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The effect on the conductance of correlations between events in which electrons undergo classical 
scattering from the rough boundary of a channel formed by a two-dimensional electron gas is 
discussed. The corresponding correlation contribution, which depends on the specific realization 
of the shape of the uneven boundary is calculated. This contribution causes the conductance to 
exhibit a stochastic oscillatory dependence on a weak magnetic field. This dependence exhibits 
fractal structure, whose fractal dimension is determined. At sufficiently high temperatures the 
classical correlation contribution can exceed the contribution of universal quantum fluctuations. 

It has recently been shown that mesoscopic effects can 
have not only a quantum but also a purely classical nature. 
Such "classical mesoscopics" is governed by the correlation 
between successive acts of scattering of an electron moving 
along a classical trajectory. The classical correlation contri- 
bution to the conductivity, as also the quantum interference 
c~ntr ibut ion,~-~ is manifested in stochastic oscillations of 
the conductivity in weak magnetic fields. Generally speak- 
ing, the correlation contribution is not small compared with 
quantum contributions and it can be distinguished from the 
quantum contribution because the correlation and quantum 
contributions have different temperature dependences. 

The mesoscopic fluctuations predicted in Refs. 1 and 2 
are associated with the scattering of electrons by volume 
defects whose fields have a short range. Scattering of elec- 
trons by random nonuniformities of the boundary of the 
sample should also lead to mesoscopic fluctuations of the 
conductivity. Since the relative importance of the surface 
relaxation channel increases as the dimensions of the sample 
decrease, the amplitude of mesoscopic fluctuations gov- 
erned by surface scattering can exceed the amplitude of fluc- 
tuations governed by volume scattering. 

We shall study surface mesoscopic effects for the case of 
a two-dimensional ( 2 0 )  electronic channel, bounded by 
rough boundaries (Fig. 1 ) . 

Roukes et ~ l . ~ , '  recently showed that electron transport 
in such a channel can often be described classically, if the 
channel contains at least several levels of size quantization. 
The direction of motion of an electron, moving in the chan- 
nel under the action of an electric field E, changes with each 
collision with the boundary and the trajectory of the electron 

specific arrangement of the irregularities on the boundary of 
the channel and is thus an individual characteristic of the 
sample (fingerprint). The average amplitude and period of 
the oscillations depend on the statistical characteristics of 
the boundary-the height Sand length L of the irregularities 
as well as the width a and length b of the channel. 

The current density j, in a 2 0  electron channel is deter- 
mined by the standard formula 

Here e is the elementary charge, xdf,/d~ is the nonequilibri- 
um correction to the Fermi distribution function f0(e),  and 
they axis is perpendicular to the mean boundary of the sam- 
ple, which is also the plane y = 0 (Fig. 1 ). 

We give the classical kinetic equation, in which volume 
collisions are taken into account in the T approximation, for 
the function X: 

This equation is solved by the method of characteristics. We 
introduce the coordinates of the points where the electron 
collides with the boundary (X,, X, ,..., Xn , ... ) and the angles 
of incidence (8, 8,, 8,, ..., On, ... ). On each section between 
the points Xn and Xn + , the velocity of the electron is con- 
stant, and in addition we have v, = v, cos 8, and u,, = u, 
sin On, where v, is the Fermi velocity. Using the notation 
introduced above, we can write the solution of Eq. (2)  satis- 
fying the condition ~ ( x  = + w ) = 0 in the form 

is a jagged line whose segments have a random length. In the 
leading-order approximation the conductivity of the chan- 
nel depends on the average characteristics of the rough Y *  

boundary (for example, on the specularity parameter). The 
dependence on the specific realization of the random rough 
boundary appears in higher orders of perturbation theory in 
the roughness scale. 

In an external magnetic field the points at which an 
electron collides with the boundary are shifted, i.e., the dis- 
tribution of scatterers along the electron trajectory and the 
associated corrections to the conductivity change. When the 5 XI x 
magnetic field varies continuously, small-amplitude sto- 
chastic oscillations of the conductivity (called ''grass" ) FIG. 1. Trajectory of an electron in a two-dimensional electron channel 
arise. The pattern of these oscillations is determined by the with diffuse boundaries. 
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x-xt 
~ = e  j d x ' ~  exp(-) + e x  1 d z l E  

X I  1 COS 0 n-1 x,., 
I x-X, XI-x2 

xexp{- -[- +- +...+- 
I cos e case, cos 0, 

where I = UFT is the mean free path length in the volume of 
the channel. 

In what follows we study the strong size effect, when 

In this case 

segments of the electron trajectory, on which the difference 
of the exponential factor from unity can be neglected, make 
the effective contribution to the sum over n in Eq. ( 3 ) .  This 
fact makes it possible to express the sum appearing in Eq. 
(3)  in terms of the approach angles: 

=y ctg O+n(ctg e,+ctg e2 + . . . + ctg 8,). (6)  

Two successive values of 8 (8, - , and 8, ) are related by a 
relation which is determined by the reflection law at the 
point x = X,, of the random boundary. Without specifying 
this reflection law, we write this relation in the general form 

where the functions $, and $, prescribe the law of reflection 
of an electron from the bottom and top boundaries of the 
channel. The dependence of $, and $, on the angle is deter- 
minate (for example, the local angle of incidence is equal to 
the angle of reflection), while their dependence on the coor- 
dinate Xn is random. If the correlation length of the irregu- 
larities of the boundary is equal to L, then the characteristic 
size of the domain of $, and $, as functions ofXn is equal to 
the scale L. 

Thus the formulas (4),  (6),  and (7 )  completely deter- 
mine the nonequilibrium distribution function X. 

Substituting the expression,for x into the formula (1) 
we obtain the current density at a point with coordinates x 
and y: 

afo zxE -{y ctg O+a ctg c (0, XI) i,(x, y) =2ez J --- 
(27~li)~ d~ 

The first term in braces describes the average conduc- 
tivity of a sample with a diffuse boundary (the contribution 
of the section of the electron trajectory after the last collision 
with the boundary is included). In accordance with the re- 
sults of Fuks8 it contains the factor ln(v,~/a),  arising when 
the logarithmic divergence in the integral over the angle 8 is 
cut off. The second term is associated with the nonuniformi- 
ty of the flux of electrons reaching the point of observation as 
a result of the last collision with the boundary at the point 
X,. It is obvious that it does not contain information about 
the correlation between successive acts of scattering of an 
electron by the boundary. Such information is contained in 
the third term, which depends on the coordinates of the two 

collisions, X, and X2. It will be shown below that it is this 
term that results in the appearance of small-scale fluctu- 
ations of the conductivity of the channel in a magnetic field. 
As for the correlation terms of higher orders, i.e., depending 
on the coordinates of three and more collisions, they also 
contain a contribution that oscillates in a magnetic field, but 
the amplitude of the oscillations is found to be small. 

In calculating the integrals in Eq. (8 )  the coordinates of 
the collision points X, and X2 must be viewed as functions of 
x and y: 

X , = x - y  ctg 0, Xz=x-y ctg 0-a ctg[qb(O, x-y ctg O)]. (9) 

It follows from Eqs. (8)  and (9)  that the third (correlation) 
term in Eq. (8)  contains a random function of a complicated 
argument, which, in turn, contains a random function. It is 
obvious that the correlation scale of this complicated func- 
tion with respect to the variable x is a/L) 1 times smaller 
than L. This property reflects the general principle that in 
the case of mechanical motion in a random potential the 
initial conditions are "forgotten." The correlation scale of 
the higher-order terms, which are omitted in Eq. (8) and 
correspond to taking into account a large number of colli- 
sions and thus to a higher level of the hierarchy of random 
functions, will be (a/L)" times smaller. Since Eq. (8)  con- 
tains an integral, fast oscillations of the random functions 
will ensure that the corresponding terms in the conductivity 
are small. 

In order to estimate the integrals in Eq. (8)  we take into 
account the fact that the integral of a random function is also 
a random function, but with a larger correlation scale. 
Namely, if p ( c )  is a random function having a correlation 
scale of to ,  an amplitude of the order of unity, and zero 
mean, then 

where y(aJ  ) is a random function with amplitude of order 
unity and characteristic scale of order A as a function of a 
and A. 

Using Eq. (10) to carry out the integration over the 
angle 8 in Eq. (8),  we obtain 

Here a, is the two-dimensional conductivity of the electron 
gas, and y, and y2 are random functions with characteristic x 
and y oscillation periods of order a. 

The current density ( 1 1 ) contains a fluctuating correc- 
tion, which depends on the two coordinates x and y. Gener- 
ally speaking, this correction does not satisfy the electrical 
neutrality condition div j = 0. The spatial fluctuations of the 
electric field ensure that this condition is satisfied. This field 
can be determined from the equation of electrical neutrality 
itself, substituting the total field E + E' into the expression 
for the current ( 1 ) and (2) ,  in place of the mean field E, 
where E' is the fluctuating correction sought. It follows from 
Eq. ( 11 ) that the characteristic scale of the variation of the 
fluctuating correction E', averaged over the cross section of 
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the channel, is of order a. Small-scale fluctuations E' arise 
only in a narrow layer near the boundary of the channel. 
This means that the fluctuating field must be taken into ac- 
count only in the first term in Eq. ( 11 ) ; in higher-order 
terms the conductivity-field correlation effects are insignifi- 
cant. Thus, in order to find the average current density it is 
sufficient to integrate the expression ( 11 ) over the volume of 
the sample, since with such averaging the contribution of the 
fluctuating fields vanishes. As a result we obtain the follow- 
ing estimate for the fluctuating corrections to the conduc- 
tance of the channel: 

where b is the length of the channel and C,, C,, ... are coeffi- 
cients of the order of unity, which depend on the details of 
the uneven boundary. 

We note that although the first term in Eq. (12) is 
dominant, it can be observed only if the details of the sample 
change (i.e., the width a of the sample or the form of the 
irregularities of the random boundary), which for a two- 
dimensional electron gas could be brought about, for exam- 
ple, by a change in the voltage on the gate. Local changes in 
the properties of the boundary at distances on the order of 
the length L of the irregularities, however, change the con- 
ductance by an amount 

We now discuss the effect of weak magnetic fields. In 
the leading order term in Eq. (8)  the magnetic field starts to 
have an effect if 

(Ra) "(1,  (14) 

where R is the Larmor radius. In terms describing the fluctu- 
ation corrections, the effect of the magnetic field is manifest- 
ed in weaker fields, since corrections associated with the cur- 
vature of the trajectories 

a a 
AX2 - - L AX,, . . . , AX. -(T-) AX,, 

appear for the coordinates XI, X,, ..., X,, . The correction AX, 
in the formula (8) appears everywhere combined with the 
coordinate x,  and it can be interpreted as a displacement of 
the point of observation. When we average over the volume 
of the sample the effect associated with a change in the coor- 
dinate XI vanishes. This means that the first correction in the 
formula (8) is not affected by a weak magnetic field. On the 
other hand, the appearance of the correction AX, changes 
the correlation between the successive points of reflection, so 
that the condition AX2 2 L actually means that the realiza- 
tion of the random function, appearing in the third term in 
Eq. (8),  changes. It can be concluded that in magnetic fields 
determined by the condition 

the conductance fluctuates with amplitude determined by 
the formula ( 13). From the condition ( 16) we find that the 
characteristic period of the oscillations is equal to 

where Q, = n-hc/e and A is the de Broglie wavelength of the 
electron. 

The formulas ( 13 ) and ( 17) determine the main scale 
of the stochastic oscillations of the conductance in a weak 
magnetic field. A finer structure having a period a/L times 
smaller than (17) and amplitude ( a / ~ )  'I2 times smaller 
than ( 13) is superposed on these oscillations. These fluctu- 
ations are described by the first dropped term, which de- 
pends on XI, X2, and X,, in the formula (8).  If an infinite 
number of terms is included in Eq. (8) ,  i.e., an infinite num- 
ber of collisions of an electron with the boundaries of the 
channel, then it can be shown that the curve AG(H)/G ex- 
hibits self-similar structure. Such curves are called stochas- 
tic fractals (see, for example, Ref. 9).  It is easy to determine 
the dimension of this fractal curve. To do so the curve must 
be divided into segments which have length E and completely 
cover the fractal. If N ( E )  is the number of such elementary 
segments, then the dimension d of the fractal is calculated 
according to the formula9 

In N (e) 
d= lim - . 

,+." In l l ~  

The fractal dimension ( 18) for the curve AG(H)/G is equal 
to 1.5. 

We note that since the number of collisions (5)  is limit- 
ed by the mean free path length in the volume of the channel, 
the shortest period of the stochastic oscillations of the con- 
ductance will be of the order of H,, (4/a)", and their ampli- 
tude will be of the order of (a/b) 112(4/a)N'2. On the small- 
est scales the curve AG(H)/G does not exhibit scaling and is 
a standard smooth curve and not a stochastic fractal. 

Comparative analysis of the classical and universal 
quantum fluctuations of the conductance was performed in 
Ref. 1. Without repeating this analysis, we point out that, 
first, for comparatively small samples (which for our geome- 
try corresponds to channel length b not too much greater 
than the channel width a )  the classical contribution is at 
least comparable with the quantum contribution and can 
even exceed the latter. Second, the classical contribution is 
important in the region of quite high temperatures, when the 
quantum contribution becomes insignificant. 

In conclusion we shall discuss the mesoscopic fluctu- 
ations in a channel with almost specular boundaries. Almost 
specular reflection means that the random functions +, and 
$, have a large determinate (specular) part and a small ran- 
dom part: 

$ ( 0 ,  X ) = 9 + ~ ( 0 ,  X ) ,  l a l ~ 8 .  (19) 

The characteristic value of the random function a is called 
the width of the scattering phase function. The relation be- 
tween the width of the scattering phase function and the 
geometric characteristics of the boundary (height and 
length of the irregularities) was determined in Refs. 10 and 
11. In the case of almost specular reflection, the cotangent 
with random argument in the formula (8)  can be expanded 
in powers of the quantity a. After this, the sum of all deter- 
minate terms must be replaced by the mean-free path length 
I. This sum forms the conductivity of the channel in the lead- 
ing-order approximation, which for a channel with specular 
boundaries is equal to uo. The fluctuation corrections arising 
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after the cotangent is expanded must be averaged, using the 
formula ( lo),  in which the fact that the characteristic ampli- 
tude of the random function (in this case a) is not equal to 
unity must be taken into account. As a result, Eq. (12) is 
obtained (to within a logarithmic factor) for the relative 
correction to the conductance. The only difference is that 
the characteristic values of the constants C,,  C,, ... now are 
not equal to unity, but rather to the width of the scattering 
phase function. 

The case of classical motion of an electron along a tra- 
jectory, studied in the present work, corresponds to the 
Kirchhoff approximation in the theory of surface scatter- 
ing.'' In this approximation the electron wave packet is re- 
flected almost specularly from a random surface, if the rms 
slope angle of the irregularities y = l / L  is small, and the 
reflection is diffuse if y- 1." In the case of almost specular 
reflection the width of the scattering phase function is equal 
to the parameter y (Ref. 11 ). Thus the magnitude of the 
relative fluctuations of the conductance in the case of almost 
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specular reflection is y- ' % 1 times smaller than in the case of 
diffuse reflection. 
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