
Electron energy spectra in tunneling ionization of atoms and ions by a strong 
low-frequency electromagnetic field 

V. P. Krainov and V. M. RistiC1) 

Moscow Engineering Physical Institute 
(Submitted 5 November 199 1 ) 
Zh. Eksp. Teor. Fiz. 101,1479-1486 (May 1992) 

A simple analytical representation of the electron energy spectrum in tunneling ionization of 
atoms and ions by a strong low-frequency electromagnetic field is suggested. It is demonstrated 
that allowing for a finite initial kinetic energy of an electron at the moment of ejection by an atom 
improves the theoretical description of the phenomenon. 

1. INTRODUCTION 

Recent years have seen a revival of interest in multipho- 
ton ionization of atoms of rarefied gases by intense laser 
pulses. Many experiments realize the so-called tunneling 
ionization mode in which what is known as the Keldysh pa- 
rameter' (see below) is smaller or much smaller than unity. 
For instance, tunneling ionization of atoms by radiation 
with A =  248 nm has been observed by Gibson et The 
energy spectra of electrons in the tunneling ionization of 
atoms and ions of xenon and potassium by the radiation of a 
high-power carbon-dioxide laser has been studied both ex- 
perimentally and theoretically by Xiong and Chin.3 In this 
paper we focus on their results. We believe that the theoreti- 
cal aspect deserves further analysis. The theoretical part of 
Ref. 3 is based on the assumption that at the moment of its 
ejection from an atom and electron carries a zero kinetic 
energy, although actually the ejected electrons are charac- 
terized by a certain kinetic-energy distribution, which in 
general form was obtained in Ref. 4. Here this distribution is 
used to analyze the experimental energy spectra obtained by 
Xiong and Chin.3 

2. THE KINETIC-ENERGY DISTRIBUTION OF EJECTED 
ELECTRONS 

We will briefly examine the main results of Ref. 4. The 
atomic system of units ( e  = 6 = Me = 1 ) is used through- 
out the paper. 

The probability of tunneling ionization by an alternat- 
ing electromagnetic field per unit time in the quantum-me- 
chanical adiabatic Landau-Dykhne approximations has the 
following general form (to within a pre-exponential factor of 
the order of unity) : 

The time-dependent part of the classical action integral, 
S(t,), is given by the formula 

[E,(t)-E,(f)]di 

where Ei ( t )  and Ef ( t )  are, respectively, the energies of the 
initial and final states of the system and depend on t as a 
parameter. The complex-valued time to is the quasiclassical 
turning point determined by the equation 

We assume that the strength Fof the electric field in the 
external electromagnetic wave is low compared to the atom- 

ic field strength. The perturbation inflicted by the field on 
the final state f in the continuous spectrum is, therefore, 
much stronger than the field perturbation of the initial 
bound state i. Hence, Eq. (2)  can be written in a simpler 
form Ef(to) = - El ,  where El is the unperturbed ioniza- 
tion potential of the atom or ion considered. 

The adiabatic approximation holds true when the fre- 
quency w of the external electromagnetic field is much lower 
than IEl - Efo 1, where the unperturbed value Efo of the fi- 
nal-state energy can be taken as equal to the boundary of the 
continuous spectrum, or simply set at zero. The above condi- 
tion can, therefore, be written as w 4 E, . 

For the sake of definiteness we take the case of linearly 
polarized electromagnetic radiation. This means that 

where p, is the momentum of an electron ejected by an atom 
(the so-called canonical, or generalized, momentum ) . 

Now we must calculate the imaginary part of the inte- 
gral 

Let us assume that p, is aligned with the electric field vector 
F. The probability of ionization in the direction perpendicu- 
lar to the electromagnetic-field polarization is extremely low 
[see below the remark to Eq. (6) concerning the initial 
transverse momentum pol 1. Bearing in mind that the lower 
limit of integration is a real quantity, we find that 

Since in the tunneling mode Re cot, 4 1 [to is determined 
by Eq. (2)  1, we expand the sines and cosines in power series. 
For that part of the result that is inversely proportional to 
the first-order term in F we obtain (after introducing the 
notation k * = 2E, ) 

This yields the well-known tunneling exponential in the ioni- 
zation probability (see, e.g., Ref. 6). 

The terms in the classical action integral that are in- 
versely proportional to the cube of the electric field strength 
F in  the wave have the following form: 

( k o 2 / 3 F 3 )  [po2Ei-2Ei2/5] . (4)  
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The second term in (4) combines with (3) to produce 

Thus, we have obtained the well-known tunneling correc- 
tion term for a linearly polarized field. The smallness of this 
term is due to the smallness of the Keldysh parameter, 
y = o k  /F4 1, in tunneling. 

Substituting the first term in (4)  into the general 
expression for the ionization probability, 
w = exp( - 2 Im S ) ,  we find that it contributes the follow- 
ing factor to the probability: 

esp (-2ko'po2Ei/3F3) =exp ( -p ,12T3 /30) .  ( 5 )  

This factor determines the kinetic-energy distribution of the 
ejected electrons in tunneling ionization. 

3.THE ENERGY SPECTRUM 

To match the above result with the well-known formula 
of Ammosov, Delone, and Krainov7 (the ADK theory), we 
multiply the electron kinetic-energy distribution specified 
by ( 5 ) by the corresponding expression for the ionization 
rate (ionization probability per unit time) in the ADK theo- 
ry integrated over all the momenta of an ejected electron. 
Here, if we are interested only in longitudinal momenta, Eq. 
(5 )  must be normalized to unity. Bearing in mind that the 
ground states of the atoms and ions can for all practical pur- 
poses be assumed to have an orbital quantum number I = 0 
or I = 1 and a magnetic quantum number m = 0, we get 

(here we have corrected an error of Ref. 7).  In Eq. (6)  Z is 
the ion charge, the effective principal quantum number n is 
defined as n = z/(2E, ) ' I 2 ,  andp, is the initial momentum of 
an electron ejected along the polarization axis. For real 
atoms the orbital angular momentum I is an approximate 
quantum number, since we assume that the interaction of an 
electron with the radiation field is weak compared to the 
energy separation from neighboring levels (say, compared 
to the scale of the fine structure of levels). In this case there is 
no degeneracy in the levels. 

The term p i  ?/3w in ( 6) brings a new element into the 
ADK theory: it determines how the ionization probability 
depends on the initial kinetic energy pi/2 of an ejected elec- 
tron. 

The final electron-energy distribution, achieved after 
the electron has left the laser focus, differs greatly from the 
initial distribution in the case of long laser pulses because of 
the ponderomotive-force The ponderomotive force 
shifts the peak in the energy distribution away from the zero 
value according to Xiong and Chin,3 or away from pi/2 ac- 
cording to our research, to a certain value of the order of the 
electron ponderomotive vibrational energy (see also the 
theoretical paper of Goreslavski'i, Narozhny'i, and Yakov- 
lev9 1. 

Naturally, the initial distribution (6)  affects the shift of 
the peak, but the dependence of (6)  for the probability of 
ionization on the electron energy pi/2 has not such a strong 
effect on this shift because the width 3w/? of the energy 
distribution is small compared to the ponderomotive force. 
This dependence, however, introduces an additional broad- 

ening into the energy distribution, making it asymmetric. 
Our objective in this paper is to obtain a simple analyti- 

cal description of the energy spectrum that allows for a non- 
zero value of the electron's initial kinetic energy. 

We are interested, of course, in the longitudinal initial 
electron momentump, when the electron is ejected along the 
direction of the electric field vector F. Then the electron 
turns in the direction of the gradient of the ponderomotive 
force, that is, in the axial direction. The dependence on the 
electron's initial transverse momentum po, can be obtained 
by substituting Ei +pi, /2 for Ei in Eq. (6) .  However, since 
the electric field strength F is low, nonzero transverse mo- 
menta are unlikely to appear, that is, electrons are ejected 
primarily along the field's polarization. 

Let us consider the spatial-temporal distribution of the 
laser radiation in the form of the Gaussian distribution (see, 
e.g., Ref. 6):  

F=Fo exp ( - p 2 / 2 R Z - t Z / 2 t ' ) .  (7)  

Here r is the length ofthe laser pulse, R the radius of the laser 
focus, Fo the peak value of the electric field strength, and p 
the axial cylindrical coordinate in the direction perpendicu- 
lar to that of the propagation of the laser radiation. 

In a long laser pulse approximation the final energy E of 
the electron can be linked to the electron's initial energy p i /  
2 through the following relation: 

E=po2/2+ (Fn2/4m2)  esp ( - p o 2 / R L 0 n z / t Z )  , (8)  

wherep, and 8, are the axial coordinae and the time of emer- 
gence of the electron, respectively. As earlier, we are assum- 
ing that the radiation is linearly polarized. 

Substituting Eqs. (7)  and (8)  into (6)  and using the 
inequalities p, 4 R  and Bog T [these values are important to 
(6)  I, we get 

We have substituted Fo for F i n  the Keldysh parameter be- 
cause of the smallness of the parameter. 

The electron yield is determined by averaging the ioni- 
zation rate w over space and time in the absence of ionization 
saturation: 

Here no is the initial concentration of atoms (or ions), and h 
the size of the focal volume along the laser beam. We intro- 
duce new coordinates r and $ in the following manner: 
p, = Rr  cos $and 8, = rr sin $. Integration with respect to 
tC, from - 7r/2 to r / 2  in ( 10) yields 

N ~ = ~ z ~ . ~ R ' T  J w ( r ) i  dr. 

According to Eq. ( 8), we have 

E='/,po2+ (FOZ/4m2)  exp (-t) . (12) 

If E > F i/ 402, the domain of integration with respect 
to r in ( 11 ) is [0, w 1, which corresponds to the range 
[ E  - Fi/ 402,E] of the electron's initial kinetic energies 
p 3 2 .  

790 Sov. Phys. JETP 74 (5), May 1992 V. P. KraTnov and V. M. RistiC 790 



Substituting (9)  into ( 11 ) and calculating the integral, 
we find that 

But if E < Fz/ 4w2, the range of the electron energies is 
O<pi/2<E, which corresponds to the interval ro<r< w , 
where ro can be found by solving Eq. ( 12), that is, 

ro2= (4021F,2) (F,Z/4mZ-E). (14) 

Calculating the integral in ( 11 ) with respect to r, we get 

Here we have ignored the 2n - 1.5 in (9)  owing to its small- 
ness in comparison to (2Ei )312/F0. Note that Eqs. ( 13 ) and 
( 15) were obtained in Ref. 9 for a zero-radius potential by 
expressing them in terms of the number of absorbed photons. 

The position of the peak in the energy spectrum is deter- 
mined by the value of the average vibrational energy of an 
electron in the field of an electromagnetic wave, E = F;/ 
4w2. This is true only in the absence of saturation, when 
formula ( 10) can be used. As for the ADK theory, it affects 
only the value of w, in ( 13 ) and ( 15), strongly increasing it 
in comparison to the predictions of the zero-radius potential 
model. In the next section we will see, however, that when 
there is saturation the peak in the energy distribution shifts 
significantly toward lower energies, and the size of this shift 
depends on the value wo of the ionization rate. 

From (13) and (15) it follows that the broadening of 
the peak in the energy spectrum is asymmetric. For E > F;/ 
4w2 this broadening proves to be twice as large as for E < F g /  
4w2. In accordance with ( 12), the broadening can be qualita- 
tively explained by the fact that the initial energy p:/2 of an 
electron ejected by an atom at the moment of ionization is 
finite and by the presence of a spatial-temporal distribution 
in the intensity of laser radiation. 

Figure 1 depicts the experimental data and theoretical 
curve for a potassium atom in tunneling-ionization condi- 
tions. The experimental data has been taken from the work 
of Xiong and Chin3, with Fo = 7 . 2 9 ~  10' V.cm-', R = 100 
pm, and r = 2 ns. The theoretical curve was obtained from 
(13) and (15). 

N,, rel. units 

FIG. 1 .  The electron energy spectrum N, in tunneling ionization of potas- 
sium atoms by the field of a carbon-dioxide laser with a radiation intensity 
of 1012 W.cm-'. The experimental data has been taken from Ref. 3, and 
the solid curve corresponds to the results of calculations based on (13 )  
and (15). 

4. THE ENERGY PEAK 

Although the above method provides a good descrip- 
tion of the broadening of the energy spectrum, it does not 
determine the position of the energy peak exactly. For in- 
stance, for the data depicted in Fig. 1 (the frequency w corre- 
sponds to a photon energy of 0.1 eV) the energy correspond- 
ing to the peak in the energy distribution is E = Fz/ 
4w2 = 10.2 eV, while in experiments the peak was found to 
be at E = 8.5 eV. The discrepancy is about 20%, and is still 
greater for atoms and singly ionized ions of xenon.3 

The discrepancy appears because we have not allowed 
for the saturation effect in the electron yield in the above 
formulas. If we include saturation, formula ( 10) for the elec- 
tron yield is replaced by a more complicated one, 

m 

N.=rz.h J [ 1-erp ( - J w d ~ , , ) ]  Zrpn dg". 
- m 

(16) 

This transforms into ( 10) when saturation is absent, or 
m 

3 I" do,,< 1 .  (17) 
- w 

Here, however, we turn to the opposite limiting case, where 
in a large part of the laser focus 

rn 

In this case the expression in brackets in (16) grows very 
rapidly from zero to unity at a certain valuep, which can be 
determined to a high degree of accuracy from the condition 

Then, in accordance with ( 16), for the electron yield we can 
write the following: 

Thus, po has the meaning of the radius of the region where 
saturation of the ionization probability occurs, that is, inside 
this region all atoms are ionized while outside the ionization 
probability is infinitesimal. 

Substituting (9)  into ( 19) and integrating with respect 
to go, we find that 

Here we have ignored the energy dependence of the ioniza- 
tion probability and the factor 2n - 1.5 in (9)  (the reason 
for the latter has been mentioned above). From (21 ) it fol- 
lows that p, can be of the order of, or greater than, R since 
although Fo (2Ei ) 3 1 2  because the strength of the laser field 
is low compared to the atomic field, the factor wor may be so 
high, especially when the laser pulse is long, that its loga- 
rithm compensates for the low strength of the laser field. 
Note that even in a moderate field the value of wo determined 
by (6)  proves to be large because of the pre-exponential fac- 
tor inherent in the Coulomb problem. Thus, saturation is 
achieved much more easily for a potential of the Coulomb 
type than for a zero-radius potential. 

In accordance with ( 12), the peak in the energy distri- 
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bution occurs at 

Here we have ignored the electron's small initial kinetic en- 
ergypi/2 and have allowed for the fact that the peak occurs 
precisely at the value of p, determined by condition ( 19). 
Indeed, at values greater thanp, the ionization probability is 
infinitesimal, and at values smaller than p,, in accordance 
with (20), the fractional size of the ionizing volume of the 
region is small. 

In accordance with (9),  the characteristic times 0, at 
which ionization occurs must obey the following condition: 

Thus, in (22) we can ignore 0 :/$. Substituting the value of 
p, determined by (21) into (22), we arrive at the final 
expression for the position of the energy peak that allows for 
saturation of the ionization probability: 

Since, according to what has been said, p, can be of the order 
of or greater than R, the energy value given by (24) can be 
substantially lower than the value F:/4wZ in the absence of 
saturation. Thus, saturation leads to a marked decrease in 
the energy of the electrons being ejected. 

5. CONCLUSION 

Here we focus on Eq. ( 6 ) ,  which plays an important 
part in our work. The first term in the exponent in this equa- 
tion constitutes a well-known expression valid for both long- 

range and short-range potentials (see, e.g., Ref. 6). The pre- 
exponential factor is also known,' and is absent in the case of 
a short-range potential. Finally, the second term in the expo- 
nent is also known and in combination with the Gaussian 
distribution determines the possibility of somewhat improv- 
ing the theoretical explanation of the experimental data of 
Xiong and Chin.3 

It must be emphasized that the explanation of the elec- 
tron energy spectrum in tunneling ionization given in the 
present paper is not restricted to the case of a potassium 
atom. All the results can be applied to other cases, say for the 
Xe and Xe' atoms mentioned earlier, provided that the sat- 
uration of ionization is allowed for in the calculations. 

The authors are deeply grateful to S. P. GoreslavskiY, N. 
B. Delone, and V. P. Yakovlev for valuable suggestions con- 
cerning this paper. 
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