
Localization and persistent current in a one-dimensional disordered loop 
0. N. Dorokhov 

L. D. Landau Institute for Theoretical Physics, USSR Academy of Sciences 
(Submitted 27 June 1991 ) 
Zh. Eksp. Teor. Fiz. 101,966-970 (March 1992) 

The mean value of persistent current [j, I in a disordered loop enclosing a magnetic flux has been 
calculated. Due to localization, this mean value decreases exponentially with increasing 
parameter L /1, where L is the length of the loop and 1 is the mean free path. 

Since the beginning of the sixties the problem of persis- 
tent electric current in a ring of normal metal, enclosing the 
Aharonov-Bohm magnetic flux, has been discussed. l4 The 
paper by Biittiker, Imry, and Landauer,' in which the persis- 
tent current in a one-dimensional ( ID) loop has been con- 
sidered, has boosted the interest of theorists to this prob- 
lem."' In 1990 the effect was measured at last in an 
aggregate of 10' mesoscopic copper rings.9 

The persistent current is due to the following. The mag- 
netic flux in the ring destroys time-reversal symmetry. 
Therefore the degeneracy of the states carrying current 
clockwise and counterclockwise is lifted. As a result, for a 
given occupation there arises uncompensated current flow- 
ing in this or in that direction, depending on the position of 
the Fermi level. We can choose the gauge in such a way that 
the presence of the magnetic flux 4 will manifest itself only in 
the boundary condition 

I#,, (5+L)  =exp (2incD/cDo) $, (x) . (1 )  

Here L is the ring circumference and @, = hc/e is the flux 
quantum. An electron, having completed one revolution 
around the axis, finds itself in the same potential. This peri- 
odicity is related to the Bloch wave vector k,, which is de- 
fined by the condition ( 1 ) : 

Thus, the spectrum E,  depends periodically on @ with a 
period @,. The velocity 

corresponds to the state with the index n. Therefore this state 
carries the current' 

At zero temperature the total current j is obtained by sum- 
ming (4) over N lowest states. As shown in Ref. 7, in a 1D 
loop the correlations between the energy spectrum E, (@) 
and the currents j, are so strong that each next higher (in 
energy) current j, is sufficient to cancel the sum of all the 
previous currents. In other words, the total currentj has the 
same sign, but a smaller magnitude than the current j, of the 
last occupied level. 

Since the magnetic flux @ enters the problem only via 
the boundary condition ( 1 ), the considered effect depends, 
to a considerable degree, on the conservation of the phase 
coherence over the length L. But in a 1D disordered loop 

there is localization of the wave functions $, ( x )  on a scale I ,  
of the order of the mean free path I. Therefore, if L % I , ,  the 
wave functions $, ( x )  have an exponentially weak depen- 
dence on the boundary condition ( 1 ). As a result, we should 
expect exponential attenuation of the persistent current: 
j-j, a exp( - L /I, ). It turns out that a rigorous derivation 
of this intuitively clear formula is not simple. The thing is 
that the boundary condition ( 1 ) does not allow the formula- 
tion of a Markov process for the electronic wave function (it 
is not known beforehand with which values of $ and d$/dx 
to begin). However, it is possible to formulate the Markov 
process for the transfer-matrix." 

The aim of the present paper is to calculate the mean 
value of v, I over a random potential when the eigenvalue E,  

coincides with the Fermi energy E,: 

We use the quasiclassical condition 

We have succeeded in carrying out the calculations to the 
end only in the case of a weak magnetic field to a first non- 
vanishing order in the parameter 

Let us begin with construction of the Markov process 
for the transfer-matrix. Cutting the loop at any point, we 
unfold it into a disordered segment. The transfer matrix T 
connects the amplitudes of the waves traveling to the left and 
to the right before (A,B) and after (A ',B ') the disordered 
segment: 

Since the magnetic flux is included here in the definitions of 
A ' and B ', the boundary conditions will be periodic: 

The amplitudes of transmission, t, and reflection, r, are relat- 
ed by It I + I r1 = 1. Therefore the T-matrix is parametrized 
in the following way: 

For L = 0 we have 
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If the length L of the disordered segment is increased by a 
small amount a, the transfer-matrix changes: 

Assume that the amplitudes of forward, S, and backward, y, 
scattering are random quantities of the white-noise type with 
a zero mean value 

Their mean-square values are connected with the mean free 
paths for backward, 1, and forward, I f ,  scattering: 

From ( 12) we find the following increments of the transfer- 
matrix parameters: 

Ap=KFa-6-7 cth I'cos(a+p). (17) 

The periodic boundary conditions (9) reduce to the en- 
ergy quantization rule" 

?(en) =ch r cos a=cos (2n@/m0). (18) 

Using this rule, we can rewrite the expression (4) for the 
current carried by the nth level in the form6*' 

As usual, in the 1D case an important role is played by 
the phase. Its vanishing means that the energy quantization 
rule holds. To define such a phase in a natural manner, it is 
necessary to write first the expression for the s-matrix. The 
latter connects the waves (A,B ') incident on the disordered 
segment with the scattered waves (A ',B). Using Eq. ( l o ) ,  
we find 

=eta[ cos 0 exp (2niQ,/Oo) sin 0 eiB 
-sin 0 e-'* cos 0 e~p(-2niOlQ,~)  

where cos B = l/cosh T. The eigenvalues of the S-matrix, 
/2 ,,, = exp(ip ,,* ) unambiguously define two scattering 
phases 

rpl,z=a*arccos[cos 0 cos (2nQ,/Qo) 1, (21) 

reduced to the interval ( - a , a ) .  Now the quantization rule 
acquires the form 

Therefore, for E = E,  one of the phases q, ,,, should vanish: 

Thus, in the doubly connected geometry two phases arise, 
possessing the necessary qualities. 

Let us use now the condition (7), meaning that the 
magnetic field is weak. The only place where the small pa- 
rameter @/@, should be retained is the expression ( 19) for 
the current. Then the expression for the phases (21) be- 
comes simpler: 

The unknown mean value (5) can be rewritten in the form 

The cancellation of derivatives with respect to energy, which 
takes place under the condition (7),  is a considerable simpli- 
fication allowing to carry out the calculations to the end. In 
the opposite case, i.e., for @- @,, we should have construct- 
ed the Markov process for six connected random variables 0, 
a , P ,  02, a:,and P :. 

If we introduce a new variable Fusing the relations 

then, for the length of the disordered segment increased by a 
small value a, the increments AF, Aa, and @will amount to 

AF=-2.1 sin (a+b) (FZ- I)"', (27) 

According to the quasiclassical condition (6),  the variable 
a + 0 is rapid, i.e., the coefficients of the Fokker-Planck 
equation for the distribution function W (L;  F, a ,  P )  must be 
averaged over this variable. The second-order increments 

are found from the relations (27)-(29). Thus, the equation 
to be found has the form 

d 

I a= I I F+I 
+--(-+-- 2 dBZ I! 2 F-I ) )W(L;F~. ,  PI. (31) 
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Its initial condition is 

W ( 0 ;  F ,  a, p ) = 6 ( F - I ) 6 ( a ) 6 ( p ) .  ( 3 2 )  

It follows from Eq. ( 3  1 ) that for L > l / K F  stochastization 
over the rapid variables a and /3 occurs, and the solution no 
longer depends on them: 

1  
W ( L ;  F,  a, B) I L W K  p= - W ( L ;  F ) .  

( 2 n I Z  

The right-hand side of ( 3 3 )  satisfies the equation well- 
known in the theory of 1D lo~alization"-'~ 

Its solution is found with the help of the Moller-Fock trans- 
formation (F = cosh u ) ,  

m 

exp (- Ll41) =-- (&)" J dxt x  exp ( - x Z 1 / 4 ~ )  
n" (ch x - ch u)". 

' 

Y ( 3 5 )  

Taking into account ( 3 3  ), we find the following expression 
for the mean value ( 2 5 ) :  

Calculating the integrals, we finally get 

This expression is obtained for L  ) l / K F .  In particular, it is 
valid, when L - I .  

Thus, we have calculated the mean value of the current 
modulus at the Fermi level ( 5 ) .  According to Ref. 7, the 
total current in the 1D loop should be of the same order of 
magnitude. In the regime of strong localization, L ) I ,  the 
energy spectrum E, has an exponentially weak dependence 
on the magnetic flux in the loop. Note that as I /L  - oo the 
mean value ( 3 7 )  grows obeying a power law. The saturation 
occurs when L  becomes of the order of the wavelength 1/ 
KF - 

At last, note once more that we have been able to carry 
out the calculations to the very end only due to the cancella- 
tion of the derivatives a: and 9 : with respect to energy in 
Eq. ( 2 5 ) .  In the case of a strong magnetic field @ - @,, or 
while calculating higher moments of the current, such a 
complete cancellation does not occur, and the equations for 
the distribution function of six random variables, W ( L ;  F, a ,  
/3, F: , a:, /3 : ) , should be solved. 

The author is grateful to E. I. Rashba for fruitful discus- 
sion of the results of this work. 
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