
Domain-wall dynamics and magnetization relaxation in magnetic materials 
with a magnetic aftereffect 

6.  A. Ivanov and S. N. Lyakhimets 

Institute ofMetal Physics, Academy of Sciences of the Ukraine 

M. Kisielewski and A. Maziewski 

Branch of Warsa w University, Bialystok, Poland 
(Submitted 26 November 1991 ) 
Zh. Eksp. Teor. Fiz. 101,1894-1907 (June 1992) 

Experiments show that the magnetization relaxation which occurs during the pulsed 
magnetization reversal of magnetic films with a magnetic aftereffect (iron garnet films with a 
cobalt impurity) is of a two-step nature. The first step is a rapid jump in the magnetization. This 
jump is quite sensitive to the pulse length. The second step is an anomalously slow, 
nonexponential relaxation (with a time scale T ,  -40s). The magnetic anisotropy induced in the 
material is responsible for the magnetic aftereffect. However, the relaxation time T of this 
anisotropy is much shorter than the magnetization relaxation time: T , / T -  lo3. A theory is 
derived for the dynamics of domain walls in a medium with a magnetic memory. This theory gives 
a systematic description of both steps of the relaxation. A factor of importance for the first step is 
that the domain walls are not 180" walls. The dynamics of the walls is described by an integral 
equation whose time-dependent kernel (a  memory function) determines the time delay in the 
magnetic aftereffect. An analytic solution found for this equation describes nonexponential 
relaxation of the magnetization with a time scale T ,  - r ( d  /2A) ,  where d is the period of the 
domain structure, and A is the width ofa domain wall. Comparison reveals that the theoretical 
curves for the jump in the magnetization in the first step and for the magnetization relaxation in 
the second step agree well with the experimental curves. A new method is proposed for measuring 
the properties of an induced magnetic anisotropy . 

1. INTRODUCTION 

Some problems of importance in physics today involve 
the existence of nonlinear solitary waves, i.e., solitons. Prob- 
lems involving the motion of solitons have been analyzed 
and have been used to describe the properties of real con- 
densed media for many important physical entities.' Promi- 
nent among these problems are those concerning the dynam- 
ics of domains and domain walls in magnetic materials2v3 
which can be viewed in terms of magnetic  soliton^.^ For none 
of these problems, to the best of our knowledge, has there 
been a detailed study of the motion of solitons (e.g., domain 
walls) in media with a memory. 

In the physics of real magnetic materials and in related 
applications, on the other hand, it is important to reach an 
understanding of the magnetic losses which occur in magne- 
tically soft materials. These losses are determined to a large 
extent by the magnetic viscosity and by the magnetic after- 

While the eddy-current loss-another important 
relaxation mechanism-has been studied thoroughly, this 
cannot be said of the manifestations of a magnetic after- 
effect. This problem requires further study at the level of the 
microscopic mechanisms and also at the macroscopic level, 
corresponding to a description of the changes which occur in 
domain structures and in the dynamics of domain walls.') 
The magnetic aftereffect is intimately related to the induced 
magnetic a n i ~ o t r o ~ ~ . ~ '  We will be discussing this question 
below. One reason for this unsatisfactory state of the ques- 
tion, in our opinion, is the complexity of the actual domain 
structure of bulk magnetic materials such as alloys of the 

Permalloy type, silicon iron, etc. This structure is character- 
ized by domains which are not in a 180" neighborhood, an 
irregular arrangement of domains, etc. Another important 
factor is that it is difficult to directly observe domains in 
these magnetic materials. 

Epitaxial films of an yttrium iron garnet with a partial 
substitution of cobalt for iron were used as models in Refs. 7 
and 8 for studying many pertinent aspects of this problem. 
Many of the distinguishing features mentioned above are 
seen in these magnetic materials. There is a strong magnetic 
aftereffect. There are also domain walls which are not in a 
180" neighborhood. This model material has an advantage 
over materials of the Permalloy type in that it has a high 
magnetooptic figure of merit, a domain structure which runs 
completely through the material, and a domain structure 
which is fairly regular. It thus becomes possible to carry out 
a detailed study of the magnetization reversal by magne- 
tooptic methods, both quasistatic and dynamic. Preliminary 
studies of the magnetic reversal of these magnetic materials 
with the help of pulsed fields7 have demonstrated several 
aspects of the dynamics of the domain walls which, in our 
opinion, cannot be explained by the existing theories. We are 
thinking primarily of the slow relaxation of the magnetiza- 
tion, with a time scale ranging up to minutes. 

In this paper we are reporting an experimental and 
theoretical study of relaxation in the magnetization reversal 
of these materials. Using specific analysis of the dynamics of 
domain walls in this system, we point out some new general 
features of the motion of nonlinear perturbations (solitons) 
in physical media with a memory effect. 
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2. TEST SAMPLES AND EXPERIMENTAL PROCEDURE 

The test films (with the composition 
Y2Ca,Fe,,,Coo., Ge,O,,) were grown by liquid-phase epi- 
taxy from a PbO-B203 molten solution on a substrate of 
gadolinium-garnet cut perpendicular to the [ 1001 axis. The 
growth procedure is described in Ref. 9. The films have a 
saturation magnetization 4aMs = 80 G (here and below, all 
properties are given for room temperature). A study of the 
ferromagnetic resonance showed that the energies of the nat- 
ural cubic anisotropy and of the effective uniaxial anisotropy 
(consisting of the growth anisotropy and the shape anisotro- 
py) are comparable and are characterized by the respective 
constants K, = - lo4 erg/cm3 and K, = - 2.5.103 
erg/cm3 (Ref. 8 ) .  This anisotropy is responsible for the non- 
180" domains: In the domains, the magnetization vector 
makes an angle 6'. - 60" with the normal to the film, and the 
angle through which the magnetization rotates in a wall, 
a - 26'. , is approximately 60" (Ref. 8) .  The domain struc- 
ture of the demagnetized samples is labyrinthine, with slight 
variations in the relative proportions of the various phases 
due to a small deviation of the uniaxial-anisotropy axis from 
the normal to the film.8 

The magnetic aftereffect is manifested in an interesting 
way: a shape memory of the domain structure.' Specifically, 
in the case of magnetization to saturation by a pulsed field 
with a pulse length up to a few seconds, the shape of the 
labyrinth is restored after the field is turned off and after the 
subsequent relaxation. 

To study the magnetization relaxation, we studied the 
reconstruction of the domain structure after the application 
of saturating field pulses. The pulse length was varied from 
10 ms to a few seconds; the pulse height was -7 70 Oe, suffi- 
cient to saturate the film. Specifically, we measured the time 
evolution of the average magnetization of the film after the 
application of the pulse. The magnetization was determined 
from the Faraday effect as linearly polarized light passed 
through the film. The experimental magnetooptic apparatus 
was controlled by a PC, with a special built-in card. This 
apparatus also made it possible to automatically determine 
the external conditions, e.g., the magnitude and time evolu- 
tion of the applied magnetic field. This apparatus enabled us 
to record and to store in the computer memory, for averag- 
ing and processing, the quantities which determine the mag- 

netization of the film, etc. The optical layout of the appara- 
tus is similar to that described in Ref. 10. 

This is an appropriate procedure for these particular 
samples, since small rotations of the polarization of the light 
(a  fraction of a degree) lead to a significant scatter in the 
experimental points, because the films are thin. The time 
resolution was better than 1 ms. 

It turned out that the experimental time dependence of 
the Faraday rotation angle g, after the field pulse is deter- 
mined to a large extent by the length of the pulse (Fig. 1 ). 
We can see several main stages on this time dependence. For 
clarity we will be discussing the characteristic behavior in 
terms of the normal component of the magnetization, ex- 
pressed in units of the saturation magnetization, Mscos6'., 
instead of in terms of the angle p. 

In the first stage, just after the pulse ends, the magneti- 
zation decreases very rapidly (in practice, over a time 
shorter than the time resolution of the apparatus). The char- 
acteristic velocity of the domain walls in this stage was deter- 
mined in Ref. 1 1 by high-speed photography. It was found to 
range up to 200 m/s. After this stage, the magnetization 
assumes a certain value Mo which is different from both M, 
and the remanent magnetization M,. Interestingly, this val- 
ue is determined by the pulse length D. Figure 2 shows Mo 
versus D. The characteristic value of D at which the sharp 
change in Mo occurs turned out to be on the order of 0.1 s. 
The subsequent stages of the demagnetization are far slower, 
with time scales on the order of tens of seconds. An attempt 
to describe this relaxation by a law 
M(t)  - M, ) a exp ( - t /T, ) showed that the typical relax- 
ation time T, in the initial stage was hundreds of times that in 
the final stage. This nonexponential behavior is not unique. 
Models with several relaxation times are presently used to 
describe experimental results on ferrites, alloys of the Per- 
malloy type, and other materials6 However, these models 
are unsuccessful in describing the present experiments, pri- 
marily the Mo(D) dependence. We show below that a com- 
prehensive description of the entire set of experimental data 
can be generated on the basis of the theory presented below, 
which has only one relaxation time, T (which characterizes 
the magnetic viscosity of the material), but which takes the 
dynamics of the non- 180" domain walls into account system- 
atically, with allowance for the magnetic aftereffect. 

FIG. 1. Time evolution of the Faraday rotation angle q, 
for three lengths of the field pulse, D. 0-D = 0.5 s; 
*-D = 0.4 s; 0-D = 0.02 s. Here t = 0 is the time at 
which the pulse ends. For the lower group of points, 
the value of the angle q, at t < 0 (before the application 
of the field pulse) is pz0.051" and corresponds to a 
demagnetized state; for the upper group of points, the 
value is qz0.2 1" and corresponds to a saturation state. 
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FIG. 2. The normalized magnetization M, established immediately after 
the end of the pulse, versus the length of the field pulse, D: 
x,(D) = M,(D)/M,. The points show experiinental data. The solid line 
was plotted from Eq. (15) with the parameter values ~ / k  = 0.41, 
T = 0.016 s, and x, = 0.53. 

3. THEORY 

The magnetic energy, which determines the structure of 
the domain walls in the material of interest here, can be writ- 
ten as the sum of two terms: 

where m is a unit vector along the magnetization. 
The first term incorporates the strongest interactions, 

which determine the equilibrium values of the magnetiza- 
tion in the domains and the structure of possible domain 
walls, i.e., the nonuniform-exchange energy and the energies 
of the uniaxial and cubic anisotropies: 

W ,  {m) = d r { A  (Vm)'+ Kt  (m~m, '+m.2m~z+m~m~2) 

where K ,  and K ,  are the constants of the cubic and uniaxial 
anisotropies, and A is the nonuniform-exchange constant. If 
only W, is taken into account, the position of the domain 
wall in the material is not fixed. 

The second term in ( 1 ) represents the weaker interac- 
tions which determine the position of the domain wall. Fore- 
most among them is the magnetic-dipole energy in the exter- 
nal magnetic field H. This energy determines the period of 
the domain structure and also the energy (the induced mag- 
netic anisotropy ). As we will see below, the induced magnet- 
ic anisotropy in our case (with non- 180" domain walls) is a 
source of magnetic viscosity. It determines the dynamic and 
relaxation properties of the domain walls. We choose 
W,{m) in the form 

Here H, is the demagnetizing field, and wi(m) is the energy 
density of the induced magnetic anisotropy. In the dynamic 
regime this energy density depends not only on the orienta- 
tion of m at the given time t but also on the orientation of 
m(t ') at earlier times t ' < t. In other words, wi{m) is a func- 

tional of m(t) .  In the approximation of a single time con- 
stant r characterizing the relaxation of the induced magnetic 
anisotropy, we can write the following expression for wi{m) 
in the dynamic regime as  follow^:^ 

where the function w', (m,ml) determines the change in the 
energy of the material which occurs when the magnetization 
m is rotated rapidly after it has been directed along m' for a 
long time. In a cubic material w', (m,m1) is given by an 
expression which was first proposed by Ntel? 

where F and G are the constants of the induced magnetic 
anisotropy. The energy density in (1 ), with (2)-(5), deter- 
mines the dynamics of the magnetization. This dynamics is 
described by the Landau-Lifshitz equation 

whereg is the gyromagnetic ratio, and R is a relaxation term 
describing the intrinsic magnetic relaxation. We wish to 
stress that R does not determine all relaxation processes. We 
know that retardation effects due to the induced magnetic 
anisotropy also result in a relaxation of the magnetization 
energy. In the approach of this paper, these effects are em- 
bodied in the dynamic part of Eq. (6).  

For our analysis it is convenient to go over to an equa- 
tion for the position of the center of the domain wall. This 
reduced equation can be derived from (6)  in the usual way, 
on the basis of soliton perturbation theory.' These equations 
are widely used for domain walls in magnetic materials. 
They are usually written in the form Ax(?) = F(x ( t ) ) ,  
where x is the coordinate of the domain wall, and the viscos- 
ity constant A is determined by R (Ref. 2; the inertial effects 
determined by the term mx are usually small, and we will not 
discuss them here). The force F(x)  is given by the expres- 
sion F(x)  = - JV(x)/dx, where V(x) is the energy in ( 1 ), 
expressed per unit area of the domain wall and calculated for 
the magnetization distribution corresponding to a planar do- 
main wall centered at point x. In the usual case (without a 
magnetic aftereffect), the energy V(x) and the force F(x)  
are ordinary functions of x ,  and F (x )  is a potential force. 
When induced magnetic-anisotropy effects are taken into 
account, F (x )  depends not only on the value ofx at the given 
instant but also on the history. 

For our case, V(x) is determined exclusively by W, and 
can be written 

V(x)=Vi(x)+Vm(x)+VI(x) 
+ m 
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where the coordinate 6 runs perpendicular to the plane of the 
domain wall. 

The dipole energy Vm (x)  determines only the potential 
force which fixes the equilibrium position of the domain 
wall. We approximate it by the quadratic expression 

vm (x) =kx2/2, (7a) 

where we put the origin for the x scale at the equilibrium 
position of the domain wall. The energy of the domain wall 
in the external field is simply 

In order to calculate the coefficients k and h, we need to 
specify the particular domain structure of the material. 

Let us consider the particular domain structure in a 
Y1G:Co film. This magnetic material has four easy axes be- 
cause of the relations K, < 0 and K,, > 0 (in the case K, = 0, 
these axes coincide with [ 1 11 ] axes). In spherical coordi- 
nates m = ( cos$ sin 8, sin $ sin 8, cos 8) the equilibrium 
orientation of m in the domains is determined by the angles 
8. = arcsin d m ,  where q = 2K, / I  K, I and 
p : = ?r/4 + nr/2. The index n = 1,2,3,4 specifies the easy 
axis. Accordingly, there are domain walls of four types in a 
Y1G:Co In these walls, m rotates from 8, to .rr - 8. 
in the plane defined by the angles g, ", For the most favorable 
Bloch domain wall (a  planar wall), we can use the standard 
minimization procedure with (2) to write an equation which 
determines the structure of the domain wall: 

where 1, = 2 d / 3 .  The structure of the domain wall is 
determined by elementary integration of (8): 

tg e=tg 8. cth (ElA), A=l,/sin 0. cos 0., (8') 

where A is the thickness of the domain wall. 
We turn now to the contribution of the induced magnet- 

ic anisotropy, which determines the basic effects in our prob- 
lem. The application of Vi(x) gives rise not only to a poten- 
tial force but also to reversible phenomena, in particular, 
additional viscosity.'.6 For a specific calculation of Vi(x,t), 
we need to substitute into (4) and ( 5 )  a specific rotation 
m (8(6 - X) ) in domain wall (8), ( 8') and integrate over g. 
For Vi(x,t) we then find 

dt' 
v ( x , ~ ) =  J - - c r p ( ~ ) ~ ( x , x ( t ~ ) )  

0 

The function E (x,xf ) is 

where w', (8,8') = w', (m(8),m(Br) ). If the domain wall 
spends a sufficiently long time ( t & r )  in its initial position 
x(O), then we have Vi(x,O) = Z (x,x(O) ) in (9) .  The func- 
tion E(x,xl) can be evaluated easily in the two limiting cases 
(x-xr14Aand (x-xl l&A: 

The constants p and E in ( 10a) are given in general by 

where Ei(8,8') = d 2EL (8,Bf)/d8d8'. It is important to 
note that the distinctive features of the magnetization rever- 
sal in Y1G:Co are intimately related to the fact that the do- 
main walls are not 180" walls and E#O. It is this circum- 
stance which determines the shape memory of the domain 
structure7 and also the jump and then the slow relaxation of 
the magnetization. Using (5 )  and (8) ,  we can calculate p 
and E :  

The function g ( 8, ) in ( 1 1 ) is 

g(0.)= (1116 cos 0. sin 0.) {[cos (20.) (n-20.) 

+sin 20.1 (6f+S) -sin (28.) (2f-1) ), f=F/G. 

A simple calculation (Ref. 8, for example) yields k and 
h also. In our model, they are 

where 77 is a numerical coefficient with a value 7 - 1, d is the 
period of the domain structure, and the field H is directed 
along the normal to the film H = I H I. These equations make 
it possible to write the equation which we are seeking, for the 
instantaneous coordinate of the domain wall. It turns out to 
be a rather complicated nonlinear integral equation: 

+ k x + ~ = h ,  sign (2 )  +h ( t ) ?  (13) 

where f l  (x,xl) = (d  /ax) z(x,xl) .  
In writing ( 13) we have also taken account of the coer- 

civity of the material, by means of the parameter h, 
= 2MHccos8., where Hc is the coercivity field. 

Let us examine the properties of the integral operator in 
( 13) in various limiting cases. We first note that a detailed 
analysis can be carried out for extremely slow motions, with 
x( t )  -0 (we will refine the inequality below). In this case we 
have f l (x ( t ) , x ( t l ) )  z p [ x ( t )  - x ( t l ) ]  z p x ( t )  ( t  - t ' )  
+ o( (x~ /A)~ ,x? /h ) .  The integral in ( 13) can then be cal- 

culated. The integral operator is replaced by pr (a /d t ) .  It 
leads to a renormalization of the viscosity coefficient A:A 
+A + pr. This simplification is legitimate, however, only 
under the rather strong inequalities XT 4 A and TX <Xi.. As we 
will see below in the exact formula, these inequalities may 
not hold. 
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The second limiting case is a rapid motion of the do- 
main wall: XT) A. AS was mentioned in Ref. 13, the dissipa- 
tive part of the integral operator is small in this case. At t)  7, 
this operator is approximately E sign(x) + o(A/xr), and it 
describes a potential force acting on the domain wall. This 
case is pertinent to a description of the motion of a domain 
wall under the influence of an external field and also just 
after a field pulse in the first step of the experiment, during 
the rapid motion. 

The assertions made above concerning the particular 
features of the motion of solitons in memory media are fairly 
general. When the soliton moves slowly, so that the medium 
has time to relax in the region in which the soliton is local- 
ized, the effect of the medium on the soliton is of the nature 
of a viscous damping force. When the motion is sufficiently 
rapid, the soliton is moving through a medium which does 
not have time to adjust. In this case the force exerted by the 
medium is a potential force. 

We will model the magnetization reversal in terms of a 
single effective domain wall. This is of course an approxima- 
tion, but it leads to a rather good description of the basic 
effect, the motion of the domain wall under the influence of 
the restoring force when there is a pronounced magnetic vis- 
cosity. The model of the motion of the domain wall is as 
follows: We assume that, over the duration of the field pulse, 
the domain wall moves a large distance away from its equi- 
librium position x = 0 and then returns to this state. By tak- 
ing this approach, we can avoid discussing the processes by 
which the domain wall is nucleated after the field is turned 
off. This approach is sufficient for our problem. Specifically, 
the slow motion in which we are interested here occurs from 
the position of the domain wall, x = x,, which is smaller 
than the period of the domain structure, d. According to 
experiments, the nucleation of the domain wall is a very rap- 
id event and can be classified as a fast step, which we would 
not have to discuss in detail for our purposes here. 

Skipping over the details, we write an expression for the 
relief which is set up by the induced magnetic anisotropy and 
which determines the motion of the domain wall just after 
the field pulse is turned off, provided that at this instant the 
coordinate of the domain wall is x = r, where r)d: 

a v i  
-= Q (x, r)+ [ Q  (x, 0) -52 (x, r) I ecD". 
dx (14) 

We can use this equation to study the motion of a do- 
main wall during the fast step of the return to the equilibri- 
um state. Specifically, it follows from Eq. ( 13), with ( 14), 
that if the pulse is long enough that the relief set up by the 
induced magnetic anisotropy does not have time to relax 
(see Fig. 3 and the associated caption) then the domain wall 
does not reach the equilibrium position x = 0. It instead 
stops at the point x,(D). An expression for x,(D) can be 
found from the equation kx = h, + dVi/dx, where 
(dv'/dx) is given by ( 14). Taking account of the asympto- 
tic expressions for fl(x,r),  we can write explicit expressions 
for x,(D) in various limiting cases. We restrict the discus- 
sion to the most pertinent case, x, (D) % A (a smaller value of 
x, could not be determined experimentally). In this case we 
have 

FIG. 3. Time evolution of the potential relief in which the domain wall 
moves in a self-consistent fashion: V(x,t) = Vf(x,t) + Vm(x).  The solid 
line shows the overall potential relief V(x,t), which is the sum of the 
magnetostatic energy Vm(x) (shown by the dashed line) and the energy 
of the induced magnetic anisotropy, VC(x,t) (the dot-dashed line). a- 
The relief before the application of the field pulse, at t < - D; &the relief 
immediately after the field pulse, at t = 0, with D$r[xo = xo(D) is the 
initial position of the domain wall after the jump]; c-at an intermediate 
time, at which there is a constant, self-consistent adjustment of the energy 
of the induced magnetic anisotropy toward the instantaneous position of 
the domain wall, x ( t ) ,  as this wall moves toward its equilibrium position. 

When effects of order A/x, are taken into account, this 
dependence is described by a smooth function. However, the 
actual corrections of this type to ( 15 ) are unimportant in an 
analysis of experimental data. An important point is that in 
the case D, T (the case of most interest), the value of x,(D) 
remains nonzero as h, -0 and is determined not by the coer- 
civity but by the substation modification of the induced mag- 
netic anisotropy. Experimental and theoretical plots of 
x,(D) are shown in Fig. 2. 

According to the ideas developed above and also ac- 
cording to the experiments, after the domain wall quickly 
reaches the point x = x,(D) it begins to move, considerably 
more slowly, toward the original equilibrium state (x = 0 
and h, -0). This step of the evolution should be described 
by means of the exact integral equation. We solve this equa- 
tion under the assumption Ix(t) - x ( t  ') l < A for t - t ' < T, 
and we verify this assumption below. 

Under this condition, and with allowance for the cir- 
cumstance that the integral is dominated by the region 
t - t l < r ,  by virtue of the exponential function 
exp [ ( t  ' - t ) / ~ ] ,  we can approximate the kernel of the inte- 
gral operator by the expression f l  (x,xl) z p ( x  - x'). We 
omit the dissipative term with Ax from ( 13), since the effec- 

101 7 Sov. Phys. JETP 74 (6), June 1992 lvanov etal. 101 7 



tive dissipation associated with the induced magnetic anisot- 
ropy is usually much greater than the intrinsic magnetic dis- 
sipation in the iron garnets. Equation ( 13) then becomes 
linear in x: 

x ( t )  -x,= (x, (D) -x,) e-"' 

where x, = h,/k, and we measure the time t from the end of 
the pulse. 

Multiplying ( 16) by e 'IT, and differentiating it with re- 
spect to the time, we can go over from an integral equation to 
the differential equation 

This equation can be solved easily. As a result we find an 
equation for x ( t ) : 

where x = p/k. This parameter plays an important role in 
the analysis below. The value of x is determined by the rela- 
tion between the dipole energy and the induced magnetic 
anisotropy. In other words, it depends on the properties of 
the material (2?rM:,F, and G) and also the type of domain 
structure. To estimate x it is sufficient to assume 
k~2?rM;/d, where d is the period of the domain structure, 
and p=: max(F,G)/A. We then find 
x-(  max(F,G)/2?rM:)(d/A))l. From (11) and (15) 
we also find the simple estimate x=xO(D = UJ ) /A)  1. We 
turn not to an analysis of ( 18). For t)r,  x ( t )  tends toward 
x, in accordance with x ( t )  - x, -- (xo(D) 
-x,)exp( --t/r,), where T, = r ( 1  + X)=TX. The pa- 

rameter r,, which characterizes the relaxation of the coordi- 
nate of the domain wall, x, and therefore the relaxation of the 
magnetization of the film after the field pulse in the last stage 
of the relaxation, is considerably longer than the relaxation 
time of the induced magnetic anisotropy,~. We will write out 
some specific estimates below. If we instead take t<r ,  we 
find that the parameter x does not appear in the result at all if 
x ) 1, and the characteristic relaxation time is determined by 
7. 

Equation ( 18) thus determines the complicated nonex- 
ponential relaxation of the magnetization. This relaxation is 
described by a broad spectrum of relaxation times from T to 
xr,  as in an analysis of the experimental dependence M(t) .  
Before we go into a detailed description of the experimental 
data, we wish to verify our assumption 
Ix(t) - x ( t  - r) / <A, which we usedin writing (16). It fol- 
lows from (18) that with x )  1 this assumption is clearly 
valid at t ) ~ .  It turns out, however, that the initial velocity of 
the domain wall, x(O), is determined by the first term on the 
right side of ( 16) and is completely independent of the par- 
ticular form of the kernel 0(x,x1) in the second integral 
term. The same value of the initial velocity, 
x(0)  = (xo(D) - x, ) ( - l / r ) ,  follows from (18). It can 

thus be asserted that Eq. ( 18) is valid not only for t)  T but 
also for 0 < t < ~ .  In other words, this equation can be used 
throughout the stage of the slow motion of the domain wall 
after the initial jump. 

4. DISCUSSION OF RESULTS 

The theory gives a description of thex ( t )  dependence in 
the slow stage of the motion as a general formula for various 
values of D and for a wide interval oft values. We would like 
to compare this dependence with the experimental demag- 
netization curve. To describe the motion of the domain wall, 
we convert the experimental dependence M(t )  into an effec- 
tive displacement of the domain wall. This displacement is 
described by the dimensionless coordinate x, with the value 
x = 1 associated with the state of the film magnetized to 
saturation. With the equilibrium initial value x = 0 we asso- 
ciate the state of the film corresponding to an equilibrium 
domain structure (in this state the magnetization is nonzero, 
since the volumes of the domains are unequal because of the 
inclination of the axis; Sec. 2). Figure 4 shows curves ofx ( t)  . 
In a similar way, we plot the dependence xo(D) correspond- 
ing to Mo(D) (Fig. 2). 

We determine the parameters of the problem, i.e., T, x, 
and ~ / k ,  by the method of least squares. The results of this fit 
ofthex (t,D) curves (Fig. 4) reveal good agreement between 
theory and experiment. This fit yields the values T = 23 ms, 
x = 1350, &/k = 0.32, and x, = 0.53. These values agree 
well with the values found by a fit based on the xo(D) de- 
pendence (Fig. 2): r = 16 ms, &/k = 0.41, and x, = 0.53. 

There is some discrepancy here, which we do not regard 
as important. It may stem from the simplifications which we 
made in some secondary aspects of the problem. First, there 
was the assumption that the restoring force is a linear func- 
tion of the displacement of the domain wall. Second, there is 

FIG. 4. Time evolution of the normalized magnetization, 
~ ( t )  = M ( t ) / M , ,  in the second, slow stage of the relaxation, for 
three values of the length D of the field pulse. The points are experi- 
mental: 0-D = 0.5 s; A-D = 0.04 s; C D  = 0.02 s. The solid 
lines were calculated from (18) with the following values of the 
adjustable parameters: ~ / k  = 0.32, T = 0.023 s, x = 1350, and x ,  
= 0.53. 
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the approximation that there is only a single, effective do- 
main wall (in a real material there would be a labyrinthine 
domain structure). 

For an independent theoretical estimate of the param- 
eter x ,  we use the formula x = x,(D = co )/A. Since 
M,(D) = 0.9Ms (Fig. 2),  we assume xo(D = co ) z d  /2, 
where d is again the period of the domain structure. Accord- 
ing to Ref. 8, it is d-20 pm. Taking A -- l o 6  cm, we find 
x -- lo3, in agreement with the value found by the fitting pro- 
cedure. 

On the basis of the correspondence between the theo- 
retical and experimental curves and also the correspondence 
between the parameter values found from the fit and the 
estimated values of these parameters, we can assume that the 
theory proposed here, which takes systematic account of the 
effects of the magnetic aftereffect in the nonlinear dynamics 
of a domain wall, is a good picture of the experimental situa- 
tion for this magnetic material. 

There are two points we would like to mention. The 
behavior which we have revealed here suggests a new meth- 
od for measuring rand also the field of the induced magnetic 
anisotropy, HIMA -- max(F,G)/Ms. We believe that this 
method can compete with the classical methods.'z6 To mea- 
sure r it is sufficient to analyze the x,(D) dependence. Spe- 
cifically, from the value D = D, corresponding to x, = 0 we 
immediately find the value T = (In 2)  0 , .  It is simple to find 
the field of the induced magnetic anisotropy from the 
asymptotic behavior of x,(D) as D-+ cc . Here it is sufficient 
to find E from ( 10c) and ( 15); the coefficient k can either be 
calculated or found from independent quasistatic measure- 
ments. The error associated with the quadratic approxima- 
tion of the restoring force can be reduced through an exact 
calculation of the restoring force and through a correspond- 
ing refinement of the expression for x,. 

The methods described here for measuring the param- 
eters of the induced magnetic anisotropy are directly appli- 
cable only to non-180" domain walls. However, they can be 
modified to apply to magnetic materials with 180" domain 
walls. It would be sufficient, for example, to magnetize the 
film in an oblique field. After the pulse, the different do- 
mains are nonequivalent. As a result, we find the picture 

drawn above, with a jump of the domain wall to a position 
x,+O, followed by a slow relaxation to the true equilibrium 
position. 
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