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The structure of the Chapman-Enskog expansion for the stress tensor and for the heat-flux vector 
is found on the basis of linearized Grad equations. A method involving a partial summation of the 
Chapman-Enskog series, in order to eliminate the short-wavelength instability of the Barnett 
approximations, is proposed. 

1. The problem of deriving hydrodynamic equations 
from the Boltzmann kinetic equation is a classic one. Still, 
several of the questions which arise here have not been final- 
ly resolved. In particular, just which equations should follow 
the Navier-Stokes approximation is not totally clear. In 
principle, the classic Chapman-Enskog method' makes it 
possible to refine the Navier-Stokes hydrodynamics. As was 
shown in Ref. 2, however, even the first corrections (the 
Barnett corrections and the super-Barnett corrections) re- 
sult in a catastrophic degradation: a short-wavelength insta- 
bility of sound waves occurs. The nonphysical properties of 
the Barnett approximations suggest that higher-order terms 
should be retained in the Chapman-Enskog expansion, in 
order to construct hydrodynamic equations which are not 
contradictory from the standpoint of the H theorem. Similar 
situations are not uncommon in quantum field theory and 
statistical mechanics. Singularities (divergences) which 
arise in low orders of expansions in those other areas can 
frequently be eliminated by approximating the series as a 
whole in some manner: through a partial summation of infi- 
nite subsequences of diagrams, through the use of the Pade 
approximation, etc. 

In the present paper we attempt to improve the Barnett 
approximations through a partial summation of the Chap- 
man-Enskog series. The difficulties in determining the 
terms of this series from the Boltzmann equation are wsll 
known. For example, it was only comparatively recently 
that the Barnett and super-Barnett approximations were 
found for the very simple case of Maxwell  molecule^.^ We 
will accordingly analyze the Chapman-Enskog expansion 
for the linearized Grad  equation^,^" rather thaa for the 
Boltzmann equation. We know that in this case, at least, the 
differences between the results found from the Grad equa- 
tions and those found from the Boltzmann equation are 
small. Use of the Grad equations has certain technical ad- 
vantages, particularly when we work with the Chapman- 
Enskog series as a whole. 

Let us briefly outline this paper. In Sec. 2 we determine 
the form of the coefficients of the Chapman-Enskog expan- 
sion for the linearized stress tensor and the linearized heat- 
flux vector. The expressions found as a result [expressions 
(2.7)] refine the corresponding result found by Grad6 for 
the linearized Boltzmann equation. We discuss the linear- 
ized steady-state hydrodynamic equations. In Sec. 3 we pro- 
pose a method for a systematic approximation of the Chap- 
man-Enskog recurrence procedure. This method is 

essentially one of partially summing the series. We discuss 
some examples of the application of this method to the lin- 
earized Grad equations in order to eliminate the short-wave- 
length instability of the Barnett approximations. 

2. We denote by p,, To, and u, = 0 the equilibrium val- 
ues of the density, the temperature, and the flow velocity (in 
some appropriate Galilean coordinate system), whilep', T ', 
and u' are small deviations from the equilibrium values. In 
the moment equations which appear below, we find the vis- 
cosity coefficient p. It  is convenient to write it in the form 
p ( T) = 77 ( T) T. The function 77( T) depends on the choice of 
a model for the interparticle interaction. In particular, we 
would have 77 = const for Maxwell molecules, and 
77 a T - for hard spheres. Everywhere below, we use a 
system of units in which the Boltzmann constant is one. We 
introduce the dimensionless variables 

Here x' represents the spatial coordinates, and t ' is the time. 
The 13-moment Grad equations, linearized near the equilib- 
r i ~ m , ~  take the following form when written in terms of the 
variables ( 2.1 ) : 

Here and below, q, ( i ,  k = 1,2,3 ) is the traceless part of the 
stress tensor, q, is the heat flux vector, ai=d/dxi,  
a, E a /a,, a repeated index implies summation, E is a small 
parameter (the Knudsen number), and S, is the Kronecker 
delta. 

When applied to the system (2.2), the Chapman-Ens- 
kog method is the representation of g,, a, by the series 

The coefficients o j;), qp' are determined by the recurrence 
procedure 
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The operators a I"', for m)O, do the following: 

Here and below, L2 is an arbitrary differential operator of 
thetyped! a:a$, li>o, ap=i .  

According to (2.4) and (2.5), the coefficients of the 
series (2.3) can be expressed in terms of the spatial deriva- 
tives of p, T, and u. We introduce 

The basic assertion of this section of the paper is as fol- 
lows: The coefficients a j:', qp'  in (2.3), found from (2.4) 
and (2.5), are 

( % n + l )  - o,, - U , A " I ' ~ ~ ~ + ~ ~ A " ~ ~ , T ,  (2.7) 

for all na0. Here c,, d, ,  a,, b,,  a,, p,, p,, and $, are nu- 
merical coefficients. 

Let us outline a proof by induction. A direct calculation 
yields 

Using a jf', qkO' from (2.4), we see that assertion (2.7) is 
proved for the case n = 0. Let us assume that the structure 
(2.7) has been established for some n. Then for n + 1 we 
have 2n+l  

Clearly, the expression has the same structure as that of the 
corresponding coefficient a j:"' in (2.7). It is also a straight- 
forward matter to verify that the expressions for q?'" + "', 
a j:'"+ l' + ", qL2'"+ " + l )  have the form (2.7). 

The structure of the Chapman-Enskog expansion (2.7) 
has some simple consequences. Truncating the series (2.3 ) 
at some finite order n>O, and substituting the resulting ex- 
pressions into the first five equations in (2.2), we find a 
closed system of equations for p, T, and u. A steady-state 
solution of these equations for n = 2m, with m) 1, can be 
found from the following equations (under appropriate 
boundary conditions) : 

Am ( A )  P+Bm ( A )  T=o, C ,  ( A )  p+E,(A)  T=O, 

With n = 2m + 1, the steady-state equations can be found 
from (2.10) by replacing m - 1 by m in the sums in the 
operators C, (A) ,  Em ( A  ) . In the case n = 0 (this is the Na- 
vier-Stokes approximation), the steady-state equations lead 
to 

Under this condition, only qp', qk", a jf', a j:', and a j:' in 
(2.7) are nonzero. Since we have d i a  ji) = ilia j:) 
= d,qkl) = 0, incorporating a j;', a j:', 9:'' does not alter 

the conditions for a steady state of the Navier-Stokes ap- 
proximation, (2.1 1 ). In a comparatively recent study, Gal- 
kin7 established that the Chapman-Enskog series is degen- 
erate for the linearized Boltzmann equation. For n > 0, it 
generally does not follow from (2.10) that the series in (2.3) 
are degenerate. 

In the time-varying case, the situation gets worse. Trun- 
cating series (2.3) at a finite order n > 0 may result in a 
short-wavelength instability of the equilibrium point, as was 
shown in Ref. 2 for n = 1 and 2 for one-dimensional equa- 
tions (2.3). As we mentioned in Sec. l ,  all orders must be 
taken into account in the Chapman-Enskog expansion. The 
relation (2.9) shows that the recurrence procedure for de- 
termining the numerical coefficients in (2.7) is rather cum- 
bersome. In the following sections of this paper we propose 
some methods for solving Eqs. (2.4) approximately in order 
to approximate the series (2.3) as a whole. 

3. Let us outline this new algorithm for an approximate 
solution of the recurrence system (2.4). We fix k, > 1. Equa- 
tions (2.4) are replaced by the approximate equations 
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with corresponding expressions for qp'. The operators a Is' 
(S = 0, ..., ko - 1 ) are found as in (2.5). We are thus restrict- 
ing the discussion to a finite set of operators a Is' at the out- 
set. The k,th order is taken into account exactly in expan- 
sions (2.3), while all other orders, beginning with the 
(k, + 1)-st, are taken into account approximately. In the 
limit k, -+ CO, the system (3.1 ) tends toward the system 
(2.4). It can be shown that (3.1) retains the structure of 
(2.7); the only changes are in the numerical values of the 
coefficients of the derivatives. 

Equations (3.1 ) are generally simpler than the original 
equations, (2.4), and explicit solutions are possible in sever- 
al cases, as we will see below. The next step of the algorithm 
is to sum the series (2.3) with the approximate values of the 
coefficients found from (3.1). The overall procedure is a 
recipe of a sort. For brevity, we will call the method (3.1 ) 
"regularization." We turn now to several examples of its use. 

We begin with the very simple case of the linearized 
one-dimensional ten-moment Grad equations. The analogs 
of Eqs. (2.2) are 

Here a is the xx component of the tensor a,, and x is a one- 
dimensional coordinate. Equations (3.2) can be found from 
the one-dimensional version of (2.2) by taking the limit 
9-0. 

We now fix k, = 1. We go over to the variables u, 
8 = T + p. The recurrence relations ( 3.1 ) can then be ap- 
proximated by 

From (3.3) we easily see that the a '"' are 

,,(2r1),~ a "+lu, o(2nfl)=b 8 
n x x2n+Z0, naO, (3.4) 

and the coefficients a, and b, are determined by the recur- 
rence rule 

an=bn, an+l=513an, a,=-' 1s. (3.5) 

From (3.4) and (3.5) we find 

o(2n)- -( 5 ~ ,a ,")~(-~/~a,u) ,  (5/3a,") (-'/,a;e). 

(3.6) 

Summing the series 

with the coefficients (3.6), we find 

The expression for a, is the Barnett approximation of the 
non-diagonal part of the stress tensor a .  

We now fix k, = 2. In this case, Eqs. (3.1) become 

The coefficients a '"' are as in (3.4). The numbers a, and b, 
are determined by a recurrence procedure which is found 
from (3.5) by replacing 5/3 by 1/3. As a result we replace 
(3.7) by 

The super-Barnett approximation a, is 

Substituting a 'O', a, , a,, , a,, and a,, in place of a in the 
equations 

switching to the variables t " = t /E ,  x" = X/E, and using the 
representation 

we find the dispersion relations w (k)  for sound waves from 
the condition for the existence of a nontrivial solution of the 
system of linear equations for e l ,  u, . These dispersion rela- 
tions are 

for the Navier-Stokes approximation a 'O', 

oi,2=-2/sk2*k [-$k - 3 ( 1 + 4 k  '1 ] "' (3.14) 

for the Barnett approximation a , ,  

for the regularized Barnett approximation a,, , 

for the super-Barnett approximation a,, and 

for the linearized super-Barnett approximation a,, . 
Figure 1 shows dispersion curves for the Barnett ap- 

proximation, (3.14) (the dashed line), and for the regular- 
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ized Barnett approximation, (3.15) (the solid line). The di- 
rections of the arrows correspond to an increase in the 
square of the wave vector, k '. Figure 2 shows dispersion 
curves for the super-Barnett approximation, (3.16) (the 
dashed line), and for the regularized super-Barnett approxi- 
mation (3.17). We see that the regularization eliminates the 
short-wavelength instability of the super-Barnett approxi- 
mation. 

As the next example we consider the one-dimensional 
version of the 13-moment system (2.2). The Barnett approx- 
imation u l  , q l  is 

a1=-i/3~d,~-"3e'd.Zp+z/~~2d2T, 

Substituting (3.18) into the one-dimensional equations in 
(2.2), and then proceeding as above, we find the dispersion 
relation 

It is for this case that the short-wavelength instability was 
established in Ref. 2. We fix k, = 1 in (3.1) and go over to 
one-dimensional equations. The approximate recurrence 
equations (3.1 ) then become 

In the case k = 1, the approximation becomes an exact equa- 
tion. In the one-dimensional case, the structure of (2.7) is 

To determine the coefficients c,, a,, b,, a,, p,, and p, from 
Eqs. (3.20) it is convenient to introduce the following enti- 
ties: the space X = R 3, the vectors x,  (n>O) in X with the 
components a,, b, , p, ; the space Y = R 3; and the vectors y, 
(n>O) in Y with the components c, , a,, P, . We then find an 
analog of (3.5) from (3.20): 

where the 3 X 3 matrices S and L are 

The solution of Eqs. (3.22) is 

From this point on the procedure for constructing regular- 

FIG. 2. 
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ized Barnett approximations u,,, q,, is analogous to the 
procedure used in the first example. The final result is 

Here the P, project onto the corresponding axes in X and 
Y (e.g., P,y, = c, ) . The dispersion relation for the approx- 
imation (3.25) is rather complicated, so we will not repro- 
duce it here. Figure 3 is a sketch of the dispersion curves for 
the Barnett approximation (3.18) (the dashed line), and for 
the regularized Barnett approximation, (3.25) (the solid 
line). Only the acoustic branches are shown; the diffusion 
branches are essentially the same in each approximation. 

As a final example we consider the result of regulariza- 
tion of the Barnett (k, = 1 ) approximations for Eqs. (2.2): 

The space of four-dimensional vectors x, = (a, ,b, ,q, ,$, ), 
yn = (d ,  ,c, ,a, ,B, ) was used in the derivation of (3.26) (a  
similar representation was used in the preceding example). 
We also used the 4 X 4 matrices Sand L [analogs of ( 3.23 ) ] 
given by 

The matrix K is equal to the product LS. 
4. The method presented above for regularizing Barnett 

approximations is based on the ideas of the Pad6 approxi- 
mates and partial summation of series. It  is not possible at 

the outset to say just whether this procedure will result in the 
required stability of the wave spectrum. This situation is 
typical for methods which use the Pad6 approximation: A 
real improvement in the original expansions may be 
achieved, but then again it may not. Several instructive ex- 
amples in this connection are given in a mon~graph.~  

In the case of the linearized Grad equations, the prob- 
lem of the stability of the wave spectrum can be formulated 
without invoking any truncation of the sequence of opera- 
tors d im'  as in (3.1). For the ten-moment equations, for 
example, the regularized stress tensor a,, can be sought in 
the form 

The operator symbols Fl,2, ( - k 2, are written as power se- 
ries in - k ', in which the first n coefficients are known. The 
functions I;;,,, appear in the coefficients of the dispersion 
relation. We need to construct an approximation of the func- 
tions FIz, which has the given part of a Taylor series and 
which leads to the correct positions of the roots of the disper- 
sion relation. The dependence of the functions Flz, on d f 
alone is of course a consequence of the simple structure of 
the form (2.7) and (3.4). 

There is no particular difficulty in formally extending 
the procedure (3.1 ) to the nonlinear Grad equations. In gen- 
eral, however, it is not possible to determine structures of the 
type (2.7) and (3.4). It is, on the other hand, possible to 
distinguish terms of a common type [e.g., terms with a maxi- 
mum nonlinearity (d, u ) "  + ' in the nth order] in each order 
of the expansion and to carry out a regularization procedure 
to eliminate the negative viscosity of the Barnett approxima- 
tions. 
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