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Using kinetic theory we obtain general expressions which describe nonlinear longitudinal waves 
in a plasma. In the particular case of a cold plasma with immobile ions the solutions we find are 
the same as the results well known from hydrodynamical considerations. We analyze the 
qualitative differences which appear in a plasma where the particles have a finite temperature. 

1. INTRODUCTION 

The schemes for plasma accelerators of charged parti- 
cles which make it possible to achieve high acceleration rates 
and energy imply excitation, in some way or other, of a 
strong longitudinal plasma wave in whose field an efficient 
acceleration takes place (see, e.g., the schemes for accelera- 
tion by beat waves,' by a wake wave excited by a bunch of 
charged  particle^,^ or by short pulses of electromagnetic ra- 
d i a t i ~ n ~ . ~ ) .  The large amplitudes of the excited Langmuir 
waves necessarily require that one take into account nonlin- 
ear effects. Most often one restricts oneself in that case to the 
use of perturbation theory to consider effects up to and in- 
cluding the third order in the amplitude of the field wave 
(which leads, in particular, to a nonlinear frequency shift 
proportional to the square of the field amplitude). Already 
in this first nonvanishing order there appears a qualitative 
difference from the results of the linear theory: for instance, 
under well defined conditions a modulational instability de- 
velops which (in the one-dimensional case) leads to the for- 
mation of envelope solitons (see, e.g., Ref. 5). The possibil- 
ity to use solitons of a longitudinal wave for acceleration is 
attractive because of their stability and unchanging struc- 
ture. One then must bear in mind that the use of a finite 
number of terms in the perturbation theory series is valid 
only for sufficiently small wave amplitudes. On the other 
hand, both from the point of view of theoretical require- 
ments for acceleration and in the appropriate experiments, 
the amplitudes of the excited longitudinal waves are rather 
large. 

A theory exactly taking into account the nonlinearity of 
a one-dimensional plasma wave was already produced in the 
f i f t ie~ .~-~  However, this theory was based upon the equations 
of cold collisionless hydrodynamics (nonrelativistic6 and 
relati~istic;'-~ see also more recent papers, e.g., Refs. 10 and 
1 1 ) so that the range of its applicability is limited to a plasma 
with a temperature T = 0. Moreover, the problem itself of 
the validity of the hydrodynamic approximation for nonlin- 
ear motions in a collisionless cold plasma is nontrivial (we 
note that usually insufficient attention is paid to this prob- 
lem). On the other hand, for arbitrary distributions with 
nonvanishing characteristic particle velocities (thermal, 
"two-temperature," etc. distributions) the hydrodynamic 
description is invalid (even in the linear limit when to obtain 
a valid dispersion one must introduce "manually" an adia- 
batic index into the equations). 

The considerations of Ref. 12, based on kinetic theory, 
have shown that taking the particle velocity distribution into 
account introduces qualitatively new features into the de- 
scription of a (one-dimensional) nonlinear plasma wave. In 
particular, they analyzed the possibility of the existence of 
particles trapped by the wave and if their distribution is the 
right one any form of nonlinear waves can be obtained.12 

In what follows we develop in detail and analyze meth- 
ods which enable us to obtain exact nonlinear wave solutions 
for arbitrary particle distributions in the plasma. It is impor- 
tant that in principle some of these solutions cannot be ob- 
tained in the framework of the hydrodynamic approxima- 
tion. In particular, we indicate the possibility of the 
existence of solitary (solitonlike, but not envelope solitons as 
in the Zakharov system) nonlinear waves even in the case 
when the role played by the trapped particles is negligibly 
small. 

2. GENERAL RELATIONS 

We consider a plasma with an electron component 
which is described by the collisionless kinetic equation 

where f is the electron distribution function and e = - /el is 
the electron charge. We are interested in longitudinal waves; 
we assume that there are no external fields. We restrict our- 
selves in what follows to the one-dimensional situation when 
the excitation propagates along the x-axis. 

We supplement Eq. (2.1 ) with the Poisson equation 

where fo is the (stationary and uniform) equilibrium distri- 
bution function. In equilibrium conditions the electron and 
ion charges are balanced. 

We shall look for a solution of the set (2.1 ) and (2.2) in 
the form of a wave propagating along the x-axis with a veloc- 
ity u: E = E(T) where T = t - X/U. Weintroduce the poten- 
tial q, of the electric field of the wave: 

As is usually done, we write the perturbation of the dis- 
tribution function Sf = f - fo in the form of a series 
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in powers of the field E: 6f - EJ.  
By solving the set (2.1 ) to (2.3) we can obtain the fol- 

lowing equation which describes oscillations of the field of 
the wave (we omit the intermediate calculations) : 

i.e., "an equation for oscillations of a particle of mass 1 in the 
potential W(Z)" (we choose W(0) = 0): 

where no = /dpfo is the unperturbed density; for conve- 
nience we introduced the following dimensionless variables: 

and the plasma frequency 

Integrating (2.4) once we have 

When there are several kinds of particles (e.g., elec- 
trons and ions) present we must substitute for the potential 
W(Z) the sum of the contributions W= We,,,, + Wio, 
since the Poisson equation (2.2) is linear in the charge 
density. 

3. COLD PLASMA 

In the case of a distribution function f, = no6(p), 
p = mu describing a cold nonrelativistic plasma with T = 0, 
the potential (2.5) is equal to 

(see Fig. 1 ); the convergence radius of the series (2.5) is in 
that case equal to 1. We cannot continue the potential W(Z) 
to the interval Z <  - 4 as it would there take on complex 
values. 

FIG. 2. 

The equation of motion (2.4) in the potential 

can be easily integrated. The solution Z( T) describes a peri- 
odic nonharmonic wave (see Fig. 2 ); the period Pis  equal to 
277( = 2r/wp, ) and is independent of the amplitude. These 
results are the same as the results of a hydrodynamic ap- 
p r ~ a c h . ~  

Taking the motion of the ions of mass mi into account 
gives 

(see Fig. 3). The solutions Z( T) are in general expressed in 
terms of elliptic integrals. The wave period P depends on the 
amplitude when the motion of the ions is taken into account 
and is equal to 

In a sufficiently strong wave the velocity of the oscilla- 
tions of the particles approaches the light velocity c. Using 
(2.5) one can also find the general relativistic expression for 
W(Z) in a cold plasma: 

W (Z) =[ l + Z -  (1+2Z+ZZuY/cZ)'"] / ( 1  - I L ~ / C = )  

(seeFig. 4for u < c ,  Fig. 5 for u = c ,  and Fig. 6for u>c ) .  
This result is also the same as the result of the hydrodynamic 

The solution can again be expressed in terms of 
elliptic functions; the wave period for small amplitudes is 
equal to 

(cf. Ref. 5) .  

FIG. 1 .  
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V. S. Krivitskil and S. V. Vladimirov 806 



FIG. 6 .  
FIG. 4. 

tion f = fo + Sf > 0 be satisfied). There can be "wave-break- 
4. THERMAL CORRECTIONS ing" in two cases: when 6n = - no (corresponding to d W/ 

The electron distribution function for a nonrelativistic d Z  = 1) or when Sn = + ca (d  W/dZ = - co ). It  is just 
plasma with a nonvanishing temperature T is this second case which is realized at the point Z = - 4 for 

no the function W(Z) which describes a nonrelativistic cold 
In =. 

exp ( -vZ/2uT2) ,  plasma-see Fig. 1. (The wave breaks also in the relativistic 
case when u < c for a similar reason-see Fig. 4). 

where v$ = T/m. For small vJu-4 1 the potential (2.5) is The energy density U of the oscillations is 
approximately equal to I 

+ ( r T 2 / i ~ ' )  { 2 +  ( I  +?Z) - I h - 3  ( f + 2 ~ ) - ' / 1 }  where D is the electric induction connected with the polar- 
ization charges Sq = eSn, which occur in the medium, by the 

(thew are the first two terms of an asymptotic expansion in equation 
v$/u2 which is not applicable near the point Z = - 4). For 
shall amplitudes ~ ( 1  the wave period is 

- 
div D=div E-4n6q. 

P=2n/ ( . I  +3v,'/ri2) "'- 15nCu,'/r+t-o (Cul.Y/u.') Expressing U in terms of the variables Z and T and using 
(2.6) we find that 

(cf. Ref. 13 ). 
The required wave solution vanishes when the mini- 

mum of the function W(Z) vanishes at the point Z = 0; this 
occurs if the velocity ratio u/v, becomes less than some 
critical value a,, - 1 (as in the linear theory). 

5. CHARGE DENSITY. WAVE ENERGY 

According to (2.2) one can express the charge density 
oscillations 

6 1  = Jdp  (i-),.) 
in terms of the wave field Z: 

It is clear that the inequality n = no + Sn > 0 must be satis- 
fied (by putting from the beginning in Sec. 3 f ,  = noS(p) we 
have lost the possibility to require that the stronger condi- 

Generally speaking, for a rigorous derivation we must first 
consider a nonvanishing external charge density q,,, and 
only afterwards let the latter tend to zero-this is necessary 
to remove a certain vagueness in (5.1 ), since for q,,, = 0 we 
integrate a quantity which is equal to zero over an infinite 
interval, or else we have for the wave field D = 0. 

We see that apart from a dimensional factor nomu2 the 
energy density U of the wave is the same as the integration 
constant Cin (2 .6 ) ,  i.e., as the "energy of the oscillation of a 
ficticious particle of mass 1 in the potential W(Z)." For 
wave velocities u which are less than c the wave energy den- 
sity is thus bounded from above by some quantity (and 
hence Z can take on values only in a range which is bounded 
both from below and from above by well defined finite lim- 
its). For u = c the energy C can take on arbitrarily large 
positive values and Z can oscillate between the limits - 1 
and + co . For u > c the energy C can have any (positive) 
magnitude, and Z can take on any value. 

6. NONPERTURBATIVE KINETIC APPROACH 

One can obtain the result (2.5) directly from the kinetic 
equation (2.1 ) without using an expansion in powers of the 
electric field (cf. Ref. 12 ) . Indeed, if we look for a solution of 
the kinetic equation in the form f = f(r,p),  T = t - X/U with 
the function 

FIG. 5 .  

1 E=E (E) =-pad cp(z) = - - 
u dz  
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(2.1 ) reduces to the equation (for the sake of simplicity we 
consider the nonrelativistic case) : 

The general solution of this equation is 

where F is an arbitrary (differentiable) function (see Ref. 
12). 

In contrast to Ref. 12 it will be convenient for us to 
change in (6.2) at once from the argument 

(the energy) to the argument p = mu (the momentum). In- 
deed, the formal way of writing (6.2) assumes (if the func- 
tion F is single-valued) that the values off for two different 
arguments u corresponding to the same 8 are the same. 
However, this requirement is completely unnecessary [this 
fact is especially obvious in thee, = 0 case: the solution of the 
free kinetic equation with E = 0 is an arbitrary function f ( v )  
of the velocity which does not at all need to satisfy the equa- 
tion f( - v )  = ( v )  l .  Taking into account what we have said 
we can instead of (6.2) write the solution of (6.1) in the 
form 

We note that if we use (6.2) instead of (6.3) there will not be 
a "good" limit for e,-0 (i.e., the unperturbed state of the 
plasma in the "correct" linear theory-see Ref. 12) in the 
theory developed here. In (6.3) fo is an arbitrary (differen- 
tiable) function. The reason why we use for (6.3) the same 
symbol fo as earlier in Secs. 2 and 3 will become clear in what 
follows. 

It is important that one must take the function [ -. . ] ' I 2  

in (6.3) not as an "algebraic" one, but as a branch of an 
analytical function (chosen after we have made in the com- 
plex v plane the appropriate cut connecting the points 
u f ( - 2ee, /m) ' I 2 )  for which the value of the square root 
in (6.3) tends to v as u- + W ;  therefore as v +  - w the 
value of the root in (6.3) tends also to v (and not to I vl ). 

The electron density n is 

where p = mu. We shall assume that there is no "external" 
electromagnetic field (i.e., a field which is not a wave field) 
and that the total electron and ion charges balance. The ion 
density no is then equal to no = nl,=o (we assume that 
mi = w ) .  

The following is obvious: one must substitute the solu- 
tion (6.3) into the Poisson equation: 

I d'cp 
---= div E=4nc [ J dpfo-no] 

uZ drZ 

Changing to the dimensionless variables which we used be- 
fore 
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we obtain an equation which describes the oscillations of the 
field in the wave: 

d'ZldT2=G(Z) -G (O), (6.6) 

where 
+m 

while G(0) = 1 by virtue of the normalization condition 
(6.4) which we use. 

We compare (6.6) and (6.7) with the results of Sec. 2. 
According to (2.4) the right-hand side of (6.6) is 

where the Qj are defined in (2.5). Expanding (6.7) in a pow- 
er series in Z we find (replacing the integration variable { by 
f ={- 1): 

+ - 

(mu)' Z 1 d '  
= 1 +- d - )  f o o l )  

no : , = ( I .  l - v / u d p  

which is exactly the same as the results of Sec. 2 (in (6.8) the 
variable is 

It is now clear why we used in (6.3) the same symbol fo. 
We must here make a few remarks. Firstly, writing 

down (6.7) presupposes that the argument of the function& 
for Z > 0 and close to unity becomes complex. This will not 
give any trouble if we assume that fo is analytic. 

The function fo is arbitrary and the oscillations of the 
electrical field Z in the wave can therefore also have an arbi- 
trary form. However, in that sense even the linear oscilla- 
tions can correspond to a completely arbitrary dispersion 
relation w = w (k )  (for an appropriate choice of the "unper- 
turbed" distribution function f,). The situation is different if 
for some reason or other we assume that fo corresponds to a 
well defined function (for instance, Maxwellian); in that 
case both the linear dispersion law and the nonlinear regime 
of the electric field in the wave become at once uniquely 
defined. 

The leeway in finding the solution of the kinetic equa- 
tion (2. l )  is also present in the procedure of finding (2.3) as 
a sum of a perturbation-theory series. Indeed, (2.5) is based 
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on using a "particular solution of the inhomogeneous equa- 
tion" for Sf "+ l ) :  

I = 0,1,2, ...; this particular solution is (in Fourier compo- 
nents) 

( [ + I )  I (0  bf,, =-i(o-ku) -'e do' dk'E,,,-86f,-,,,,-,./ap. 

However, formally one can add to this solution an arbitrary 
general solution of the homogeneous equation, proportional 
to 6(w - kv) (in terms of Ref. 12 this corresponds to parti- 
cles "trapped" by the field of the wave). 

The procedure of expanding in a power series in Z in 
(6.8) is correct if the function fo is analytic. The assumption 
that fo is analytic means that there cannot be a singular 6- 
function term, proportional to 6(v - u )  in f,. 

7. PLASMA WITH T# 0 

The nonperturbative kinetic theory considered in the 
preceding section makes it possible to take correctly into 
account thermal effects without having recourse to an ex- 
pansion in v$/u2. We can therefore now give an answer to 
the problem of the behavior of the function W(Z) in the 
neighborhood of the point Z = - 4 (in the nonrelativistic 
case) and also to the left of that point. 

We consider the integral (6.7), substituting for fo(p) 
the Maxwell distribution from Sec. 4. We shall assume to 
begin with that the quantity Z is negative (bearing in mind 
our study of the behavior of W(Z) in the neighborhood of 
the point Z = - 4). The argument of the function fo is then 
real for any real { [see (6.7) 1. 

The path of integration over the variable J E ~  - 1 is 
shown in Fig. 7. One must in that case understand the inte- 
gral (6.7) as a principal-value integral because of the neces- 
sity to connect the branch points + i(21Z 1 ) ' I2 of the root in 
(6.7) by a cut. The necessity of introducing a cut is thus, in 
turn, dictated just by the fact which we have already dis- 
cussed before (Sec. 6): as Z-*0 the branch of the root in 
(6.7) which we choose must go over into 5 and not into 15 1 .  

Integrating over { along the sides of the cut is in the 
present case (for Z < 0) not necessary as the momentum p 
and with it the variable 5 are real according to (6.5) to (6.7). 
Integration along the cut would lead to ImG #O (and hence 
to Im W #O) which is physically meaningless. 

For Z >  0, on the other hand, the cut lies on the path of 
integration in (6.7) along the real axis-see Fig. 8. In this 

FIG. 8. 

connection the problem arises of how to integrate over { for 
- (22)  'I2 < (< (22 )  'I2 and also of how to interpret in that 

case the corresponding results (nonvanishing imaginary 
parts of the distribution function f,, of the "potential" W, 
and so on). We shall return to this problem in what follows. 

According to (6.7) we have for the potential W(Z) : 

u" 
x erp [-  - ( 1 + ~ ~ - a r + ~ ( t ~ - 2 r ) ~ )  1. 

2v,- 

It is convenient to study this integral by introducing the no- 
tation - q2 r 22, - H ' = 2 Z and performing the conformal 
transformation T = (5 + q2) 'I2. The integration over r 
must then be taken along the real axis from - rn to - q and 
then from + q to + a. Writing y =  r + 1 and changing the 
order of integration in (7.1 ) we then obtain 

w (Z) =Z 

where the regionSis shown hatched in Fig. 9. We emphasize 
that the main contribution to the integral in (7.2) as T+ + 0 
comes from the neighborhood of the section 0 < q < H for 
y z o .  

Omitting straightforward algebraic calculations we 
bring (7.2) to the form 

FIG. 7. 
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where 

We draw attention to the different signs in front of the root in 
I, and I,; in (7.4) and (7.6) the roots must already be under- 
stood in the "algebraic" sense. 

Analyzing (7.3) we find that the function W(Z) has 
the shape shown in Fig. 10. Asymptotically as Z- - w we 
have, for instance, for I, [we multiply the numerator and 
denominator of the integrand by (y - 1 + ( (y - 1 l 2  
+ 22)  ' I2)  ] : 

(we bear in mind that H = - 22; i.e., the contribution I, is 
exponentially small as Z-  - W .  A similar estimate is ob- 
tained also for I , .  For I, we have: I , - (~T)"~ 
x (u,/u) (1  + v$/u2) as Z- - W .  As Z- - w we have 
thus W(Z) = Z + 1 + v$/u2 + o( 1 ). 

The function W(Z) of (7.3) has a maximum for 
Z =  Z,,, =; - 4 (for T- + 0 = 0 we have Z,,, = - 4). 
The function W(Z) is continuously differentiable for T $0; 
the discontinuity in the derivative d W/dZas T- + 0 is con- 
nected with the appearance of a singularity of the exponen- 
tial in the integrand of (7.2): 

Figure 9 explains the appearance of a kink in W(Z) for 
Z = - 4 as T- + 0: since the whole contribution to the in- 
tegral is concentrated in that case on the section O<v<H, 
y = 0, for H = 1 (i.e., Z = - 4) the second term in (7.2) 
(i.e., the integral) becomes equal to unity and ceases to in- 
crease when H increases further. For H >  1 (i.e., Z < - 4 )  
we thus have W(Z) = Z + 1. The function W(Z) has there- 
fore as T- + 0 the shape shown in Fig. 1 1. The maximum of 
W(Z) gets sharper (compare with Fig. 10). We have thus 
given an answer (which in principle could not be obtained in 
hydrodynamics) to the problem of the behavior of W(Z) for 
z <  - 4 .  

The "potential" W(Z) shown in Fig. 10 admits the ex- 
istence of solitary-wave type solutions of Eq. (6.6) [or 
(2.15) ] : for C = W(Z,,, ) the period P of the oscillations 
tends to infinity. For any (even arbitrarily small!) tempera- 
ture T there thus occurs not wave breaking, as in hydrodyna- 
mics, but the formation of a solitonlike state Z ( t  - x/u).  
(Of course, the problem of whether such a solution is a "true 
soliton" goes beyond the framework of the present ap- 
proach. ) 

One must in this connection be reminded of Ref. 14 
where solitary self-consistent BGK type  solution^'^ were 
found which describe the combined motion of a packet of 
plasma waves and an electromagnetic bunch (in that case 
there is no braking of the wake wave which may be of interest 
from the point of view of collective acceleration methods). 

Taking ions into account makes changes little in princi- 
pal: the second maximum (as T- + &the second kink, see 
Fig. 3) at Z z  mi/2m, lies above the "admissible" region for 
the existence of oscillations. However, for mi = me (i.e., in 
an electron-positron plasma) both maxima correspond to 
the same energy: degeneracy sets in-see Fig. 12. In contrast 
to the mi = a case considered above the solitonlike solu- 
tions have in this case the shape not of a solitary hump but of 
a "kink," i.e., there are different ( + 4 as v, - + 0)  asymp- 
totes in the limit as ( t  - x/u) - + a. 

For T #O the potential W(Z) has in the relativistic case 
when u < c qualitatively the same form as in the nonrelativis- 
tic limit (see Figs. 10 and 1 1 ) . 

We now turn to the problem of how for Z > 0 one should 
integrate "over the cut" from [ = - (22 )  ' I2  to [ = (22 )  ' I 2  

(see Fig. 8). The argument of the function f, and hence the 
distribution function itself as well as the "potential" W then 
become complex quantities, which is physically meaning- 

FIG. 10. FIG. 1 1 .  
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FIG. 12. 

less. We thus are faced with the problem of what is the distri- 
bution function for Z >  0 and - (22 )  ' I 2  < l <  (22 )  ' I 2 .  

Particles with such momenta are trapped by the wave; their 
distribution can be arbitrary, in general, being not at all con- 
nected with the distribution function of the other particles. 
Mathematically this means that the trapped particles are de- 
scribed by another function of the form (6.3), where we now 
must take for them cuts from - co to - (22 )  ' I 2  and from 
(22 )  ' I 2  to + CO. To obtain information about the number 
and the distribution of the trapped particles one must solve 
the initial problem, describing the formation of the nonlin- 
ear wave, exactly and this goes beyond the framework of the 
present discussion. We note incidentally that for similar rea- 
sons the functions of the form ( 6 . 3 )  referring to the regions 
{ < - (22 )  ' I 2  and c >  (22)  ' I 2  (i.e., corresponding to parti- 
cles moving "to theleft" and "to the right") can also in no 
way be connected with one another. 

8. CONCLUSION 

The expressions we have obtained for the "potential" 
W(Z) assumed that there are no trapped particles (or that 
their role is negligible). As was already made clear in Ref. 12 
one can, generally speaking, through an appropriate choice 
of the trapped-particle distribution, obtain any shape of 
W(Z) and hence any shape of wave. Of course, some parti- 
cles are always trapped by the wave; but in order to find out 
how many one must study the trapping process itself in de- 
tail. 

It is rather obvious to assume that for u -c (which is the 
most interesting case for the acceleration problem) the num- 
ber of trapped particles with subluminal velocities cannot be 

large since in the corresponding experiments the bulk of the 
plasma particles have velocities of the order of thermal ve- 
locities which are much smaller than c. 

Therefore: what can the function f, be in a strongly non- 
linear wave? How can we connect the function f, describing 
a stationary wave solution with the function& correspond- 
ing to the "unperturbed" state of the plasma prior to the 
excitation of the wave (by some well defined method)? 
Could one say that the "final"f, excited by the wave by some 
adiabatic means is the same as the "initialw& (and because 
of this it makes sense to consider for f, a Maxwell distribu- 
tion function)? By what excitation method can there appear 
the initial number of trapped particles? The answers to these 
questions go beyond the framework of the present discussion 
(which is based upon solutions which are functions of the 
argument t - x / u )  and requires a study of the dynamics of 
the wave excitation process. 
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