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The dissipation of a strong magnetic field in a conducting sphere is studied ("strong" means 
w, 7) 1, where w, is the electron gyrofrequency, and T is the electron relaxation time). 
Nondissipative Hall currents can substantially accelerate the decay of the magnetic field. The 
reason is that the Hall drift leads to the formation of regions with high current density and 
pronounced irregularities of the magnetic field, in which accelerated dissipation occurs. The 
symmetry of the field may change temporarily in the course of the evolution. For example, a field 
which initially has mirror symmetry with respect to the equatorial plane may become asymmetric 
because of the Hall effect. After a certain time, when dissipative effects become dominant, the 
field reverts to its original configuration (although with a far lower strength). 

1. In a strong magnetic field, the conductivity and resis- 
tance of a material are anisotropic and are described by ten- 
sors u and %. In a coordinate system with z axis parallel to 
the magnetic field B, these tensors are (Ref. 1, for example) 

where the subscripts 11 and 1 mean the components parallel 
and perpendicular to the magnetic field, and A means the 
so-called Hall component. The quantity uo is the conductiv- 
ity in the absence of a magnetic field. The Hall current arises 
in a material from the drift of charge in the direction perpen- 
dicular to the electric and magnetic fields. This is a dissipa- 
tion-free current, since it does not contribute to an increase 
in the entropy density of the medium, Q: 

Here j is the current density, and E is the electric field. 
In the relaxation-time approximation (Ref. 2, for ex- 

ample), the expressions for the components of the tensors o 
and % take the simple form 

where e = /el, m, w, = eB /mc, and n are the charge, effec- 
tive mass, gyrofrequency, and density of the electrons. The 
quantity T is a relaxation time. Under the condition w,r( 1 
we have ulI ) u A  , and the magnetic field has only a 
slight effect on the charge transport. If w,r% 1 holds, then 
we have uII ) u A  $ ul, and the magnetic field is important. 
The Hall resistance R A does not depend on the relaxation 
time. The reason is that the Hall currents are nondissipative. 

~tfol~ows from Eq. (2) that the Hall resistance does not 
directly cause attenuation of the electric current. In a mag- 
netized material ( w , ~ $  1 ), however, the Hall drift can sub- 

stantially alter the geometry of both the current and the 
magnetic field. The Hall currents thus indirectly affect the 
rate of dissipation, which depends strongly on the current 
configuration. This effect of the Hall current on dissipative 
processes is the subject of the present paper. We examine the 
decay of strong magnetic fields-strong enough to magne- 
tize the material-inside a uniform sphere of radius a. The 
longest-lived mode of a weak (0 , rg  1) magnetic field in a 
sphere is known (Ref. 1, for example) to decay exponential- 
ly with a time scale -a2uo/c2. 

We will show that in a magnetized material nondissipa- 
tive Hall currents substantially alter the picture of the field 
dissipation, causing significantly more rapid decay. The 
field decay law may be nonexponential. In addition, Hall 
currents can temporarily cause a significant change in the 
magnetic field configuration in the course of the evolution. 

2. The evolution of a quasisteady magnetic field in a 
conducting medium is described by the induction equation, 
which can be written as follows in the absence of motion: 

In the relaxation-time approximation, this equation can be 
rewritten as 

dB cL 1 1 
-= - - [v ( - [PBI - - [S [OB~I ) ] .  ( 5 )  

at  4n oo cen 

We assume for simplicity that the sphere is homogeneous 
and that 0, = const. In an actual situation, of course, the 
current decay could lead to nonuniform heating of the 
sphere. Since the relaxation time and density df the electrons 
may depend on the temperature, the conductivity can, in 
general, become inhomogeneous as the magnetic field 
evolves. If the specific heat of the sphere material is suffi- 
ciently large, however, the inhomogeneity of uo will be un- 
important and can be ignored. 

We consider the decay of an axisymmetric toroidal 
magnetic field which is directed along the azimuthal unit 
vector e,: B = B(r,8) e,, where r, 8, q, are spherical coordi- 
nates. For a field with this configuration, the induction equa- 
tion ( 5 )  can be put in the form 
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d b  1 d2 -- ---(&)+---- -- 
dg x 2 a x 2  x2 [ I  8 0  sin0 d 0  a (a sin Q )  1 

where we have introduced the dimensionless time 
{ = c2t /41rcr~a~ and the radial coordinate x = r/a. In addi- 
tion, we are using b = B /Boy where Bo is a normalizing val- 
ue of the magnetic field (this value is set by the initial condi- 
tions, as discussed below), and a = erB0/mc. For a toroidal 
magnetic field the following boundary conditions must hold: 

b=O for x=l, b=O for x=O. (7)  

The first of these boundary conditions is a consequence of 
the continuity of the field at the surface. For a toroidal field 
we would have VXB#O, and this field could not exist in 
vacuum. We must therefore have B = 0 at the surface of the 
sphere. The second boundary condition follows from the fact 
that the current density remains bounded as x + 0. 

For a weak magnetic field ( a  < 1 ) , Eq. (6) reduces to a 
linear equation and can be solved without difficulty. The 
general solution can be written as an expansion in the normal 
modes B '". The fundamental mode B 'O) is the one which is 
damped most slowly. For this mode we can write 

where A ~ 2 0 . 1 9 .  The time scale t, on which the fundamen- 
tal toroidal mode decays is 

The magnetic configuration which corresponds to a dipole 
field outside the sphere decays more slowly by a factor of 
about 2 (Ref. 2, for example) : 

3. We have solved Eq. (6)  numerically. This equation 
depends on one parameter a ,  which is the value of the mag- 
netization parameter w , ~  at B = Bo . Calculations were car- 
ried out for four values of a :  5, 25, 50, and 200. An upper 
limit was imposed on the value of the parameter a by the 
computer facilities available (as a increases, a progressively 
finer mesh is required to prevent numerical instability dur- 
ing the calculations). At a = 200, an instability nevertheless 
did occur in one stage of the calculation. It was suppressed 
by artificial smoothing at a certain time. 

In the calculations, Eq. (6) was approximated by a 
standard explicit finite-difference scheme (Ref. 3, for exam- 
ple). The dimensionless timestep f was chosen to satisfy the 
Courant ~ondit ion.~ The number of nodes along x and 
y = cos 8 for each value of a is shown in Table I, along with 
the step along {. 

The initial field configuration was the same in each case 
considered: 

Bo [sin (t"x) 
Blf-a=T A x  A x  - cos (h' l lx)]  sin 0. (1 1) 

The dependence on x and 8 in this configuration corre- 
sponds to the fundamental toroidal mode in an unmagne- 

TABLE I. 
I Number of nodes I 

a Step along t / t ,  ( along .x 1 along y I 

tized sphere [see (8)  1. At t = 0 the field is symmetric with 
respect to the equatorial plane. The maximum field, 
B, = 0.436B0, is reached at the equator, at a distance 
x = 0.463 from the center of the sphere. We will use the 
constant Bo in ( 11 ) as the normalizing value in Eq. (6).  The 
initial condition was chosen as in ( 11 ), for convenience in 
comparison with the case a < 1. In the case of a weak field, 
the magnetic configuration ( 11 ) decays with the time scale 
(9), while remaining qualitatively the same [see (8 I .  

Figures 1-3 show the evolution of the magnetic config- 
uration for the cases a = 25, 50, and 200. Shown here are 
contour lines of the magnetic field. The times given in the 
figure captions are in units of the dissipative time t, . We first 
note the nature of the drift of the magnetic field due to the 
Hall effect. The field diffuses out of the lower hemisphere 
into the upper one. This change in the field configuration 
becomes more pronounced, and occurs more rapidly, as the 
parameter a is increased. One result of this drift is that the 
point in the meridional plane corresponding to the maxi- 
mum value of the field, B, , moves away from the equatorial 
plane into the upper hemisphere, simultaneously approach- 
ing the polar axis. 

Table I1 shows the coordinates (x, ,y, ) of the point 
where the field is a maximum and the time of the drift to this 
point when the field distortion is greatest (the initial values 
here are x, = 0.46, y, = 0). 

Because of the field drift, a region with a field variation 
more pronounced than elsewhere in this sphere forms near 
the surface of the upper hemisphere. In other words, the 
current density is relatively high there. The current dissipa- 
tion is relatively high in this region, so the damping of the 
magnetic field is more rapid than in the case a < 1. The Hall 
drift is important only at comparatively large values of the 
parameter a. Corresponding calculations were carried out 
for a = 5, but in this case the asymmetry of the field with 
respect to the equatorial plane resulting from the Hall cur- 
rents was slight. 

It is fairly easy to see the physical reasons for the drift of 
the field from one hemisphere into the other. The Hall cur- 
rent leads to the excitation of an electric field component E, 
in the medium. This component is perpendicular to both the 
current j and the magnetic field B: 

In the case of a toroidal magnetic field, the contour lines of 
the current lie in meridional planes, passing through the 
symmetry axis of the field: j = ( j,, j,,O). We assume that 
the field is initially symmetric with respect to the equatorial 
plane. Let us examine the change in the magnetic flux over a 
short time interval At  as a result of the Hall effect. From 
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FIG. 1. Contours of constant magnetic field in the meridional 
plane for a = 25 and at various times t / t , :  a-0.O; b--0.4; c- 
0.65; d-1.7. 

Maxwell's equation 8 B/dt = - cV X E we see that the Hall 
component ( 12) of the electric field leads to a change 

AB,=-cAt[ VE,] (13) 

in the magnetic field over the time interval At. The change 
caused by AB, in the magnetic flux through a contour in the 
meridional plane bounded by the symmetry axis of the field 
and a surface semicircle is zero: 

Here ds is a surface element of the semicircle bounded by the 
contour, and d 1 is a length element of the contour (at the 
surface of this sphere we have E ,  = 0; on the symmetry axis 
we have d 11lj). Relation ( 14) is a consequence of the nondis- 
sipative nature of Hall currents. We find the following result 
for the change in the flux enclosed by a contour which lies in 
the upper hemisphere and which is bounded by the symme- 
try axis, by part of the surface circle, and by the intersection 
with the equatorial plane: 

(1 

j AB. d s  = -cAt$ E, dl- At 1 n.B dr. (15) 
(+) 0 

Here u is the electron current velocity, given by u = j/ne. 
The change in the flux enclosed by the corresponding con- 
tour in the lower hemisphere is 

Since the current is continuous we have J:u,dr = 0, but in- 
tegrals of the type ( 15) and ( 16) may be nonzero since B 
depends on r. The drift of the field from one hemisphere into 
the other is therefore due simply to a drift of the frozen-in 
magnetic field as a result of the current motion of the elec- 
trons at the velocity u. The drift direction is determined by 
the sign of the Hall resistance. It is this drift which causes the 
field to lose its initial symmetry with respect to the equator. 

As time elapses, there is a progressive damping of the 
field due to ohmic dissipation. This decrease in the field leads 
to a decrease in the magnetization parameter w,r-ab and 
to weakening of the Hall drift. After a certain time, the field 
weakens to the extent that the product ab becomes - 1. The 
drift of the field from one hemisphere into the other plays 
essentially no role here, and the field begins a slow approach 
to symmetry (Figs. 1-3). The reason is that the higher har- 
monics of the field which appeared in an earlier stage (as a 
result of the drift) decay more rapidly than the fundamental 
mode. The evolution of the various harmonics in this stage is 
now determined by Joule dissipation alone. As a result, the 
fundamental mode of the toroidal field dominates again after 
a certain time, and the field becomes symmetric with respect 
to the equatorial plane. 

Figure 4 shows the time evolution of the maximum field 

FIG. 2. The same as in Fig. 1, but for a = 50 and the following 
times t / r , :  a-0.O; b 4 . 1 4 ;  c 4 . 2 5 ;  d-1.9. 
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FIG. 3. The same as in Fig. 1, but for a = 200 and the following 
times t / t ,  : a--0.038; b-O.05; c-0.25; d-0.5. 

in the sphere, B, . The field reaches its maximum value in the 
upper hemisphere, as we have already mentioned. At com- 
paratively large values of a ,  the change in the maximum field 
is nonmonotonic. In the initial stage, B, may in fact in- 
crease. This increase results from the drift of the field out of 
the lower hemisphere into the upper one under the influence 
of the Hall current. Later on (Fig. 4), the field dissipation is 
more rapid, the larger the parameter a. The reason lies in the 
formation of pronounced field irregularities in the upper 
hemisphere and enhancement of the current there. Under 
the condition a, 1, the field decrease in this stage is no long- 
er described by a simple exponential law with a time scale t ,  
[see (911. 

The total magnetic-field energy inside the sphere, 
E = 1/8rrJB *dV, decays monotonically, of course (Fig. 5). 
With increasing a ,  this decay of the field accelerates signifi- 
cantly. As in the B ,  case, this acceleration stems from the 
appearance of a high electric current near the surface of the 
upper hemisphere as a result of the Hall effect. The time 
scale t, ( a )  over which the field energy decreases by a factor 
of e from its initial value decreases by a factor of about 5 as 
the parameter a is raised from 0 to 200. Over this range of a 
the t, (a) dependence is described approximately by 

tm (a )  z t , l  (ti-0,0044ava). (17) 

The error in the expression ( 17) is less than 10%. The curves 
in Fig. 5 cannot be described by a simple exponential law 
with a time scale t ,  ( a ) .  The field energy falls off comparati- 
vely rapidly only in the initial stage, in which the field is 
capable of strongly magnetizing the electron gas. After a 
long time, when the Hall drift has become unimportant, and 
the higher harmonics of the field decay, the fundamental 
toroidal mode becomes predominant (this mode is symmet- 
ric with respect to the equator). This mode decays exponen- 
tially with a time t ,  > t ,  ( a ) .  

TABLE 11. 

a t/tm 

4. Let us summarize the basic results of this study. This 
analysis has shown that under certain conditions the Hall 
drift can cause a striking acceleration of the decay of the 
magnetic field in a conducting medium. The reason is that 
the drift causes a substantial change in the configuration of 
the electric current. Regions with pronounced irregularities 
of the magnetic field and correspondingly high current den- 
sities can form. In our example, these regions form near the 
surface in the upper hemisphere. Because of the high current 
density here, there are an accelerated dissipation and thus an 
effective heat evolution. The accelerated dissipation in cer- 
tain regions of the conducting object leads to a faster overall 
dissipation of the field. The time scale of the decrease in the 
field energy itself decreases with increasing value of the mag- 
netization parameter a [see ( 17) ]. In the course of the evo- 
lution, as the total energy of the magnetic field falls off 
monotonically, the maximum field B, may increase notice- 
ably during certain stages. 

What we regard as a striking feature of the field evolu- 
tion in this example is the temporary deviation from a mirror 
symmetry with respect to the equatorial plane. As we men- 
tioned earlier, this asymmetry results from a drift of the 

FIG. 4. Time evolution of the maximum field B,, divided by the initial 
field B, (0). l - a  = 0; 2 - 4  = 25; 3 - a  = 50; 4--a = 200. 
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magnetic field out of one hemisphere into the other caused 
by the Hall current. As the field dissipation proceeds, and 
the velocity of the Hall drift decreases, this drift becomes 
progressively weaker. After a long time, when the conduct- 
ing sphere has become unmagnetized, the magnetic field can 
be written as the sum of normal modes, each of which is 
evolving independently. The higher harmonics are damped 
over a time scale shorter than that for the fundamental 
mode. As a result, the fundamental mode becomes the domi- 
nant one after a certain time. This fundamental mode is sym- 
metric with respect to the equator. 

In deriving Eq. (6) we used values found for R, and R ,  
in the relaxation-time approximation. It is simple to verify 
that the basic equation would have the same form even if we 
were to abandon that approximation, provided that R, is 
independent of B and that R , is proportional to B .  In this 
case we would have a = ( R  ,, /BR, )Bo in Eq. (6).  

Under laboratory conditions the Hall current can influ- 
ence magnetic-field dissipation even at small values of B, .  In 
metals at sufficiently low temperatures, for example, the re- 
laxation time is 7- lov9  s. The condition a > 1 thus holds 
even for Bo > 10' G. As can be seen from our calculations, 
the effect of the Hall current on the dissipation becomes par- 
ticularly strong for a > 5 0 ,  i.e., for BO>5.1O3 G.  At such 
fields, both of the effects which we have been discussing 
here-the accelerated field decay and the breaking of the 
symmetry with respect to the central plane-may be mani- 
fested in laboratory experiments. This symmetry breaking 

FIG. 5. Time evolution of the total energy E of the magnetic field 
inside the sphere, divided by its initial value E(0 ) .  1--a = 0; 2- 
a = 25; 3--a = 50; = 200. 

may result in a difference in the heating of the upper and 
lower hemispheres. It is not difficult to show that the field 
dissipation has the consequence that the difference between 
the temperatures of the upper and lower hemispheres will be 
of order AT- B '/8npCP, wherep is the density and Cp is the 
specific heat. Assumingp- 1 0  g/cm3, Cp - lo6 erg/(g.deg), 
and B- lo4 G, we find AT- 1 K. Note, however, that the 
local temperature difference between certain points which 
are symmetric with respect to the central plane may be con- 
siderably larger. 

Hall currents can of course lead to accelerated dissipa- 
tion of more than the toroidal field. The case of a toroidal 
field was analyzed here because of its simplicity. Magnetic 
configurations in which j and B are not parallel are fairly 
common. For example, we would have jlB for a dipole con- 
figuration. Admittedly, in this case we would have jlle, and 
the breaking of the symmetry of the field with respect to the 
equatorial plane would not occur. As in the case of a toroidal 
field, however, the Hall drift would accelerate the field de- 
cay. 
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