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The self-localization of a free carrier as the result of a carrier-ion exchange interaction is analyzed 
for the case of a semimagnetic semiconductor of the type A, - , Fe, B6, whose magnetic ions have a 
singlet ground state. A simple model is proposed. It reduces the description of a free magnetic 
polaron at low temperatures to the solution of a nonlinear differential equation in which magnetic 
saturation of the medium is taken into account. The basic characteristics of the polaron-its 
energy, the radius of its state, its effective mass, and itsg-factor-are calculated as a function of 
the concentration of the magnetic component. The effect of an external magnetic field on the 
polaron is analyzed. Possible experimental manifestations of this effect are discussed. 

1. INTRODUCTION 

Magnetopolaron effects in semimagnetic semiconduc- 
tors of the type A: - , Mn, B6, whose magnetic ions have an 
orientational paramagnetism, are being studied widely. 
These effects have been seen in the temperature dependence 
of the field-free shift of the line corresponding to a spin-flip 
Raman scattering by shallow in the red shift of 
the luminescence line of excitons bound to shallow accep-> 
tors,5s6 and in the magnetic-field dependence of the lumines- 
cence energy of excitons in quantum wells based on semi- 
magnetic  semiconductor^.^-^ A theory for these effects was 
derived in Refs. 3 and 10-12. That theory shows that, while 
the magnetopolaron effects associated with a carrier-ion ex- 
change interaction fall off monotonically with increasing T 
for weakly bound carriers localized at defects, over a broad 
temperature range the self-localization of free carriers in 
three-dimensional and two-dimensional systems1° is a pro- 
cess involving a threshold. 

Recent years have seen active research on semimagnetic 
semiconductors of another type: the so-called Van Vleck se- 
mimagnetic semiconductors, whose paramagnetism is of a 
polarization nature, i.e., is associated with a mixing of excit- 
ed magnetic states with the singlet ground state of the ions, 
induced by a magnetic field H (Refs. 13-1 5 ). The typical 
semimagnetic semiconductors are solid solutions with the 

of charge carriers due to the formation of a free magnetic 
polaron in these semiconductors. 

In the present paper we propose a model for a free large- 
radius magnetic polaron in a Van Vleck semimagnetic semi- 
conductor at low temperatures in the singlet ground state. A 
feature which distinguishes this model in a fundamental way 
from, for example, the case of a Pekar p ~ l a r o n ~ ' . ~ ~  is the 
allowance for the nonlinearity stemming from the magnetic 
saturation of the medium. If this saturation were ignored, 
the polaron would collapse.23324 As a result we derive an 
energy functional for the electron wave function. The corre- 
sponding equation determining the extremum reduces to a 
nonlinear Schrodinger equation only if this saturation is 
ignored. We then use a direct variational method to calculate 
the basic characteristics of the polaron. We use an oscillator 
wave function as a test wave function, and we use the radius 
of the polaron state as a variational parameter. In particular, 
we calculate the magnetic-field dependence of the critical 
concentration of the magnetic component, i.e., the concen- 
tration above which self-localization becomes possible. We 
also calculate the energy, effective mass, and g-factor of the 
polaron. Numerical estimates for the Van Vleck semi- 
magnetic semiconductor Zn, -, Fe, Se show that a possible 
self-localization of holes must be taken into consideration at 
~ 2 0 . 0 4 .  - 

general formula A: _, Fe, B6, in which the 3d ground state 
of the spin-orbit multiplet for the ~e~ + ions is a nonmagne- 2. EQUATION FOR THE POLARON WAVE FUNCTION 
.- ~- ~ 

~Z - 
tic singlet A , ,  while the T I ,  E, T2, and A,  multiplets have a In deriving an equation for the ground state of a free 
nearly equidistant energy spacing with an interval A& = 1.5- charge carrier in a Van Vleck semimagnetic semiconductor, 
2 MeV. Near liquid-helium temperatures, essentially all the we start from the Hamiltonian for an electron (or hole) and 

Fe2+ ions are thus in the lowest level, and have a purely for magnetic ions which are exchange-coupled with this 
paramagnetism polarization. In this situation, there will evi- electron and which randomly replace N, cations at the sites 
dentlv be features in the polaron effect which will distinguish Ri ( j = 1,2, ..., N, ) of a cubic crystal lattice. Under the as- - 

the effect in this case from that in an orientational semimag- 
netic semiconductor. These features will stem from the ab- 
sence of spin fluctuations in Van Vleck semimagnetic semi- 
conductors. This circumstance was discussed in Refs. 16 and 
17 in connection with the spectra of the spin-flip Raman 
scattering by shallow donors in Van Vleck semimagnetic 
semiconductors and a possible manifestation of a polaron 
effect in these spectra.'* Optical and photoelec- 
tric studies19 of the exciton spectra as well as studies of 
transport phenomena in Van Vleck semimagnetic semicon- 
duc tor~~ '  have ignored the possibility of a self-localization 

simption that the corresponding energy band is isotropic 
and nondegenerate, we write the Hamiltonian of this system 
in the effective-mass approximation: 

where p, m*, g,, S , ,  and r are the momentum operator, the 
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effective mass, the band g-factor, the spin operator, and co- 
ordinate of the electron; g, and S.'; are the g-factor and spin 
operator of the magnetic ion localized at lattice site R,; J is 
the constant of the carrier-ion exchange interaction; f l  is the 
volume of the unit cell; pB is the Bohr magneton; and H is 
the external magnetic field. The first two terms in expression 
( 1 ) determine the kinetic energy and the Zeeman energy of 
an electron. The next two terms determine the carrier-ion 
exchange interaction and the sum of the Hamiltonians of the 
magnetic ions in the field H. The latter are conveniently 
written in the approximation of a mean crystal field:25 

where 0 4, = 0 4, (L, ) are equivalent operators, B 4, are the 
corresponding values of the crystal field (the extent to which 
they differ from zero and the relations between them are 
dictated by the symmetry conditions), and the operator Lj 
represents the orbital angular momentum of the 3dn elec- 
trons. The first term in (2) describes the splitting of the 
orbital multiplet of the magnetic ion by the crystal field. The 
second term describes the further splitting by the spin-orbit 
interaction, with a constant A. We are considering the case in 
which the lowest-energy level resulting from this splitting is 
a nonmagnetic singlet. The third term in (2), which corre- 
sponds to the Zeeman energy of the ion, leads to a paramag- 
netic shift of the lowest level as the result of a mixing of 
excited magnetic states with the ground state. The last term 
in ( 1 ) describes the spin-spin interactions between magnetic 
ions; of these interactions, the exchange interaction is domi- 
nant. 

We adopt several assumptions in order to derive expres- 
sions for the energy of a free magnetic polaron from Hamil- 
tonian ( 1 ). 

1 ) We restrict the analysis to a Van Vleck semimagnetic 
semiconductor with a magnetic-ion concentration n, low 
enough for the interaction A?, in ( 1 ) can be ignored. We can 
then seek the total wave function of the system in a multipli- 
cative form: 

NI 

where $, ( r )  andx, are respectively the coordinate part and 
spin part of the electron wave function, and ry, is the wave 
function of magnetic ion j, which is determined by Hamilto- 
nian (2). 

2) On the other hand, the concentration of magnetic 
ions must be high enough to satisfy nla3, 1, where a is the 
effective radius of the free magnetic polaron. The validity of 
this condition must be tested later. Under this condition, we 
can treat the crystal as a continuum, and in the calculation of 
the polaron energy we can replace sums over magnetic ions 
by integrals over the volume. 

3 ) In calculating the energy of a free magnetic polaron, 
we ignore the contribution to the energy of the system from 
that part of the operator representing the carrier-ion ex- 
change interaction which is not diagonal in the spins, as in 
the case of orientational semimagnetic semiconductors: 

It may, on the other hand, turn out to be important to incor- 
porate this interaction for an excited state of a p~ la ron , '~  if 
the energy of the latter is close to the splitting AE in the spin- 
orbit multiplet of the magnetic ion. In general, the correc- 
tion for interaction (4) is inversely proportional to n,a3, and 
it is small according to assumption 2. The diagonal term, on 
the other hand, which has the structure of a Zeeman energy, 
is combined with the last term in (2). The result is to replace 
S, (g,pBH) by A?- (g,pB Hz - JflS(r - R, )Sez ). Here the 
z axis runs parallel to the field H. 

4) In analyzing the effects in the magnetic field H, we 
assume that H is weak enough that the corresponding mag- 
netic length satisfies a, ) a, and we can ignore the effect of 
the diamagnetic corrections on the self-localization of free 
carriers. 

5)  Finally, in calculating the energies of the magnetic 
ions described by Hamiltonian (2), we ignore the insignifi- 
cant effects of the cubic anisotropy, under the assumption 
that the paramagnetic susceptibility of the Van Vleck semi- 
magnetic semiconductor is the same as the susceptibility of 
the magnetic ions calculated for the case HI[ [OOl], for an 
arbitrary direction of the magnetic field. The latter suscepti- 
bility is found in terms of the energy of the ground state of 
the magnetic ion? 

where g, = 2. 
Under these assumptions we can find an energy func- 

tional for a free magnetic polaron, defined as the difference 
between the lowest-lying eigenvalues of Hamiltonian (1) 
and of the Hamiltonian of a Van Vleck semimagnetic semi- 
conductor in the absence of free carriers. We find this func- 
tional in the form 

where u = + 1/2 are the eigenvalues of the operator which 
projects the electron spin onto H, and A(r)  = - J f l  I$, l 2  is 
the effective exchange field. According to assumption 3, this 
field is the energy of the exchange interaction of the magnet- 
ic ion with the electron. 

An important feature of functional (6) is its nonlinear 
dependence on I$, 14, a consequence of the saturation of 
magnetic energy ( 5 ) . As a result, the corresponding equa- 
tion which minimizes (6) with respect to $, does not reduce 
to the usual nonlinear Schrodinger equation for the problem 
of self-localization with a short-range p~tential. '~ It can de- 
scribe a self-localization of such a nature that a polaron does 
not collapse, regardless of the parameter values of the prob- 
lem. 

3. ENERGY AND RADIUS OFTHE STATE 

To find the principal characteristics of the ground state 
of the polaron, we minimize functional (6) by a direct vari- 
ational method. Calculations carried out for several single- 
parameter trial functions have shown that the best is a func- 
tion 
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Substituting (7)  into ( 6 ) ,  and using ( 5 ), we find the follow- 
ing expression for the energy of a polaron in the case J >  0, at 
a fixed value of a: 

1 
e,(p)=,+ xho 

P 

(8) 
Here we have introduced the dimensionless quantities 

4m' 1 J Q  1 'i3Eo 
Eo = 

g1psH , h = -  
3nh2(A&)" Ae ' 

which represent the energy, the magnetic field, the length of 
the radius vector of the electron, the radius of the polaron 
state, the reciprocal concentration of magnetic ions, and the 
band g-factor, respectively. The case J <  0 is also described 
by functional (a ) ,  once we replace a by - a and x by - x. 
That case therefore does not require a separate discussion. 
With h = 0, expression (8) becomes 

standpoint for such values of p. At finite values of p, the 
quantity E, may go negative if the dimensionless concentra- 
tion of the magnetic ions, l/u, is sufficiently high. The self- 
localized states are separated from the band states by an en- 
ergy barrier,24 and the equation determining the extrema, 
d ~ ,  (p)/dp = 0, may have two roots in addition to the trivial 
solution p = a,, which corresponds to a delocalized state of 
an electron. These two other roots describe a minimum and a 
local maximum of the energy near the barrier. In the case 
h #O, solutions of this sort can appear for each of the spin 
states of the polaron, for which the equation for determining 
the minimum becomes 

1 (I 'I. 
+T(1+4hz)'(l+ 4 (h -  -exp(-2y2))') Ps 

With h = 0 we find 

It can be seen in particular from expression (10) that the 
polaron energy E,, thought of as a function of the radius of 
the state, p, is positive both a s p  + 0 and as p -+ a, . In other 
words, a self-localization is not favored from the energy 

Figure 1 shows p ( u )  curves according to Eq. ( 1 1 ) for var- 
ious values of h. It follows from this figure that there is a 

FIG. 1.  Radius of the polaron state,p, versus the reciprocal concen- 
tration of the magnetic component, u, according to Eq. ( 1 1 ) . 2 4  
u = - 1/2, h = 0.1 and 0.5; 5-7-u = 1/2, with the same values of 
h; 1-h = 0. The parts of the curves shown by dashed lines describe 
states which correspond to the crests of the self-localization barrier. 

1 I I I I 
0 0.07 0,02 0.03 U 
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FIG. 2. The energies E' = ( E  - xhu) u in the region of a stable state (solid 
lines) and in that of an unstable state (dotted lines) of a polaron and near 
the maximum of the self-localization barrier (dashed line) versus the reci- 
procal concentration of the magnetic impurity, u, for the values of h and u 
in Fig. 1. By virtue of the particular choice of origin for the scales of x, h, 
and u, and by virtue of the normalization to a concentration I/u a n,,  the 
self-localization energy is reckoned from the value E', = (E, - xhu)u, 
to which the energy of the barrier tends in the limit u+O, according to 
(13). 

certain critical impurity concentration n,, cc l/u,, such that 
a polaron can exist only at n > n,, (u < u,, ). This quantity 
depends on the magnetic field and the spin projection. Anal- 
ysis shows that the branches of the p ( u )  curves for 
p <po = p (  u,, ) correspond to a local minimum of energy 
( 8 ) , while the branches of these curves at p >pc, correspond 
to a local maximum of E,, i.e., to an energy barrier separat- 
ing the band states of the electron from the polaron states. 

To determine which values u < ucr and p <p,, corre- 
spond to absolute minima of functional (8),  i.e., to stable 
states of a polaron, we use Eq. ( 11 ) to plot E, = E, (u )  (Fig. 
2). The solid lines in Fig. 2 show the depth of the local mini- 
mum of E = ~ ( p ) ;  the dashed lines show the height of the 
energy barrier. With increasing concentration (u + 0) , this 
height decreases rapidly, and it reaches the energy of a delo- 
calized electron: 

where c = ( ~ / 1 2 8 )  If we go over to dimensional vari- 
ables in ( 13), using (9) ,  we find the standard expression in 
the theory of the spin splittings of a Van Vleck semimagnetic 
semicond~ctor :~~  

where ( S , )  is the spin angular momentum of one magnetic 
ion in the field H, which is determined by the expression in 
square brackets in ( 13). 

It can be seen from a comparison of E, and E, that for 
values of h close to zero, and for a = 1/2, the critical concen- 
tration ( l/u**) for the appearance of an energy barrier and 
a local minimum is quite different from the concentration 
( l/u*) which corresponds to a stable state of a polaron. For 
a = - 1/2 and h > 1, the quantities u* and u** are practi- 
cally the same. We also note that the stability region of states 
with a = 1/2 is wider than that for a = - 1/2, despite the 
fact that the magnetization is directed opposite the magneti- 
zation of the crystal as a whole in the electron self-localiza- 
tion region. With increasing h, the difference becomes larg- 
er. This circumstance is reflected on the "phase diagrams" 
(Fig. 3), which show the regions of values of h and u for 
which self-localized states exist and the regions in which 
such states exist and are furthermore stable (the hatched 
regions in Fig. 3 ) . 

The curves of E ( u ) and p ( u ) found here are, along with 
the boundaries of the stability region of the self-localized 
states (Fig. 3), the basic characteristics of the polaron state. 
They determine several quantities which can be observed 
experimentally. In the following sections of this paper, we 
calculate some of these quantities. 

4. THE 9-FACTOR OF A POLARON 

In research dating back to the pioneering studies of 
Refs. 27 and 28, it has been established that at low tempera- 
tures the energy of spin transitions for band electrons in a 
semimagnetic semiconductor is determined primarily by the 
carrier-ion exchange interaction. This interaction is de- 

FIG. 3. Diagram of polaron states. The region bound by curves I and 2 
corresponds to unstable states for u = - 1/2; the region bounded by 
curves 3 and 4 corresponds to unstable states for u = 1/2. The hatched 
regions to the left of curves I and 3 correspond to stable states for the 
values o = - 1/2 and u = 1/2, respectively. 
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scribed in the mean-field approximation by the second term 
in ( 14). The effective g-factor corresponding to this splitting 
which is found from the relation 

is proportional to the concentration of magnetic ions (if they 
dominate the situation). This proportionality remains in 
force for localized large-radius electron states. When the po- 
laron effect is taken into account, however, the n, depend- 
ence of the g-factor is more c ~ m p l e x . ' ~  One might expect 
that in this case we would again find a deviation of g,, (n, ) 
from the behavior imposed by ( 14) : gex = 4g,Jx/A~. Evi- 
dently a measure of this deviation is the quantity 
7 = (g,, - g, )/gex, where, according to ( 15 ) , we have 

Substituting (8)  into ( 15), and then into ( 16), we find, in 
terms of the dimensionless variables in (9),  

Figure 4 shows a plot of 7 = 7 (u ) according to ( 17) for that 
branch of the u ( p )  curve which corresponds to stable polar- 
ons. We find a characteristic feature of nonlinear systems 
with saturation: g,, - g, <g,, . The reason for this feature is 
that the exchange field induced by the field H in accordance 
with ( 14) and the self-action exchange field due to the po- 
laron effect do not make additive contributions to the elec- 
tron energy. We also see that this effect strengthens as the 
polaron effect increases with increasing n, (with decreasing 
24). 

5. MAGNETIC MOMENTOF A POLARON 

The self-localization of an electron is accompanied by 
the appearance of a correlation between the spins of magnet- 

FIG. 4. The factor 7 = (g,, - g,)/g,,, which determines the relative 
weakening of the exchange contribution to the effective polaron g-factor 
in comparison with the exchange contribution of a free electron (or hole). 
These results are shown for weak magnetic fields [Eq. ( 17) 1. The inde- 
pendent variable is the reciprocal concentration of the magnetic compo- 
nent. 

ic ions, induced by an electron spin S, involved in an ex- 
change interaction with them. As a result, a spin angular 
momentum S ,  and a related magnetic moment 
M =  - g  ,,uBS, are associated with a polaron. The appear- 
ance of a free magnetic polaron is thus accompanied by an 
increase in the magnetization of the crystal in proportion to 
the number of polarons. 

By definition we have 

~ , , = n ,  J (1 IS,,] ~ M V ,  (18) 

where 11) is the eigenvector corresponding to the lowest- 
lying level of Hamiltonian (2) ,  and the matrix element itself 
is, according to the theorem regarding the derivative of an 
energy with respect to a parameter,29 
dE, (g,,uB H + Ao)/d(g1pB H ) ,  where El is given in ( 5 ) . 
Since we are interested not in the magnetization itself but in 
its change AM( cc ASz ) associated with the formation of a 
polaron, we should subtract from ( 18) the corresponding 
quantity corresponding to the case J = 0. Carrying out some 
calculations, and going over to dimensionless variables in 
(91, we find 

m 

- w3 j [ h-u exp ( - 2 y z ) / p 3  

u , {1+4[h-o exp ( - 2 y Z ) / p 3 ] L ) ' h  

FIG. 5. Magnetic moment of a polaron according to expressions ( 19) and 
(20) versus the reciprocal concentration of the magnetic component. 
Curves 1,2 ,  ..., correspond to the values of h and u specified in the Fig. 1 
caption. 
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This quantity is related to the spin of a polaron by 

Figure 5 shows the result of a numerical evaluation of 
expression ( 19). We see that the magnetic moment of a po- 
laron increases slightly with increasing concentration of 
magnetic ions, despite the decreasing radius of the state 
(Fig. 1 ). We also note that at u z u* the spin of a polaron, 
S,, for u =  1/2 is considerably smaller than that for 
u = - 1/2. The reason for this difference is that in the case 
o = 1/2, in which the local magnetization in the self-local- 
ization region is directed opposite the magnetization of the 
overall crystal in the field H, the potential-well depth re- 
quired for self-localization can be reached more quickly than 
in the case u = - 1/2, in which these magnetizations are in 
the same direction. This circumstance is also responsible for 
the lower critical concentrations l/u** for polarons with 
u = 1/2. 

6. EFFECTIVE MASS OF A POLARON 

Many important characteristics of a semiconductor are 
related to the effective mass of the polaron, m** (Ref. 22). 
In particular, at sufficiently large effective masses m** the 
polarons localize at potential fluctuations and do not take 
part in charge transport. 

In calculating m** we make use of an idea described in 
Ref. 30. According to that idea, as a polaron undergoes a 
translational motion it perturbs the medium in which it has 
formed. It perturbs the medium as it would if its wave vector 
were $, = $,, (x - vt,y,z) (where the x axis runs along the 
direction of motion). As a result of this perturbation, the 
energy of the polaron acquires an increment v2. The coeffi- 
cient of this increment is by definition m**/2. It is a consid- 
erably more complex matter to implement that idea here 
than in Ref. 30, however, because the nonlinearity of the 
susceptibility of the Van Vleck semimagnetic semiconduc- 
tor, which we are taking into account, shapes the basic char- 
acteristics of the polaron. To go beyond the scope of the 
linear-response approximation in calculating m**, we use 
the tools of adiabatic perturbation theory.31 It  is assumed in 
that theory that a perturbation which has an adiabatically 
slow time dependence sends the system from its ground state 
(which corresponds to a polaron at rest) into excited states, 
with a probability amplitude proportional to the time deriva- 
tive of the perturbation. As a result, the wave function of ion 
j can be written as a linear combination of the functions of 
the ground state I I ) ,  and the excited states 12) ,,..., calculat- 
ed as stationary states for a fixed value of the variable pertur- 
bation (not necessarily a small value) at some given time t: 

The average energy of ion j corresponding to state (21 ) is 

where E{ ( t )  is the energy of the ith stationary state of the ion 
found in the adiabatic limit. Using normalization (21 ), we 
find 

where &oil = Ei - E l .  The quantity I 2  is the probability 

(PI, ) for a transition from the state ( 1) to the state 12) and is 
given by3' 

L t ,  

The increment in the energy due to the motion of the 
polaron is therefore 

1 

Summing over the magnetic ions in the continuum approxi- 
mation, we find the following expression for the effective 
mass: 

To find an explicit expression for PI, ,  we go over to the vari- 
able { = x - vt in the integrals in (22), and we use 

(~xPI') . .= J (Slz')..d-4. (24) 

where A was introduced in Eq. (6).  In this case we find from 
(22) 

It can be shown (see Appendix 1 ) that we have 

where p '(6) = d p  /d{. For Pli we then find 

From this point on the calculations depend on the par- 
ticular model adopted for the center, which is determined by 
Hamiltonian (2). Also making use of our assumption 5 
above, we can show that the only nonvanishing matrix ele- 
ment of the operator S, in ( 24) is (S ,  ) , where ] 2), corre- 
sponds to the first excited state of the magnetic ion. Using 
expression (5)  and the results of Appendix 2, we find 

The calculation of the effective mass now reduces to an 
expansion of the energy of this system, Ei, = E', + AE, in a 
series in the velocity, in which we retain terms up to -v2. 
For this purpose, we substitute an expansion of the wave 
function $,, = $, + v2$, into the expression for the energy. 
It can be shown (Ref. 30; see also Appendix 3) that the 
contribution of the correction $, to AE is of order higher 
than v2, so the effective mass is given by expressions (23), 
(27), and (28), in which we substitute the wave function of a 
polaron at rest, (7).  Going through this procedure, we find 
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(29) 

Inderiving (29) weuseddA /dx = (dA /dr) (drldx), and we 
integrated over angles. Introducing the dimensionless vari- 
ables in (9),  we finally find 

1 y' esp (-4y2) dy (30) 
h-a 

where 

y=m"m'IJQ I"'(A~)'/8n~fi', 

and p is related to u by the equation which determines the 
extremum ofa, (u),  ( lo) ,  whose solution is shown in Fig. 1. 
Figure 6 shows calculated curves of p (u) .  We see that the 
effective mass of the polaron increases monotonically with 
increasing concentration of magnetic ions, for all values of h 
and a. With increasing magnetic field, the polaron mass cor- 
responding to the lowest-lying energy branch, with 
a = - 1/2, falls off sharply, while for a = 1/2 the value of 
m** increases significantly at a given value of the concentra- 
tion l/u. The reason for this result is the small difference 
between the magnetizations inside and outside the self-local- 
ization region, as we mentioned above. The perturbation of 
the medium by the moving polaron is thus smaller in the case 
a= - 1/2 than in the case a= 1/2. With h = 0.5 and 
u = 0.007, for example, the effective masses of the two po- 
laron branches differ by about two orders of magnitude. 

7. DISCUSSION OF RESULTS; CONCLUSION 

We have shown that a free magnetic polaron can in 
principle exist in a Van Vleck semimagnetic semiconductor. 

FIG. 6 .  Effective polaron masses determined from expression (30) versus 
the reciprocal concentration of the magnetic component. Curves 1, 2, ... 
correspond to the values of h and a used in Fig. 1. 

Let us look at some numerical estimates of the critical con- 
centration, using as an example the solid solution 
Zn,_,Fe,Se, for which we have J, = 0.22 eV, J, = - 1.6 
eV, f l=45 .6 .10-24cm3,A~= 1.8meV,mz =0.14mo,and 
m,* = 1.2m0 (Refs. 14 and 32), where m, is the mass of a 
free electron. An estimate of x,, = n,,Q from the value 
u,, ( H  = 0)  = 0.0337 yields x,, =: 8.6 > 1 for a band elec- 
tron. In other words, the electron cannot undergo self-local- 
ization. For a hole, in contrast, we would have x,, -0.037, so 
we could expect manifestations of free magnetic polarons in 
effects involving holes. 

We should stipulate that we are ignoring the complex 
nature of the valence band and the particular features of the 
splitting of this band in the effective exchange field. The lat- 
ter factor has the consequence, for example, that a spherical- 
ly symmetric single-parameter function as in (7) is not a 
good approximation of $(r).  Analysis of a corresponding 
problem for an orientational semimagnetic semiconductor 
of the A: - , Mn, B6 type has shown33 that incorporating the 
complex structure of the T, valence band does not lead to 
order-of-magnitude changes in the basic characteristics of a 
polaron. On this basis we suggest that the estimates present- 
ed here convey the basic features of a free magnetic polaron 
of the hole type in a Van Vleck semimagnetic semiconductor 
in a qualitatively correct way. Refining these estimates is an 
independent problem, which goes beyond the scope of the 
present paper. 

Estimating the radius of the state on the basis of the 
calculated curves in Fig. 1 and the relationship between p 
and a in (9) ,  we easily find a = 2.7. 10W7 cm with u = u,, 
and H = 0 for the parameter values listed above. This esti- 
mate shows that a polaron forms in a large-radius state in the 
sense = 4va3  (n,  ),, $1 in this crystal. This result justifies 
our assumption 2. We also see that the latter inequality is not 
violated at any value of a, as h and n, ( l/u) increase. 

We turn now to possible experimental manifestations of 
the polarons discussed above and ways to excite such polar- 
ons. The first place to seek a contribution from a free mag- 
netic polaron is in time-varying effects. The polaron might 
be manifested by a shift of the luminescence line of free exci- 
tons, which exist as Wannier excitons in Van Vleck semi- 
magnetic semiconductors. Over its lifetime, a hole bound in 
an exciton (or the overall exciton, by virtue of the hole) may 
tunnel through the barrier which separates the polaron 
states from the band states, form a resonant state, and then 
relax to a (self-localized) polaron statez4 (as was shown 
above, an electron cannot undergo self-localization). A cal- 
culation of the probability for a tunneling of this sort goes 
beyond the scope of the present paper. However, this proba- 
bility is finite, and it contributes to the luminescence at a 
frequency shifted from the free-exciton band by an amount 
equal to the energy of the polaron. 

This scenario for the formation of a polaron may prevail 
for holes in the lowest-lying energy state, with (+ = - 1/2. 

For holes with a = 1/2, in contrast, either a polaron can 
form directly in this excited state, or there should first be a 
spin flip and then a relaxation to a polaron state. The pres- 
ence of polarons in Van Vleck semimagnetic semiconductors 
is thus manifested as an energy shift of the emitted light 
during the luminescence of a free exciton. The shift is toward 
longer wavelengths. 
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The presence of a free magnetic polaron may lead to the 
appearance of a new band in the exciton reflection spectra of 
Van Vleck semimagnetic semiconductors as the result of a 
direct optical excitation of polaron states. 

A free magnetic polaron can also be observed in experi- 
ments on electron spin resonance, in which the free magnetic 
polaron would be manifested as a corresponding shift of the 
g-factor (as discussed above). Furthermore, free magnetic 
polarons should exhibit superparamagnetism effects asso- 
ciated with the large value of the polaron spin, S,,  in mea- 
surements of the magnetic susceptibility or magnetization of 
the Van Vleck semimagnetic semiconductor. A calculation 
from (20) with the data in Fig. 5 shows that the relation 
S, > 16 holds in this crystal. In other words, these effects 
should be manifested even in very weak magnetic fields. 

Another experimental manifestation of a free magnetic 
polaron might be a contribution (or, more precisely, the es- 
sentially total absence of a contribution) to charge transport 
in Van Vleck semimagnetic semiconductors. In strong mag- 
netic fields, the charge transport in a Van Vleck semimagne- 
tic semiconductor is by band carriers. When polarons arise 
in weak fields H under the condition n, > n,, , with a mobility 
far lower because of the larger effective mass, the electrical 
conductivity of such semiconductors should decrease. For 
the effective mass of a polaron of the hole type in 
Zn, - , Fe, Se, estimates yield 

where p is given by (29) or by the curves in Fig. 6. Using 
p = 0.1 as an estimate, we find that a free magnetic polaron 
is heavier by a factor of 840 than a free electron and is there- 
fore practically excluded from transport phenomena. The 
contribution of free magnetic polarons to transport phenom- 
ena in Van Vleck semimagnetic semiconductors thus re- 
duces to a jump in the electrical conductivity when the boun- 
daries of the region of (h, u )  values shown on the "phase 
diagram" in Fig. 3 are crossed. 

Our analysis has been carried out for T = 0. This sim- 
plification is justified by the weak temperature dependence 
of the magnetic susceptibility of Van Vleck semimagnetic 
semiconductors at T g  AE (Ref. 15). As the temperature is 
raised, however, the susceptibility decreases; this decrease 
will result in a decrease in the probability for the formation 
of new polaron states and in the destruction of existing po- 
laron states. 

What would happen if we discarded the assumptions 
which we made in deriving the energy of a free magnetic 
polaron in (4)? The spin-spin interaction between magnetic 
impurities may lead to certain quantitative changes. In par- 
ticular, in A2FeB6 Van Vleck semimagnetic semiconduc- 
tors, this interaction will reduce the magnetic susceptibility 
of the system. This effect requires large critical concentra- 
tions for the formation of free magnetic polarons; i.e., it re- 
duces the probability for the formation of such entities. This 
effect can be taken into account in a semiquantitative way by 
renor- 
malizing AE to the value of O ( O  > 0 for an antiferromagnet- 
ic exchange interaction), which plays a role analogous to the 
Curie-Weiss parameter in ordinary orientation magnetic 
materials. Composition fluctuations, whose relative magni- 
tude in a sphere with a radius equal to the radius of the 

polaron state in the Gaussian case, a 8 - 'I2, lead to fluctu- 
ations in the energy of the polaron. The latter fluctuations 
will affect all the experimental manifestations discussed 
above, without exception. In particular, because of the large 
effective mass, these fluctuations will prevent the motion of 
free magnetic polarons and will completely suppress the po- 
laron contribution in transport phenomena. 

In conclusion we would like to point out that in a mag- 
netic field there could be other polaron states, in addition to 
the free magnetic polarons which we discussed here. These 
other states would be realized if the magnetic length 
a, = (&/eH) 'I2 were smaller than the polaron radius. 
They would be quasi-one-dimensional because of the special 
direction (that of the magnetic field). They would not be 
separated from the band states by an energy barrier. Rewrit- 
ing the condition a > a, in terms ofp and h, and using data 
for Zn, , Fe, Se, we find 

p (u, h )  >2,38/h1", (32) 

In other words, even in weak magnetic fields there is a large 
region of p values in which polarons of this type exist. A 
study of these polarons is of interest for both theory and 
experiment. 

In summary, it has been shown here that the possibility 
of a self-localization of free charge carriers, primarily holes, 
should be taken into consideration in studies of magnetic, 
optomagnetic, and transport phenomena in Van Vleck semi- 
magnetic semiconductors with high concentrations of mag- 
netic impurities. Manifestations of this self-localization 
might be the features discussed above in the magnetic-field, 
concentration, and temperature dependence of the processes 
under study. 

APPENDIX 1 

We consider 

Introducing x - 6 = t in (A  1 ), we find 
m 

i 
a = Sf ( t + I ) e x p  [; o ( t i l )  ]dt. 

0 

Introducing t = uz in (A2), we find 

In the low-velocity limit we then find 

where p ' (6) = d p  /dl.  The integral S," exp [izp ' (l) ] dz is 
evaluated by multiplying the integrand by 
exp( v)J; (7 >O) and using the identity34 
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If g, '({) does not vanish anywhere on the real axis (and in 
our case we have p ' = w,, 7 01, the second term in (A5) is 
zero, and we can write 

la lZ=~'If(1)  I 2 I 1 ~ ' ( E )  1 2 .  (A61 

We have thus proved Eq. (26) of the text proper. 

APPENDIX 2 

For a T, symmetry, the matrix of Hamiltonian (2) ,  
which incorporates the ground state for the case H(I [001 ] in 
thebasis [ A , ) ,  IT,), IE),giveninRef. 35,is 

(A71 
A diagonalization leads to a ground-state energy E, as given 
by ( 5 ) ,  while the energies of the excited states are found to be 

E 2 = A ~ ,  E 3 = h & + [  (Ae) '+4(g lpBH) ' ]  Ih, (A81 

This diagonalization also leads to the corresponding eigen- 
vectors (u,  ), 1 u2 ), and lu, ). Taking the matrix elements of 
theoperator iZ between (u, ) and (u, ) and also between (u,  ) 
and lu, ), we find (S, ) ,, = 0, while (S, ) ,, is given by Eq. 
(28) of the text proper. 

APPENDIX 3 

We consider an energy functional of a moving polaron: 

E = I{$(\ ~ ) ~ + w [ ~ I + w , [ ~ I ) ~ x ~ ~ ~ z ,  (A91 

where the first two terms determine a polaron at rest. We 
substitute $ in the form 

into this expression, and we expand E, retaining terms up to 
those on the order of u2. We find 

The terms which do not depend on u determine the energy of 
a polaron at rest and are of no interest. Let us examine an 
expansion of the energy of a polaron at rest in which we 
retain terms up to - v2: 

Integrating the first term in (A12) by parts, we find 

Substituting (A13) into (A12), we find that the expression 
in braces in (A12) is an equation which determines the 
structure of a polaron at rest: 

The latter expression vanishes identically when we substi- 
tute the function +b0 into it. This vanishing proves the asser- 
tion that $, does not contribute to m**. 
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