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The fluctuations of polarization fields created by moving charged particles are calculated in the 
framework of the quantum-mechanical theory of interaction of charged particles with solids. The 
fluctuations depend strongly on quantum mechanical states of the particles: for narrow (in 
comparison with the screening radius of the field of a moving particle) wave packets the 
fluctuations are stationary and vanish with decreasing packet widths, while for wide wave packets 
the fluctuations increase with time. 

1. INTRODUCTION 

The polarization fields created by charged point parti- 
cles moving in solids have been studied in detail in the frame- 
work of phenomenological classical electrodynamics (see 
Refs. 1 and 2). Such treatment is based on the use of the 
dielectric constant ~ ( q , o ) ,  which gives the medium polar- 
ization properties and allows both for temporal and spatial 
dispersion. The problem of fluctuations of polarization 
fields does not arise, since in this "dielectric" approach they 
are simply equal to zero. Doubts that this result is valid out- 
side the framework of phenomenological electrodynamics 
arise when one tries to find the dielectric constant by micro- 
scopic theory. It appears, in this case, that the dielectric con- 
stant gives only an averaged reaction of a medium to an ex- 
ternal electromagnetic field, which does not exclude 
fluctuations. On the other hand, in the classical approach 
one also has to consider distributed charges, e.g., when cal- 
culating the deceleration of atoms.3 In the latter case, the 
microscopic approach has shown4 that there are situations 
when the results of classical and quantum-mechanical calcu- 
lations coincide only for point charges. 

In the present study we consider the problem of polar- 
ization-field fluctuations in the framework of the quantum- 
mechanical theory of interaction of moving atomic particles 
with a solid. We describe solid states in the form of a direct 
product of quasiparticle  state^.^ It is shown in Ref. 5 that the 
surface affects only weakly the magnitude of the polariza- 
tion field already at a relatively small penetration depth of 
order v/w,, where v is the mean particle velocity and w, is the 
characteristic frequency of the electronic subsystem of the 
solid. As we are interested in large, in comparison with v/w,, 
values of depths, we consider the medium to be infinite and 
the moment when the particle enters the solid to be identical 
with the moment of a sudden switching on the interaction 
between the particle and quasiparticles. 

We list briefly the basic considerations required for the 
construction of the version of the theory used below (these 
considerations are given at length in Ref. 5).  The depend- 
ence of the quasiparticle energies ma (q)  on their momenta q 
is determined by the zeros of the bulk dielectric constant 
E ( ~ , w )  (P denotes the branches of bulk elementary excita- 
tions; here and below we use atomic units 1 el = 1, f i  = 1 and 
me = 1). The electric field potential in a medium can be 
written as a sum of free oscillations of the form 

qeq (x. t )  =goq esp ( iqx- ios t  ) ( 1 )  

Using the well-known expression for the energy of mono- 
chromatic field in a nonabsorbing medium 

we can present the Hamiltonian function of the free oscilla- 
tion field in a medium as a sum of the Hamiltonians of inde- 
pendent oscillators. Passing on then to the quantum theory, 
we obtain the operator of the electric field potential in a me- 
dium: 

A 

where baf, and ba, are respectively, the quasiparticle cre- 
ation and annihilation operators obeying the standard Bose 
Communication relations, and 

Here fl is the normalization volume. 

2. QUANTUM THEORY EQUATIONS 

The Hamiltonian of the system is the sum of the Hamil- 
tonain H, of the external particles, the Hamiltonain HQ of 
the free quasiparticles, and the interaction Hamiltonian 
Hi,, . The Hamiltonians can be conveniently presented in the 
second-quantization form 

Here m is the external particle mass, 82 and 8, are the 
external quasiparticle creation and annihilation operators, 
respectively, in the states with a definite momentum k (for 
definiteness we consider the external particles fermions but 
neglect their spin). If the moving particle has a charge Z, ,  
then, in the interaction representation, 

whereg(x,t) is the particle-density operator in the same rep- 
resentation. The standard perturbation theory constructed 
on the basis of the Hamiltonians (5)  and (6) allows us to 
trace the evolution of the state vector only for a short 
(shorter than Woo) period of time after the particle enters 
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the solid. We suggest below a modification of this theory 
applicable in a wider range (see below). 

To construct a modified perturbation theory, the opera- 
tor (6) should be presented as the sum of two operators: 
H ::) ( t )  and H id,) (t) .  The first one is obtained from Hi,, ( t )  
by replacing the Fourier-components of the time-dependent 
density operator bq ( t )  by the expression bq fq ( t ) ,  where 
fq ( t )  is a function of time and momentum q chosen from 
additional considerations. It is expedient to demand that 
fq ( t )  provide fulfillment of the Galilean invariance and con- 
servation of the particle number in all orders of perturbation 
theory. The function 

fq ( t )  =exp [-iqx., ( t )  1, 

where xo(t) is the current mean value of the particle coordi- 
nate, satisfied the listed requirements. The second part of the 
Hamiltonian can be defined by the equation 

The expediency of singling out the Hamiltonian HE' ( t )  is 
justified by the fact that, since different operators 8, obey 
the commutation relations (as was well-known long ago, 
see, e.g., Ref. 6 ) ,  we can neglect the sequence in which the 
operators @, appear in all expressions and widely use the 
coherent-state theory technique. 

Let us write down the "zeroth" evolution operator 

where 

Here to is a certain initial instant, when the interaction is 
switched on. Then we perform the canonical transformation 
of all operators: 

h 

where A ( t )  is the operator in the interaction representation. 
In the new representation the state vector satisfies the equa- 
tion 

and is expressed through its initial value in the form 
It) = Ul(t) It,), where 

1 

U , ( t ) = ~ c x p { - i  Jn!;: ( t l ) ( l t l \ .  (10) 
t,, 

In the new representation the mean value of an arbitrary 
physical quantity is given by 

Since we can choose the function xo(t), this allows us to 

improve the convergence of the perturbation theory series in 
Hi:,) (t) .  To this end, we demand that the equation 

hold for a physical quantity K(t) .  This quantity can be the 
energy of the moving particle, Ep ( t ) .  Then the value of 
Ep ( t )  is already obtained in the zeroth approximation in 
H::,) (t) .  All other quantities will not, generally speaking, 
coincide with the zeroth approximation. Nevertheless, we 
can expect the corrections to be small. An example of calcu- 
lations of corrections to the values of specific energy losses is 
given in Ref. 7. It has been found that the corrections do not 
exceed 20%. 

The mean field 

to zeroth order in H ::,) ( t )  is 

P,9 

wherep$' is the Fourier transform of the probability distri- 
bution in the initial state of the moving particle (we suppose 
that at t = 0 the particle is, "on the average," at the origin; 
thereforep:' coincides with its value calculated in the parti- 
cle coordinate frame). The expression ( 1 1 ) coincides with a 
similar one found in phenomenological electrodynamics. If 
the particle moves in a uniform medium with a constant 
velocity v, the set value of the field is found by making to 
approach minus infinity and introducing a factor es" for 
6 - + 0 into the integrand in the general formula for Q,, ( t ) .  
Taking into account the explicit values of the coupling con- 
stants (4),  we find the standard expression (see, e.g., Ref. 
1 ) : 

The corrections to Eq. ( 12) should cause the current value 
of the polarization field to be determined not only by the 
initial quantum-mechanical state of the particle, but also by 
the whole evolution of this state during the period of interac- 
tion of the particle with the medium. 

3. CALCULATION OFTHE POLARIZATION FIELD 
FLUCTUATIONS 

The mean squared value of the polarization field fluctu- 
ations is given by the general formula 

where: $5 ': denote an N-ordered operator and D i is the con- 
tribution of zero-point fluctuations of the quasiparticle field 
vacuum. Calculating D i, it is necessary to cut off the corre- 
sponding integral, allowing thus for the boundedness of the 
number of degrees of freedom in the solid. Since the quantity 
D $ always exists, even in the absence of external particles, it 
cannot be related to the "self' polarization field of the parti- 
cle. Therefore, in what follows, the expression 
D, (x,t) - D will mean the square value of the particle po- 
larization field. 
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Let us calculate this expression in zeroth order, replac- 
ing the vector It) by the approximate value It,). The ob- 
tained expression will have the same validity range as the 
approximation ( 11) for the polarization field. The calcula- 
tions yield the following result: 

+~~~(t)~~:~,(t)exp(-i(o-o')t) lexp i(q-ql)x)) 

where w = wa (q)  and w' = was (q'). The set value of this 
quantity, for motion with constant velocity, is 

It follows from ( 15) that for point particles (usually consid- 
ered in the classic case), owing to pr' = 1, the polarization- 
field fluctuations vanish. Such absolute localized states can- 
not be realized owing to the quantum mechanical 
uncertainty principle, therefore in reality polarization field 
fluctuations should always be present. 

In further calculations we assume that the initial state 
of the particle is given by the Gaussian distribution: 

where So is the rms width of the wave packet. The expression 
( 15 ) can be analyzed in this case by numerical calculation. 
However in this study we limit ourselves to qualitative anal- 
ysis, considering the limiting cases of small, So < v/oo, and 
large, So% v/w,, widths. In the case of small widths, we find 
from ( 15 ) to first approximation in Si 

Thus, the self-fluctuations of the polarization field in the 
vicinty of the space-time point (x,t) is equal numerically to 
the work done by the polarization forces on a unit charge to 
move it over the distance 21'2S0. 

Consider now the case of large widths, approximating 
( 16) by the 6-function 

pq'O'= (2nsO2) -"6 (q) , (18) 

which is equivalent to ( 16), when we calculate the integrals 
in ( 14) and ( 15) in the range Ix - vt I < So. In fact, if this 
inequality holds, the most quickly changing function in the 
integrands is the density pr! q.. If we want to enlarge the 
validity range, the approximation ( 18) should be altered by 
introducing an extra factor exp [ - (x - vt) 2/2Si 1, which 
provides a rapid decrease in fluctuations at large distances 
exceeding So from the particle. 

Substituting ( 18) into ( 15 ), we get a meaningless di- 
verging expression, since the fluctuations are nonstationary. 

Substituting ( 18) into ( 14) we find for to = 0, t 9  l/wo, and 
unity normalization volume 

where the index y lists collective modes corresponding to 
isolated branches of elementary excitations, and the indices 
a and a' denote individual modes within a certain band in the 
(q,w)-plane. As follows from (19), for wide packets the 
mean square value of the polarization field fluctuations 
grows linearly with time. 

4. THE PROBLEM OF QUANTUM COHERENCE 

The fact that the polarization-field fluctuations in- 
crease for wide packets means instability, in a medium, of 
that particle state in which the the quantum coherence 
length is much larger than v/w,. The same conclusion fol- 
lows from analysis of the particle density matrix. First we 
find the measure of particle-state coherence, following the 
Glauber theory of optical coherence (see, e.g., Ref. 8). The 
constrast of the diffraction pattern formed by the particle 
states from the vicinities of space-time points x =  (x,t) and 
x '  (xl,t) is given by the expression 

where G(x,xl) = (0 1 $,t (x) $H (x') ( 0 )  is the correlation 
function ofJhe particle states from the vicinities of the points 
x and x', $2 and $H are the Heisenberg operators, and 
bH (x) = $H+ (x) $H (x)  is the Heisenberg density operator. 
As follows from (20), the contrast vanishes if the correlator 
G(x,xi) equals zero. In this case the wave fields at the points 
x and x' are incoherent and cannot belong to a pure state in 
the sense of von Neumann. The correlator G(x,x1) can be 
calculated in the framework of modified perturbation theory 
(see the Appendix). The quantum-coherence length of a 
particle state can be defined with the help of R (x,xf ) as the 
distance Jx  - x'] over which the quantity R (x,xl) decreases 
by a factor of e in comparison with its value at x' = x. If the 
initial state is a plane wave, this happens at t ' = t over dis- 
tances (if the displacemnet is along the velocity, i = 1, or in 
perpendicular directions, i = 2,3) 

- 
where d Ak f /dx is the increment of the mean square value 
of the fluctuation of the ith momentum component at a unit 
trajectory length, and L is the distance covered by the parti- 
cle in the solid. When the initial state is given by a Gaussian 
packet with the rms width a,, the result depends both on 6, 
and the particle mass 

According to (22), the initial "fluctuation" compression of 
the packet is replaced by "dispersion" spreading. This hap- 
pens at times obeying the condition 
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For heavy particles the dispersion spreading is important at 
such large distances, L, at which the assumption of small- 
ness of particle velocity variations is already invalid. For 
small It - t ' 1  5 l /hO the widths (2 1 ) and (22) increase in 
proportion to It - t ' 1 '. 

The instability of the quantum state with a large coher- 
ence length of a particle moving in a sold, resulting in its 
localization, can serve, in particular, as an additional argu- 
ment in favor of validity of the classical trajectory approxi- 
mation in the analysis of charged particle beams in crystals 
(orientation effects) or in disordered solids (we mean, for 
example, calculations of mean projective paths). Serious de- 
viations from "classical" results can be expected in the anal- 
ysis of the diffraction of fast charged  particle^,^ in the studies 
of energy-loss anomalies in the inner electron shells of target 
atoms (see, e.g., Ref. lo),  and in the interpretation of spectra 
of convoy electrons." The latter problem is of special inter- 
est, since for its solution one resorts to the idea of formation 
of quasibound localized electron states in the field of an ion 
moving in a medium. If such states really exist, they could be 
catalysts in nuclear fusion reactions. The experimentally ob- 
servable phenomena of a so called preequilibrium particle 
deceleration in thin films can also be explained on the basis 
of particle localization upon entering the solid.' 

Two conclusions can be drawn: (i)  when a moving 
charged particle enters a solid, its polarization field reaches 
fairly quickly (in a time of order l/wo) its classical value 
given by the wake potential, and (ii) along with this process, 
a rapid decrease in the polarization field fluctuations occurs. 

APPENDIX 

Allowing for 

where U, ( t )  is the evolution operator ( 10) (we assume that 
to = O), we write the correlator in the form 

G ( r .  z f ) = ( t l $  ( r ) L . , ( t ) ~ ~ , - ( t ' ) ~ ~ ( . c , j  I t ! ) ,  (A21 

whence, to zeroth order in H (d:, we find 

G ( x .  J')=(oIu,,-(~)I~+(J)u~(~)u,,+(~')$(x')u~(~')~~). 

Since the state 10) is one-particle, after the action of the oper- 
ator 4 ( x ' )  to the right there arises a vacuum particle state 

I vac, ) . The action of a pair of operators Uo ( t ) U ,f ( t ' ) on 
this state does not alter it. Furthermore, since the operator 
,6,+@, does not alter the one-particle state either, 

Let the initial state of the system be a direct product of a 

particle state with a definite momentum ko and a vacuum 
state of the quasiparticle field 10) = lk,,;uacQ ). Expanding 
the expotential in a series, we find 

< ( x ' ) e x ~  { ~ ~ ~ . ( f ' ) 6 ~ ~ ~ . + }  Ik,; sac,) 
0. q 

where E, is the energy of a particle with momentum k. 
The expression E ,,,, - ,, - ... - qn, can be rewritten in the 

form 

where 

can be regarded as the momentum lost by the particle before 
the instant when the last quasiparticle with momentum q, is 
emitted. The Sk is defined as the mean with respect to differ- 
ent realizations of sets of emitted quasiparticles, Sk = g, 
and can be regarded as mean momentum loss by the time t '. 
Then 

is the running coordinate of a particle moving with constant 
deceleration, since the mean deceleration force is approxi- 
mately constant (we assume that the mean particle velocity 
changes very little when the particle moves through a suffi- 
ciently thin solid layer). Further, we consider an approxi- 
mation based on neglect of the last term in the sum in (A6). 
The larger the particle mass, the better the approximation. A 
more rigorous estimate is obtained when an expansion of the 
exponential explit '(q, ( x ,  - Sk) + q: )/2m I in a series is 
verformed and the contribution of different terms is ana- - 
lyzed. As - a result, we find the inequality Ak : t ' /4m < 1, 
where Ak f is the mean sauare value of the fluctuation of 
the particle ith momentum component. Since the derivative - 
d Ak :/dt does not depend on time and can be directly 
calculated by standard techniques, the condition of validity 
of the approximation used, t ' < 2min [m/( w / d t )  ] ,'I2 is 
fairly convenient. For heavy particles, m)  1, and this in- 
equality holds for layers of thickness of order 1000 A passed 
by the particle. 

Continuing our calculations under the given restric- 
tions, we can reduce (A5 ) to the form 
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(A71  

Taking ( A 7 )  into account and using the well-known Baker- 
Haussdorf formula, 

we can present ( A 3 )  in the form 

+ Q , q ' ( t ) ~ , q  ( t l )exp(  i q (x -x .  ( t )  -x l+  x.(t') + - 
2m 

Owing to partial cancellation of temporal factors in ( A 3 )  for 
G(x,xl), the validity condition ( A 8 )  for small It - t  ' 1  < t  
differs from ( A 7 )  and has the form 

Note that the reasoning, beginning with the formula 
( A 6 ) ,  can be omitted, if we limit ourselves to the calculation 
of the density matrix y ( x , x l , t )  found from ( A 3 )  at t  ' = t .  
Using ( A 5  ) , we get 

7 ( x ,  XI, t )  =exp -ik, (x -x ' )  { 

which coincides with the corresponding result of Ref. 12. 
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