, (Q,'+b.A.I, cos2 O)+AoboE,E,,'E, cos 01, 
dz hn. 

d n 
-E2=-i 
dz Ano cos 6 Co[Ez(Qof+boAoI,) +AebBiEa'Et cos 01, 

d n - Ea=i 
dz hn, cos  0 

CeQo'Ea, 

d -E -. n 
4-1 

dz hn, cos (0-6) COQO'EA, 

where 8 is expressed in terms of the angle of refraction a,,, of 
the e waves by the relation 8 = .n + 2a,,,. 

The following transformations reduce the system of 
equations (34) to Eqs. ( 14) : 

Ps = 
nCeQol 

. ,  P,= 
zCoQo1 

An, cos 0 hn, cos (0-6) ' 

Pz=-A + nCo (QO'+A~bOll l ) ,  
hno cos 6 

n 
SZI = CoAebeBs8Ba cos 0.  

Ano cos 6 

An important feature of this interaction geometry, re- 
sulting in the satisfaction of the condition of linear synch- 
ronism (33), is that synchronous energy exchange becomes 
impossible: PI - P, cannot vanish owing to the condition of 
bipolarity of the nonlinearity. This is also obvious from phy- 
sical considerations: Since the condition of synchronism is 
satisfied in the zeroth-order approximation in the intensities 
of the waves, the change induced in indices of refraction can 
only cause this condition to be violated. 

At the same time, the condition of energy exchange- 
the condition that the square root in Eq. ( 16), together with 
Eq. (35), is negative-can be satisfied for a certain relation 
between the angle 8, the parameter 7, and the material para- 
meters of the medium (cosS -* 1 ) : 

nl 
{ q A e [ C , n o ( l  f cos O f  be cos3 0)-Cone( l  + c o s 8 )  1 

Anone cos 0 
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n rl(i--11) 'b erate four-wave interaction. First of all, the amplification of -2 1 - A ~ A ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~  none < O7 ( 3 6 )  the waves is exponential, including in the case of codirec- 

n I tional propagation. We also note the additional possibilities 

Anon. cos 0 
{rlAe[Ceno (1 + cos €)+be cos3 e)-Con, (1 + cos 0) 1 of achieving synchronism in our case by selection of the 

proper pump intensity and polarization and the arrange- +(l-rl)Ao[Ceno(l+cosO)-Con,(l f cos8+bocos8)]) 
'1. 

ment of the anisotropy axis of the medium or the angle of 

+2" ( q(i-q) AoAebobCoCeI'~~~2 8 I > 0. convergence of the weak and strong beams. 
h none In the general case the energy exchange which we dis- 

Under some simplifying assumptions it is easy to check 
that the system of inequalities ( 3 6 )  can be satisfied. How- 
ever we did not perform any specific calculations because of 
their difficulty. It is important to note that no restrictions are 
imposed on the wave intensities and the gain can be in- 
creased, since it is proportional to the pump intensity. 

CONCLUSIONS 

Thus in this paper we investigated theoretically the in- 
teraction of light waves in media with diagonally bipolar 
nonlinearity. The characteristics of the interaction as a func- 
tion of the geometric and material parameters were deter- 
mined. 

Among the possible processes, the parametric coupling 
of waves having different frequencies via the recording of 
static gratings is especially important. The advantage of re- 
cording static gratings is made evident in situations when the 
times over which the nonlinearity is established are longer 
than the characteristic beam time and for this reason travel- 
ing gratings are not recorded efficiently. 

The most interesting feature is energy exchange occur- 
ring in the single-frequency case between two beams incident 
on a crystal, including both when the waves propagate in 
strictly opposite directions and in the stationary regime, 
thanks to the bipolarity of the medium. It is true that this is 
achieved with the interaction of four waves in the crystal, but 
there is an important difference from the traditional degen- 

cussed occurs in a certain range of pump intensities. How- 
ever the situation when both the upper and lower limits on 
the intensity are removed can also be realized. 

The interaction mechanism studied in this paper could 
find different applications in problems of opto-optical mo- 
dulation, in particular, phase conjugation schemes (includ- 
ing in the traditional four-wave mixing of waves) for ampli- 
fication of weak plane waves with the help of a strong beam 
with a distorted front, etc. 

For example, the same liquid-crystalline materials have a quite high 
thermal nonlinearity owing to the large values ofdn/dTz (3-10). 
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