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The allowed transitions for ir absorption and Raman scattering are calculated for all 17 space 
groups of semi-infinite crystals. Expressions are also given for the Van Hove singularities which 
arise in the phonon and electron spectra at the surfaces of crystals. 

INTRODUCTION 

Measurements of the polarization dependence of the 
optical absorption due to electron transitions and measure- 
ments of the polarization dependence of the ir absorption 
and Raman scattering by phonons at crystal surfaces can be 
useful for studying the spectrum of excitations at a surface. 
The polarization dependence reflects the symmetry of the 
crystal surface and can be useful in identifying various mod- 
els of surface reconstruction. 

Interband electron absorption and ir absorption near 
the edge can provide useful information on the electron and 
phonon spectra near singular points. The existence of elec- 
tron surface states and of surface phonon modes should lead 
to features in the absorption and scattering spectra which are 
not found in the bulk spectra. Some questions naturally arise 
here: Between which surface states (and between which sur- 
face states and which bulk states) can transitions occur? 
How does their intensity depend on the energy and the polar- 
ization? 

The symmetry of the electron and phonon transitions 
can be analyzed in a unified way. The phonon and electron 
surface states should be classified on the basis of irreducible 
representations of the 17 space groups of semi-infinite crys- 
tals. The phonon and electron states (in the spin-zero case) 
are classified on the basis of vector representations. The elec- 
tron states are classified on the basis of spinor representa- 
tions if the spin-orbit interaction is taken into account or on 
the basis of ordinary vector representations if there is no 
spin-orbit interaction. 

Strictly speaking, the bulk electron and phonon states 
in the continuous spectrum of a semi-infinite crystal should 
also be classified on the basis of the irreducible representa- 
tions of 17 surface groups. 

To learn about the possibility of transitions between 
surface states and bulk states, we should use the representa- 
tions of the 17 groups of semi-infinite crystals. This is an 
obvious approach from the physical standpoint, since transi- 
tions between bulk states and surface states can occur only 
within the localization radius of the surface states. 

For direct optical transitions between electron states 
and for ir absorption by phonons, it is sufficient to determine 
the nonzero matrix elements of the momentum operator.' In 
terms of their transformation properties, these elements are 
the same as coordinate components. For Raman scattering, 
the matrix elements are calculated from the product of two 
components of the momentum operator.' 

For direct optical transitions and for ir absorption with 
the photon momentum ignored, the matrix element is non- 
zero if the product of the representations 

contains the unit representation. Here D $, D: are represen- 
tations of energy levels at the k point of the plane Brillouin 
zone, and D, is the representation which transforms the co- 
ordinate components. For Raman scattering, the unit repre- 
sentation should be contained in the product of representa- 
tions 

The scheme for calculating the nonzero matrix ele- 
ments is as follows: Select a point in the Brillouin zone. De- 
termine the group of the wave vector and its irreducible rep- 
resentations at the given point. One must then deal with the 
invariance under time reversal. Three cases can arise:* 

a )  The representation D $ is itself an irreducible repre- 
sentation of some level. 

b) D !  is a combination of two linearly independent, 
complex-conjugate representations. 

c )  D ': is a combination of two equivalent real represen- 
tations. 
The Herring criterion3 is used to decide to which case the 
representation of a given level corresponds. For the final 
result, the given representation is doubled or not doubled 
depending on the particular case to which the star {k) of the 
wave vector corresponds: 

1 ) k and - k are equivalent. 
2) k and - k are not equivalent, but the complete space 

group contains a symmetry element which sends k into - k. 
3) k and - k appear in different stars. 

The representation is doubled in cases b and c only in cases 1 
and 2. In case 3, the representations are not combined. 

SYMMETRY ANALYSIS OFTHE MATRIX ELEMENTS 

The results calculated for the nonzero matrix elements 
are given in the Appendix. Figures 1 and 2 show the types of 
plane lattices with the symmetry elements and the corre- 
sponding Brillouin zones. The symmetry points are indicat- 
ed. 

In most cases, representations of a space group are 
equivalent under projection to representations of point 
groups. For the representations of the point groups we use 
the notation of Bir and P i k u ~ . ~  The corresponding char- 
acters of the point groups can be found in the same book. 

The vibrational degrees of freedom are transformed by 
ordinary vector representations. The wave functions of elec- 
trons in the spin-zero case are transformed by the same rep- 
resentations. The spinor representations and the matrix ele- 
ments for them belong solely to electron transitions when the 
spin-orbit interaction is taken into account. 

There is a point to be noted here. The form of the elec- 
tron spectrum near symmetry points was found in Ref. 4. 
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FIG. 1. Examples of the 17 three-dimensional lattices (see Ref. 7; see Ref. 
8 for the group notation). 

Those results are also valid in the spin-zero case for the 
phonon branches of the spectrum, with the one difference 
that ~ ( k )  should be replaced by w2(k) [here ~ ( k )  and o ( k )  
are the dispersion laws for the electrons and phonons, re- 
spectively ]. 

Lattice I ('I). In lattice 1 there is only one symmetry 
element, {E I R). In the Brillouin zone, one-dimensional rep- 
resentations A and A ' are realized at the symmetry points r ,  
A, B, and Y in the wave-vector group in both the spin-zero 
and spinor cases. In the spin-zero case, the one-dimensional 
representation corresponds to case a,.  In the spinor case it 
corresponds to c, . Accordingly, it should be doubled. All the 
coordinate components fall in the one representation A. 
Transitions between levels are possible for any polarization. 

Lattice 2 (p2). Lattice 2 has the symmetry elements 
{E(R), {C2 IR). In the spin-zero case, two representations, A 
and B, are realized at all the symmetry points, F, A, B, and Y. 
The z, xy, xx, and yy components are transformed by the 
representation A, while the x, y, xz, and yz components are 
transformed by B. Both representations correspond to case 
a , .  In the spinor case, the representations A ; and A ; have 
complex-conjugate characters,x(~) = 1, X( C2 ) = f i, and 
they belong to case b, according to the Herring criterion, 
since the symmetry points k and - k are equivalent. In the 
spinor case, transitions between levels are allowed for any 
polarization. 

Lattice 3 (plml). The analysis of this lattice, in which 
there are two symmetry elements {EIR), {ax IR) (a, is a 
symmetry plane parallel to thex axis), is analogous to that of 
the preceding case. There is the difference that the z, x, xz, 

xx, and yy components are transformed by the single repre- 
sentation A + , while they, xy, and yz components are trans- 
formed by the odd A -. 

Lattice 4 (plgl). Lattice 4 contains, in addition to the 
unit element, a slip plane {a, 1r + R) [T  = (ax/2.0) is a 
nonprimitive translation vector which performs a transla- 
tion of a half-period along the x axis]. The nonzero matrix 
elements at the I? and Ypoints are found by analogy with the 
p l m l  group at point T, since the wave-vector group is the 
same as the point group of directions. To determine the rep- 
resentations at the X and S points, we find the factor system 
for the two generating elements: 

The factor system belongs to class KO (Ref. 2) ,  and the 
representations are under equivalent projection to vector 
representations. The characters of the representations can be 
found from the ordinary characters by multiplying the char- 
acter for element ax by exp(iv/2) (k  lies at the boundary of 
the Brillouin zone). In the spin-zero case, there are two one- 
dimensional representations with complex-conjugate char- 
acters. They correspond to case b, . In the spinor case the 
representations belong to case b, . In both cases the represen- 
tations combine. The matrix elements are nonzero for any 
polarization. 

At an arbitrary point on side D, the vector k is not 
equivalent to - k, but the space group contains an element 
which sends k into - k. In each case, we have version c, , so 
there is a doubling of the equivalent representations. A de- 
generacy arises on the entire side. The matrix elements are 
nonzero for any polarization. 

Lattice 5 (clml). Lattice 5 has the following symmetry 
elements: {EIR), {ax IR). The calculation of the matrix ele- 
ments reduces to the known cases for lattices 1 and 3. 

Lattice 6 (p2ml). The symmetry elements of the lattice 
are {E(R), {c2 IR), {a, IR), {a, IR). At the symmetry points 
I?, X, Y, S we have case a, in the spin-zero case, and there are 
four one-dimensional representations: A * , B * . The spinor 
case also corresponds to a, .  At all points there is one two- 
dimensional representation, E '. The coordinate components 
are distributed in accordance with the representations 
A + (z), A - (xy), B + (y,yz), B - (x,xz). The vibrational 
degrees of freedom can be transformed only by the represen- 
tations A +, B * . The z component of an axial vector is 
transformed by the representation A - . 

Lattice 7(p2mg). In space group 7 there is a slip plane. 
The symmetry elements are {EIR), {c,  IR), {ox IR + TI, 
{a,, ( R  + 7). [The quantity T is a translation of half a period 
along the x axis: r = (ax/2.0). ] The calculation of the ma- 
trix elements at the r and Ypoints is analogous to the corre- 
sponding calculations for group 6. To find the representa- 
tions at the X and S points, we determine the factor system 
for the generating elements: 

o (c,, 0,) =exp [i (k-c,-'k)z] =-I, a=-I, 
~ ( o , ,  ~~)=exp[i(k-cr-~k)O] = I .  

The factor system belongs to class K, . In this case the 
representations of the wave-vector group D k(g) of the ele- 
ment g = {r 1 R + T) are found from 
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3. Y. 6, 7, 8 Y c s  Y c s  

FIG. 2. Types of Brillouin zones for the various lat- 
5. 9 tices. a-1, 2; 8, -3, 4, 6-8; 8,-5, 9; y-10; y'-11, 

12; &13, 16; 8-14, 15, 17. 

4 

Dk (g) =exp [ik (R+r )  ] u ( r ) D  ( r )  . At an arbitrary point D on a side perpendicular to the 
slip plane, the factor system belongs to the class KO. To Here D(r)  is the projection representation corresponding to 
demonstrate the point, we write the standard factor system. If A and B are matrices which 

correspond to the generating elements of the direction group (1) ( E ,  ox)=exp[i(k-e-'k)r,]  = I ,  
CZu (a = c, , b = cr, 1, then we have, according to Ref. 2, o (o,, e )  = exp[i(k-0,-'k)O] = I .  

D (r) =AmBn 

for the standard factor system. For the C,, group there is one 
two-dimensional projection representation for class K, 
(Ref. 2).  Let us determine the factors u ( r )  which send our 
factor system into the standard one. For spin-zero represen- 
tations we have, according to Ref. 2, 

~ ( C Z )  = w (c,, c ,) '"=l,  
d u x )  = w (ox, 0 ~ ) " ~ = 1  

for the generating elements. For the other elements we have 

u(av) = u ( ~ 2 0 , ) = u ( ~ 2 ) ~ ( 0 , ) / ~  (cz, 0%) = - I .  

For spinor representations the factor u(r)  should be re- 
placed by u(r)ul(r),  where 

U' ( c z )  =ir  U' (ox)  = i ,  
u' (a,) =ur ( c , ~ , )  = - I .  

In both cases we have case b, 

The representations are therefore equivalent under projec- 
tion to vector representations and can be found from the 
usual ones by multiplying the character of element a, by the 
factor exp(ik*r) = exp(i?.r/2). Since k and - k are not 
equivalent, but the space group contains an element which 
sends k into - k, we have case c, in both cases. 

Lattice 8 (p2gg). The symmetry elements of group 8 are 
CEIR), {c, IR), {a, IR + 71, {ay IR + 7) [T  represents a 
translation of half a period along the x and y axes, 
T = (ax/2,ay/2) 1. The calculation of the nonzero matrix 
elements at the points r, X, Y, D, and Cis  analogous to the 
corresponding calculations for group 7. 

Let us determine the representations at point S. The 
factor system for the generating element c, and ax is 

The factor system belongs to class KO, so the characters of 
the representations of the wave-vector group can be found 
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from the characters of the direction group C,,, by multiply- 
ing the characters of the elements a,, a, by i. Since k and 
- k are equivalent, we have case b, . Consequently, the four 

one-dimensional representations combine into two two-di- 
mensional representations. 

In the spinor case, the factor system belongs to class K, , 
where there is one two-dimensional representation, and we 
have case c, . 

Lattice 9 (c2mm). This lattice has the symmetry ele- 
ments {E~R), {c, I R), {a, I R), {ay I R). The calculation ,of 
the matrix elements is analogous to the calculations for 
groups 2 and 6. 

Lattice 10 (p4). In group 10 we have only a fourfold 
symmetry axis other than the unit element: {EJR), {c4 IR). 
At the r and Mpoints, all representations belong to class KO 
in the spin-zero and spinor cases. Representations with real 
characters belong to case a , ,  and those with complex-conju- 
gate characters combine in pairs. The Herring case b, is real- 
ized. At the X point, the calculations are analogous to the 
corresponding calculations at the r point of group 2 (p2). 

The characters of the coordinate components and their 
products are as follows: x, y, xz, yz -x(E) = 1, x ( c 4 )  
=x(c: = 0, x ( c 2 )  = - 1; xy -x (E)  = 1, 

x(c4 ) = X(C: ) = - 1,x(c2 ) = 1. The unit transformation 
transforms z. 

Lattice I 1  (p4mm). In group 11 we have the following 
symmetry elements: {EIR), {c41R), {c:IR), {c,lR), 
{a, 1 R), {ay IR), {axy 1 R), {ayx [R) (a,,,, are diagonal 
symmetry planes). At the r and Mpoints there are four one- 
dimensional representations and one two-dimensional rep- 
resentation in the spin-zero case. In the spinor case the repre- 
sentations belong to class K, , where two two-dimensional 
representations arise. In both cases we have type a,.  The 
characters of the coordinate components and their products 
are as follows: x, xz; y, yz - X(E)  = 1, ~ ( c ,  ) = 1, 
x(c4 = 0, x(ax,ay 1 = 1, - 1; - 1, 1, x(axy,ayx = 0, xy 
-x (E)  = 1, x(c,) = 1, x ( c 4 )  = - 1, X ( U  x y  a Y ) = - 1, 

~(a , , , a~ ,  ) = 1, and z is transformed according to the unit 
representation. 

The calculations at the Y and X points reduce to the 
cases discussed above. 

Lattice 12 (p4gm). Group 12 contains the symmetry ele- 
ments {EIR), {c4 IR), {c: IR), {c, IR>, {a, lR + 71, 
{ay IR + TI, {a;y I R + 71, {ayx I R + TI [T = (a, /2,ay/2 
is a nontrivial translation vector]. The calculations for the r 
point are analogous to the calculations in group 1 1. To deter- 
mine the representations at the M point we find the factor 
system for the generating elements: 

In the spin-zero case the factor system thus corresponds to 
class K,,  and projective representations should be used. In 
the C4, group there are two projective two-dimensional 
representations with complex-conjugate characters. We can 
put our factor system in standard form. For this purpose we 
determine the factors u (r) .  According to Ref. 2 we have 

We finally find 

z/n 
u (cz) = u (ck2) = o,,, E ' / O ~ , ~  = - 1, 

The matrices of the representations for the wave-vector 
group can be written in the following form, where we are 
using the factors u (r) :  

for the representation P I" (Ref. 2),  and for the representa- 
tion PZ1) we have 

where E, = eid4. 
To determine the case according to the Herring crite- 

rion at the point M, we need to sum over all the elements of 
the wave-vector group: 

In other words we have case b,. Consequently, two two- 
dimensional representations with complex-conjugate char- 
acters combine into one four-dimensional representation. 

In the spinor case the factor system also belongs to class 
K,. For a transition to the standard factor system in the 
spinor case we need to multiply the factors u ( r )  found above 
by an additional factor of u' (r).  According to Ref. 2, we find 

U' (Cik) =e"'*" 

U' (ox) =eln", 

(C,ko(Sx) = U' U' (ar) = e'. ('I "'lL 

In other words, there are two two-dimensional representa- 
tions with real characters, each of which should be doubled, 
since we have case c, according to the Herring criterion. 
The calculation of the matrix elements at other points re- 
duces to the cases already considered. The vibrational de- 
grees of freedom cannot be transformed by the representa- 
tion A, for the z component of an axial vector. 

Lattice 13 ('3). Group 13 contains the elements {EIR), 
{c, I R}. At the I? point all representations belong to class KO. 
In the spin-zero case one representation, with a real charac- 
ter, belongs to case a , ,  while two others, with complex-con- 
jugate characters, belong to case b, and combine into a two- 
dimensional representation. In the spinor case the real 
representation belongs to case c, and should be doubled. The 
two other one-dimensional representations belong to case 
b, .  The characters of the coordinate components are 
X(E) = 1,x(c3) =x(c:) = -+forx,y,xy,xz,andyz.The 
z component falls in the unit representation. 
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The calculations for the Mpoint reduce to known cases. 
At the K point there is case B, ,  since Z = 0. The reason is 
that the group has no element which sends k into - k or an 
equivalent. It is necessary to combine the stars, but not the 
representations themselves. All the representations are one- 
dimensional in both cases. 

Lattice 14 (p3ml). The symmetry elements are {EIR), 
{c, IR), {c: IR), {ay IR), {a, IR), {a, IR). At the r point in 
the spin-zero case there are two one-dimensional representa- 
tions and one two-dimensional representation, which belong 
to case a,.  In the spinor case the representations belong to 
class KO (Ref. 2).  Two one-dimensional representations 
with complex-conjugate characters combine into one, and 
we have case b, according to the Herring criterion. The two- 
dimensional representation belongs to case a,.  The char- 
acters of the coordinate components and their products are 
as follows: x, y, xy, xz, yz--x(E) = 1; x(2c3)  = 1, 
x(ux,,,, ) = 0; and z is transformed by the unit representa- 
tion. The vibrational degrees of freedom cannot be trans- 
formed by the representation A, for the z component of an 
axial vector. 

At the X point the wave-vector group is p lml .  In the 
spin-zero case we have case a , ,  and in the spinor case we 
have 6 , .  At the K point the wave-vector group isp3. Here k 
and - k are not equivalent. However, the space group con- 
tains an element, not part of the wave-vector group, which 
sends k into - k from one star to another. We have case a, 
in both situations. 

Lattice 15 (p31m). In this group there are the same sym- 
metry elements as in group 14, but the symmetry plane 
{ax I R )  is replaced by {a, IR). The calculations at the r and 
M points are analogous to those in the preceding case. At the 
K point the wave-vector group isp3m 1. Since k and - k are 
not equivalent, and they are in different stars, we have case 
'33. 

Lattice 16 (36). In space groupp6 we have the symmetry 
elements CEIR), {c6 I R), {c: IR), {c, I R), {c: I R), {c2 I R). In 
both cases representations with complex-conjugate char- 
acters combine at the r point and belong to case b, . 

At the M point we have groupp2. Since k and - k are 
equivalent, the representations belong to case 2. At the K 
point the wave-vector group isp3; k and - k are not equiva- 
lent; but the space group has an element which sends k into 
- k. We have case 2. The characters of the wave-vector 

components are as follows: for x, y, xz, yz; xy -x(E)  = 1, 
x(c3,c:) = - ' 5 r x ( c z )  = - 1; l,x(c,,c, = 3; - 3 .  ' 

Lattice 1 7  (pbmn). In group 17 we have the following 
symmetry elements: {&I R), {c6 1 R), {ci 1 R), {c, lR), 
{c: IR), {c2 IR), {a, IR), {ay IR), {a' IR), {a, IR), {a2 IR), 
{a, IR). At the point all representations belong to case a , .  
At the M point the wave-vector group is p2mm, and the 
calculations reduce to those in the preceding cases. At the K 
point the group is p3 lm, but k and - k do not go into the 
same star. In the space group there is an element which sends 
k into - k, so we have case a,. The characters of the coordi- 
nate components and their products are x, y, xz, yz; 
XY -x(E) = 1, ~ ( 2 ~ 3 )  = - 4, ~ ( 3 ~ ~ 1  = 0, ~ ( ~ 2 1  
= - 1;1, x(2c6) = 1; - 4, ~ ( 3 ~ 7 )  = 0. The z component is 
transformed by the unit representation. The vibrational de- 
grees of freedom can be transformed by all representations 
other than A,. 

The results of the calculations are summarized in Table 
I (see the Appendix). The representations of the energy lev- 
els are denoted by the symbols corresponding to the point of 
the Brillouin zone with either a single index, which indicates 
the order number of the representation of the wave-vector 
group, or a double index, which is made up of the indices of 
the representations which combine due to time reversal. The 
projection-equivalent representations, if they exist, are 
shown in parentheses. The designation of the type with re- 
spect to time reversal is denoted in accordance with Ref. 2. 
The last column shows, in parentheses between representa- 
tions, the coordinate components and their products for 
which the matrix elements are nonzero. If there are 
several points with identical symmetry in the Brillouin zone 
of the given lattice, the allowed transitions are given for only 
one of them. If there are points with identical symmetry in 
different lattices, the data are given for only one of them. For 
a point with symmetry properties which have already been 
found, we refer the reader to the place in the table where this 
symmetry was found first. 

TWO-DIMENSIONAL VAN HOVE SINGULARITIES 

Let us find the behavior of the density of states near the 
symmetry points. For a nondegenerate zone, spectra of three 
types are possible: a maximum, a minimum, and a saddle 
point. In the cases of the electron and phonon spectra we 
have, for the maximum, 

We are omitting the coefficients of k,, ky , since we are inter- 
ested in only the symmetry properties of the spectrum. The 
density of states is 

where O(E) is the unit step function. 
In the case of a minimum for the electron spectrum, the 

density of states has the same functional form as for a maxi- 
mum. For phonons, there cannot be a minimum for w2, since 
this situation would correspond to an instability of the lat- 
tice. A saddle point can be realized in a stable system only for 
the electron spectrum: 

A transformation to parabolic coordinates 

leads to 

This integral diverges. Formally, the density of the states is 
infinite. Physically, this circumstance has an obvious mean- 
ing: At energies E close to zero, the constant-energy cross 
sections are parabolas, and the area which they bound is 
infinite. Formally, at a given energy E # O  it is possible to 
place an infinite number of particles in the zone since the 
branches of the parabola are unbounded. The reason is that 
for the given energy there are states with arbitrarily large 
values of k, , ky . 
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An infinity in the density of states means that it is neces- 
sary to consider the following terms in the expansion in k,, 
k,, in the expression for ~ ( k )  at large k. At small values of E 

there is also a well-known logarithmic singularity. To see it 
explicitly, it is convenient to evaluate the integral (4) with- 
out switching to parabolic coordinates. We have 

9.3 

where q, is a cutoff vector. 
The doubly degenerate massless dispersion relation is 

E (k)  , m2 (k) =const* (kxZ+k:)'". (6)  

For phonons, a spectrum of this sort is possible near certain 
points on the boundary of the Brillouin zone with const > 0. 
The densities of states for electrons and phonons are, respec- 
tively, 

~ ( & ) . c & ,  (7)  
(8) c30 ( ( e  1 - const). (8 

A spectrum with cubic splitting is possible only for elec- 
trons. This spectrum is 

To calculate the density of states we note that 

It is convenient to introduce the new variables A , ,  A, such 
that 

After this substitution, the integral reduces to 

The transformation to parabolic coordinates finally leads to 

p(e) 181-'la. 

In the case of the electron spectrum, the symmetry thus 
allows singularities of four types in the density of states: 
p ( ~ )  a const, E, I E I  - ' I3, a 1nl~I. In the case ofphonons there 
are two types: p ( ~ )  a E, E ~ .  

SOME EXAMPLES 

Let us look at two examples of the use of the table (see 
the Appendix). We wish to determine for which polarization 
there will be optical transitions in the electron spectrum on 
Si(001)2 x 1 and Si(001)2 x 2 surfaces with asymmetric 

dimers (the Chadi model5 ). We assume that the axis of the 
dimers runs along thexaxis. In the 2 X 1 structure, the space 
group 3 (p lml )  corresponds to the lattice symmetry. We 
know that there are two bands of surface states in the band 
gap.5p6 At all the symmetry points of the surface Brillouin 
zone (see the table for lattice 3), there are two representa- 
tions if we ignore the spin-orbit interaction (it is in this ap- 
proximation that the calculations were carried out in Refs. 5 
and 6).  One representation is even, and the other odd, under 
reflection in a plane normal to the surface passing through 
the axis of the dimer. Transitions between these surface 
bands occur in the case of a polarization perpendicular to the 
axis of the dimer (x polarization). For the case of an x polar- 
ization along the axis of the dimer, transitions are forbidden. 
When the spin-orbit interaction is taken into account, no 
transitions are forbidden; transitions are possible for an arbi- 
trary polarization. However, when the spin-orbit interaction 
is weak (and this is the case in silicon), the transitions occur 
primarily for they polarization. 

The Si(001) 2 X 2 phase corresponds to space group 7 
(p2gm), which has a nontrivial translation of half a period in 
the direction perpendicular to the axis of the dimer. In this 
group, there are four levels in the band gap at the r and Y 
points.6 One pair, with approximately the same energies, 
derives from the level with symmetry A + in the 
Si (001 ) 2 x 1 structure. The secocd pair, again with approxi- 
mately equal energies, derives from the level with symmetry 
A - in the Si(001)2 X 1 phase. 

The first pair (with approximately equal energies) cor- 
responds to the representations A + , B - (see the accompa- 
nying table for lattice 7). At the and Ypoints, transitions 
within each pair (transitions with a low photon energy) are 
possible in the case of the x expolarization along the axis of 
the dimers. Transitions occur between levels of different 
pairs (with a higher photon energy) for they polarization. 
At the boundary y of the Brillouin zone perpendicular to the 
grazing plane there is a degeneracy of the bands (see also the 
calculations of Ref. 6).  Two bands in each pair merge, each 
into a separate degenerate band. Transitions between two 
degenerate bands are possible along the entire face for an 
arbitrary polarization of the radiation. When the spin-orbit 
interaction is taken into account, all selection rules in terms 
of polarization direction are eliminated. 

APPENDIX 

In the table below, the columns have the following 
meaning: 1-Lattice number; 2-lattice symmetry; 3-type 
of Brillouin zone; &symmetry points in the Brillouin zone; 
5-wave-vector group; 6-point group corresponding to the 
wave-vector group if the latter exists; 7--irreducible repre- 
sentations; 8-symmetry under time reversal according to 
the Herring criterion; 9-nonzero matrix elements. 

TABLE I. 

I E I  9 

4 1 1 1 a 1 r A y 1 P I  1 I 1 rlv BI, Y I ( A )  rl (*) rl rl; A l l 1  BII .  Ylll 1 :: 1 rlll (*) rlll 
(A' + A') (Continued) 
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(Continued) 

TABLE I. (Cont'd) 

1 1  2 1 3 ~  I 5 1  G I  1 8 1  9 
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bl 

a1 

bl 

a1 
b1 
bl 
cl 
cz 

cz 

at 
b1 

al 
c1 

al 

a1 

r1,z3 Ai,z, Bl,z9 
ylYz ( A ,  B) 

Flat, AIL, BIZ', Y 
(Al '  t Az') 

1 1 1 1 

(A+, A-) 

riz', Xis', YIZ ' ,  Slz' 
(A,' + Az') 

rl, ~ ( z ,  xx ,  yy, Z Z )  r l ,  ,; 
r I  (x .  Y ,  X Y ,  X Z ,  yz) r2 
~ I Z '  (*) ~ I Z '  

r l , z (x ,  z, X X ,  ~ ~ , z z , x z )  rl,%; 
rl ( Y  xy, Y Z )  rz 
rlz' *) rI2 '  r 
N 3, r 
X12(*) Xiz 
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X11' (*) Xza' 

Dl1 (*) D11; Dii' (*) Dli' 

N? 3, r 

S I  (*) S I  
Sll' (*) SII' 

r17a ,8 ,4 ( z .  x x ,  yy ,  zz) 
r ~ , ~ ,  3 , 4 ;  rl ( X Y )  Fa; rl  ( Y ,  
yz) r3; r1 (3,  X Z )  r p ;  ra ( x ,  
xz) r3; r2 ( Y ,  Y Z )  r4; 

r.9 ( X Y )  r4 

rlr (*) rll 

2 

Im 

N? 6 ,  r 

XI  (*) XI 

xi2, 34 (*) Xi2,  34; 
Xl2' (*) x34 ' 
Dl2 (*) Dl2 
0 1 2 '  (*) DIZ' 

6 ,  I' 

X i ,  2 ( * ) X i ,  a ;  X I  (*I Xa 

Xi2 ,  34( *)  xi2, 94; 
xlal i*) xsl; 
Dla (*) DIZ 
Dia' (*) DIZ' 
S12, 84 ( 5 ,  2 ,  xx7  I / Y ,  z z )  
812, 34 

S I Z ( Y ,  xy,  Y Z )  Ssa; 
Sll' (*) Sll' 

X 6 ,  r 

.M 2, r 

r ~ ,  a (2 ,  xx,  yy, zz) rl *; 
r 1 ( x x 9  zbr. Y Y ) ~  

( 2 ,  xx. X Y ,  Y Y .  Z Z )  rS(; 
 IS ( x ,  Y ,  Z Z ,  Y Z ,  X Y )  rS( 
r ia ,  34 (5 ,  Yv 2, X X ,  yy, zz, 

xZ,  Y Z )  r i a ,  rlsf ( x ,  y ,  
22, Y Y ,  X Y ,  X Z ,  Y Z )  rap 
iVl 2, r 

I rl ,  a ,  a, a. K ( z ,  X X ,  W Y ,  
1.2) rl, a, 3,4;  FI ( X Z ,  Y Y )  rs; 

~2 

plml 

r ,  A ,  B, Y 

r ,  X ,  Y ,  S 

r .  Y 

X, s 
D 

r ,  X ,  Y 

s 

r , X , Y , S  

a 

p1 

7 

8 

9 

2 

3 

p1 

p z  

p2mg 

pa&% 

c2mm 

p2 

plml 

4 

5 

6 

, Y l  + A )  
rw',  ylzl ( 4 '  + Az') 

xlz, slz 
~ 1 1 ' ~  xzzl, ~ 1 1 ' ~  Szzf 

Dl1 ( A  + A) 

Dll' (A' + A') 

rl, X:, Y l  (p+, A-) 
rlz , Xla 9 Ylz 

(Al' f Az') 
Sl ( A )  

Sli' (-4' + A') 

r i , z ,Xi , z ,Y1 ,~ ,S1 ,z  

(A+, B+-) 

, X I G  Y S 
(E' )  

I pig1 ( Im 

p2mg 

p2mg 

plml 

pzgg 

~ 2 g g  

~ j g l  

p2gg 

c2mm 

~2 

p4 

~2 

$ I  

$1 

pn 

y 

p i g 1  

clml 

p2mmp1 

~ p ~ m m ~ ~ m m ~ ~ l , ~ , 3 , 4 , ~ l , 2 , 3 , 4  I O1 

(-41, a ,  B I ,  2 )  

pig1 

clml 

P I  

2mm 

rl ,  2 ,  Y1 ,  z ( A ,  B )  
rI1, y1' ( ~ 0  

XI .  S1 

X12'7  Xaa:? ~ 1 2 , ~  
S34 

Dl* (A+ + A-) 
0 1 2 '  ( A ~ '  + Az') 

r 2 , ~ ( A ,  B )  
rl' ( E l )  

X I ,  Y1 

Xiz', Xsa', Y ~ z ' .  Ysal 

Dlz, Slz (At + A-) 
D12'. C12' 

(A,' + Az') 

Slz, 
Sll 

rl, a ,  X I ,  a ,  Y I ,  a 
( A ,  B )  

I X i '  Y ( E )  

81 ,  z (,A, B )  
SIZ' (A1 + Az') 

r ~ ,  2, M1,a (A .  B I )  
~ N , M W ( B Z + B S )  

ria', Mlz' (AI' + Bar) 
rapr Ms'  (Aa1+B1') 

Xi,a ( A ,  B )  
xur (-4' + -4%') 

2mm 

Im 
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2mm 

2 

4 

2 

r ,  Y 

X ,  S 

D 

r 

X ,  Y 

D, C 

S 

I?, X, Y 

s 

r ,  M 

X 

r . M  

1 

Im 

1 

2mm 

a1 
a1 
a1 

bl 

ba 
b2 

a, 
a1 
a1 

bl 

ba 
bz 

bl 
c, 

a1 

a] 

a, 
b~ 
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bl 

bl 
bi 

al 
bl 

110 p4 
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