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We show that the results of the theory of a degenerate weakly imperfect Bose gas, including an 
expression for the spectrum of the eigenmodes and the free energy can be obtained from the usual 
diagram technique in which one uses a single-particle distribution, taking into account the 
presence of a Bose condensate. Within the approach developed here the dynamic structure factor 
of a weakly imperfect Bose gas at a finite temperature has an additional maximum in the vicinity 
of the tiw = E,  curve which agrees with the experimental results for superfluid helium. 

1. The presently available microscopic theory of a 
weakly imperfect Bose gas is based upon Refs. 1 and 2, where 
in the T = 0 case a special approach was developed for the 
single-particle Green functions; it was connected with separ- 
ating the consideration of the particles in the Bose conden- 
sate and in the supercondensate states. The detailed analysis 
of the corresponding results and the special diagram tech- 
nique have been expounded in detail in review articles3v4 and 

At the same time, it is well known that the 
need to take the Bose condensate into account is shown by an 
analysis of the single-particle distribution function of a per- 
fect Bose gas at arbitrary temperatures. Moreover, there is a 
unique expression for that function also at temperatures be- 
low the Bose condensation temperature. From that point of 
view it seems reasonable to apply the usual perturbation the- 
ory diagram technique taking into account the influence of 
the Bose condensation at the level of the single-particle dis- 
tribution function.' 

Another important point is that by now we have de- 
tailed information about the spectrum of the eigenmodes in 
superfluid helium (see Ref. 9).  This information was ob- 
tained from the data about the maxima of the dynamic struc- 
ture factor S(k,w) for fixed values of the wave vector k. This 
means, in particular, that the known single-roton curve 
characterizes the pole of the "density-density" Green func- 
tion, and not that of the single-particle Green function. This 
fact was taken into account in Refs. 10 to 13 where the "den- 
sity-density" Green function was also considered on the ba- 
sis of a special diagram technique. However, there exists 
within the framework of the usual diagram technique a well- 
known permittivity formalism which has been successfully 
used for a study of the spectra of eigenmodes in condensed 
media. l 4 . l 5  

Finally, the dynamic structure factor measured in su- 
perfluid helium has one special feature. Apart from the 
maxima connected with the phonon-roton spectrum and the 
two-roton state,I6 yet another much less pronounced maxi- 
mum was observed, the position of which is well described 
by the energy curve of a free helium atom.".I8 If one as- 
sumes that this maximum corresponds to a well defined 
eigenmode branch, it is clear that this will contradict Lan- 
dau's condition for the existence of superfluidity. To explain 
this maximum one therefore used a statement such as a local 
violation of s ~ ~ e r f l u i d i t ~ . ' ~  As a result, a special experiment 
was carried out2' and its authors stated that there was no 

such maximum. However, an analysis of the results given in 
Ref. 20 enabled one to speak only of a possible shift of its 
position. 

In the present paper we show that the classical results of 
the theory of a degenerate weakly imperfect Bose gas, in- 
cluding an expression for the eigenmode spectrum and the 
free energy, can be obtained applying the usual temperature 
diagram technique, taking into account the effect of the Bose 
condensation at the level of the single-particle distribution 
function. A numerical analysis of the expressions obtained 
for the dynamic structure factor at finite temperatures en- 
ables us to explain the experimental features of the S(k,w) 
function in superfluid helium. 

2. We consider a many-body system of density n at a 
temperature T which consists of interacting zero-spin Bose 
particles and which is characterized by the Hamiltonian 

Here ii: and ii, are, respectively, the creation and annihila- 
tion operators of particles with momentum fip, 

ep=fi2p'/2rn. v ( k )  = j dr ex* ( - ib )v  ( r ) ,  

m is the particle mass, ~ ( r )  is the interparticle interaction 
potential, and V is the volume of the system. 

By definition the dynamic structure factor is equal to7 

where 

is the operator of the particle-number density fluctuations in 
the Heisenberg representation and ( . . . ) is an average over a 
krand canonical Gibbs ensemble with the exact Hamiltonian 
H of ( 1 ). The dynamic structure factor S(k,w) of (3)  is 
directly connected with the retarded "density-density" 
Green function L R(k,z) which is analytical in the upper 
complex z half-plane.' 
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The definitions ( 3 ) and (5) must be understood in the ther- 
modynamic limit: V-  m, N -  CO, n = N/V = const, where 
N is the average total number of particles in the system. 

Equation (4)  is the basis for the evaluation of the func- 
tion S(k,o)  for quantum systems, using perturbation theory 
diagram technique methods.I5 The retarded Green function 
L R(k,z) of ( 5 )  is the analytical continuation of the appro- 
priate temperature Green function L T(k,ifl, ), 

with a discrete set of points, in ,  = i2mT, on the imaginary 
axis, onto the upper complex z half plane.5 We can write 
down a diagram representation for the function L '(k,ifl, ) 

which is connected with splitting off the so-called polariza- 
tion operator2' H (k,ifl, ) which is the irreducible part in the 
"k channel" with respect to a single interaction line ~ ( k )  
(see Appendix) 

LT(k, iSZ,)=II (k, iQ,)+TI (k, iS2,)v (k) LT (k, ii2,). (7)  

After analytical continuation it follows from (7)  that 

LR (k, z) =TI (k, z) /e (k, z) , (8)  

where the function ~ ( k , z )  is called the dielectric permittivity 
(by analogy with the terminology used in plasma theory), 

e (k, z) =I-v(k)II (k, z). (9)  

Hence, using (4),  we have 

It follows from ( 10) that the function S(k,w) has a well 
defined maximum for a given value of the wave vector k in 
the range of frequencies w where 

Re E (k, o+iO) =0, (12) 

However, it is well known from the theory of plasma sys- 
tems,I5 that Eqs. ( 11) and ( 12) are, respectively, the condi- 
tion for the existence of and the dispersion equation for the 
longitudinal density eigenmodes. One can easily verify this 
by taking it into account that when a weak scalar field 
pext (r,t) acts on the system the average density fluctuation 
Gn(r,t) is determined by the relation (in fourier compo- 
nents)' 

612 (k, o) =LR(k, o+iO)cpezt (k, a). (13) 

The pole of the Green function L R(k,z) in the lower com- 
plex z half-plane will thus determine the temporal behavior 
of the average density fluctuation. 

It follows from( 8 ) that the pole of the function L (k,z) 
can be found from the dispersion equation 

E (k, z) =O. (14) 

which is well known in plasma theory.I5 As usual, one can 
only speak of an eigenmode spectrum if the eigenmodes are 
well defined: 

If we use ( 15), the dispersion relation ( 14) takes the 
form 

Re E (k, o (k))=O: (16) 

which is completely equivalent to conditions ( 11) and ( 12) 
for the existence of a well defined maximum of the function 
S(k,w). The position w,,, ( k )  of the function S(k,w) can 
thus characterize the spectrum w ( k )  of the eigenmodes in 
the system considered only if conditions ( 1 1 ) and ( 15) are 
satisfied. In experimental studies the condition (15) is 
usually treated as stating that the halfwidth of the maximum 
is small as compared to the value of w,,, (k) .  

We note further the possibility of a nonmonotonic be- 
havior of the function S(k,w) which is not connected with 
the existence of eigenmodes in the system. The correspond- 
ing maxima will no longer satisfy the condition that they are 
well defined. Moreover, their occurrence is caused just by 
the violation of relation ( 1 1 ) . We are dealing with the so- 
called "strong absorption" region where 

It follows from (10) that in this frequency range the 
dynamic structure factor S(k,w) will have a local minimum 
in the vicinity of which inevitably a maximum appears since 
the function S( k,w ) has the following properties: 

The frequency range ( 18) is clearly determined by the 
characteristic energy transitions in the system considered. 
In particular, an appropriate analysis enables us to explain 
the experimental data about the scattering of electron beams 
in metals.14 The well defined maxima in the structure factor 
correspond in metals to the electron plasma modes spec- 
trum. The region ( 18) is then determined by interband tran- 
sitions which also lead to the appearance of maxima, but 
now much less pronounced than in the plasma maxima. 

We shall show in what follows that a similar situation is 
realized in a weakly imperfect Bose gas. The position 
w,,, ( k )  of the well defined maxima of the function S(k,w) 
corresponds to the dispersion equation ( 16) and leads to the 
usual phonon-roton spectrum. And the "strong absorption" 
region (18) is here determined by the frequencies ~ Z E ,  

characterizing transitions of particles from the condensate 
into excited states. If we take ( 19) into account this leads to 
the appearance of an additional maximum in the dynamic 
structure factor in the vicinity of the h = E~ curve, which 
can serve as a substantiation of the experimental results dis- 
cussed in the Introduction. 

3. We have noted already in Sec. 1 that we shall in the 
evaluation of the polarization operator H(k,z) apply the 
usual temperature diagram technique. We then consider, in 
our study of the weakly imperfect Bose gas, the random 
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phase approximation (RPA)-a simple "loop" of single- 
particle Green functions of a perfect gas. In that case we 
have2' 

f p - - ~ / z - l P + k ~ z  nRpA (k ,  iQ.)= , . ( 2 0 )  
b' iQ,,+Ep-k/z-~p+k~z 

Heref, is the momentum distribution function for the per- 
fect Bose gas, 

The important point is to preserve the sign of the summation 
over the momenta. The transition to integration must be car- 
ried out only after an analysis of the distribution function, as 
is done in the theory of a perfect Bose We must then 
consider two temperature ranges. 

1 )  T >  To where To is the Bose condensation tempera- 
ture of the perfect gas, 

r ( x )  is the gamma function, and < ( x )  the Riemann func- 
tion. In that case the function f, is determined by the Bose- 
Einstein distribution, 

with the normalization condition to determine the chemical 
potential pO, 

It is then possible to change in (21 ) directly to an integration 
over momenta. Hence 

d 3 ~  f p - k / Z - f ~ + k / I  I IRpA (k ,  o+ iO)  = j - 
( 2 n ) " f i o + ~ ~ - k / ~ - ~ ~ + k / ~ + i 0  ( 2 5 )  

2 )  T< To. In that case the chemical potential ,uO of the 
perfect Bose gas is equal to zero and the distribution function 
is determined by the relation2' 

and No is the number of particles in the Bose condensate, 

N,=N(l-  (TIT,)") .  ( 2 8 )  

Substituting ( 2 6 )  into ( 2 0 )  we find 

ZIRPA(k, o+iO) =IIO(k,  w+iO) +IIT  ( k ,  o+iO), ( 2 9 )  
2no~k 11° (k ,  o+iO)= , - 2nn,ehi6 (h202-,<)sign o, 

f i Z ~ Z - ~ k  
( 3 0 )  

In the approximation considered the dynamic structure 
factor S ( k , w )  has the form 

It follows from ( 2 7 )  to ( 3 1 )  that in the strong degeneracy 
limit, T( To, it is sufficient in the calculation of the operator 
n R P A  to restrict oneself to taking into account merely KIO 

from ( 3 0 ) .  The position of the maximum of S ( k , w )  is then 
determined by the dispersion relation ( 16) and has the well- 
known form 

Applying the usual temperature diagram technique for 
the single-particle distribution function while taking the ef- 
fect of the Bose condensate into account, thus enables us to 
establish a direct link with the experimental results about the 
positions of the maxima of the S ( k , w )  function which char- 
acterize the phonon-roton eigenmode spectrum. 

Moreover, according to the results obtained it is possi- 
ble for us to take into account temperature effects when de- 
scribing the dynamic structure factor of a weakly imperfect 
Bose gas. The main feature is then that 

) IIT ( k ,  o+iO) 1- m, 
nm+e 

Hence, using ( 3 2 )  we have 

Taking Eq. ( 19) into consideration we arrive at the conclu- 
sion that in the vicinity of the Fiu = E~ curve the dynamic 
structure factor of a weakly imperfect Bose gas shows for 
T <  To a nonmontonic behavior (a  weakly pronounced max- 
imum). A more detailed discussion of this result will be giv- 
en in what follows using numerical calculations. Here we 
stress merely that the maximum in the vicinity of the 
h = E~ curve can as a matter of principle not be connected 
with eigenmodes in the Bose gas since the condition ( 3 4 )  for 
its occurrence violates the validity of ( 15 ) to ( 17) .  The pres- 
ence of such a maximum therefore does not affect the esti- 
mate for satisfying the Landau condition for the existence of 
superfluidity. 

4 .  On the basis of the results obtained for the dynamic 
structure factor S ( k , o )  and the "density-density" Green 
function L =(k , iR , )  we can calculate the static structure 
factor S ( k ) ,  

,. - 
( k )  = 2 ( k ,  j =V-'(Sn, 6n-.) 

- m 
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fect Bose gas. In the strong degeneracy limit, T <  To, this can 
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be done analytically. 
Indeed, for T< To we have according to ( 2 0 )  and ( 2 6 )  

2ner nRPA ( k ,  iQ,) = 11° ( k ,  in , )  = - --- 
S2n2+&k2 ' ( 3 7 )  

Hence, 

no ( k ,  Q,) 
= - 2nek 

LT (k ,  in,) = 
I-v (k) lIO ( k ,  iQn) Qn2+h%2(k) ' 

( 3 8 )  

where w ( k )  is given by Eq. ( 3 3 ) .  
Using the spectral representation for the temperature 

Green functions5 one checks easily that 

Using ( 3 8 )  we find thus that the static structure factor S ( k )  
of a weakly imperfect Bose gas for T g  To is equal to 

From ( 4 0 )  follows in the h ( k )  % T limit the well-known 
result23 

no ( k )  =ek/S ( k )  . (41 

In the opposite limit, h ( k )  < Twe get 

S ( k )  = 2 ~ ~ T / h ~ o ' ( k ) ,  ( 4 2 )  

and in particular 

lim S ( k )  =T/nv ( 0 ) .  
r-0 

Here, as usual,' we have 

Relation ( 4 3 )  must satisfy the general result24 for systems 
with a short-range interaction potential ( 4 4 )  

iim S ( k )  =nTx,, 
k*O 

where x, = - V - ' ( d V / d p )  , is the isothermal compress- 
ibility of the system. Comparing ( 4 3 )  and ( 4 5 )  and bearing 
in mind that the eigenmode spectrum w (k) of ( 3 3 )  for small 
wavevectors has the form 

o ( k )  wsk, ~ = ( n v ( O ) / r n ) ' ~ ,  ( 4 6 )  

we arrive at the conclusion that the quantity S  characterizes 
the isothermal sound velocity. 

To calculate the free energy F of a weakly imperfect 
Bose gas for T g  To we use the general relation24 

( 4 7 )  

Here Po' is the free energy of a perfect Bose gas,22 

and S, ( k )  is the static structure factor ( 4 0 )  for particles 
interacting according to the potential A v ( k ) .  Hence we find 

exp[ f io  (k)/2T.l-  exp[-Ao (k ) /2T]  
n exp [ek/2Tj -exp[ -eh/2T] I 

Substituting ( 4 8 )  and ( 4 9 )  into ( 4 7 )  we find for the free 
energy of a weakly imperfect Bose gas for T< To 

1 
F = - v (0 )  TZ'N - -?- {ek+nv ( k )  - (e,'+2nv (k)er)"'} 

2  
k 

which is exactly the same as the well-known result of Ref. 1 .  
It follows immediately from ( 5 0 )  that the chemical po- 

tentialp of a weakly imperfect Bose gas to first perturbation 
theory order in the interaction is equal to' 

ul- (~F13-JN)T,v =nv ( O ) ,  ( 5 1 )  

which corresponds to the limiting expressions ( 4 3 )  and(45) 
for the static structure factor, if we take into account the 
thermodynamic e q ~ a t i o n * ~  

One can thus state that for a description of a weakly 
imperfect Bose gas below the Bose condensation tempera- 
ture one can apply the usual temperature diagram technique 
of perturbation theory. 

5. The neglect of the contribution of the function IIT 
(k ,w + iO) of ( 3  1 ) to the polarization operator IIRPA 
(k ,w + iO) leads, apart from the above mentioned situation 
in the vicinity of the h ( k )  = ck curve, to a 6-function be- 
havior of the S ( k , w )  function: 

which, strictly speaking, corresponds to the T = 0  case. Tak- 
ing into account that the temperature is finite thus leads to 
the necessity to take into account the function IIT.  In the 
present paper we have used numerical calculations for a 
qualitative analysis of the dynamic structure factor of a 
weakly imperfect Bose gas, taking into account the available 
experimental data for superfluid helium (see Sec. 1 ). We 
then paid special attention to the above mentioned maxi- 
mum of S ( k , w )  in the vicinity of the h ( k )  = E,  curve. In 
this connection we used in our calculations the experimental 
thermodynamic parameters of superfluid helium18 and took 
the Bose condensation temperature To to be 2.17 K. The 
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f i ~ m o x ,  MeV 

FIG. 1.  Positions of the maxima of the dynamic structure factor of super- 
fluid helium at T = 1.2 K. The solid line is the phonon-roton spectrum;'' 
the dashed line the spectrum E, of a free helium atom; the dash-dot line 
shows the positions of the maxima of the function sBG ( k , ~ )  for a weakly 
imperfect Bose gas; the circles are the positions of the maxima om., ( k )  
from Ref. 18. 

nv, MeV 

FIG. 2. Fourier component v (  k )  of the interparticle interaction potential. 

FIG. 3. Dynamic structure factor sBG ( k , ~ )  of a weakly imperfect Bose 
gas at T = 1.2 K. The dashed curves correspond to k  = 0.8 A - I, the solid 
curves to k = 2.2 A ' .  

form of the Fourier components of the interparticle interac- 
tion potential v ( k )  was determined assuming that the posi- 
tions of the maxima of the S ( k , o )  function of superfluid 
helium corresponding to the experimental shape of the 
phonon-roton curve (Fig. 1 ) must correspond to the disper- 
sion relation ( 16) using nRPA from ( 2 9 )  to ( 3  1 ) . The corre- 
sponding results are shown in Fig. 2. The results of the nu- 
merical calculation of the dynamic structure factor S ( k , w )  
using Eq. ( 3 2 )  are shown in Fig. 3. It follows from the above 
consideration that the function S ( k , w )  has, apart from a 
steep maximum corresponding to the phonon-roton spec- 
trum, yet another not very pronounced maximum in the im- 
mediate vicinity of iim = E ~ ,  where S ( k , w )  = 0. The posi- 
tions of these maxima are shown in Fig. 1 and are found to be 
in satisfactory agreement with the experimental results. 

The authors are grateful to L. P. Pitaevskii and A. A. 
Rukhadze for their interest in this work. 

APPENDIX 

It is well known5 that the fact that the average of the 
product of several creation and annihilation operators for a 
system of noninteracting particles can be reduced to prod- 
ucts of pair averages of operators ;,+ ;,--a consequence of 
Wick's theorem-is the main foundation of the standard 
temperature diagram technique. However, when one consid- 
ers a Bose gas at temperatures T below the Bose condensa- 
tion temperature an arbitrarily large number of particles can 
be concentrated in states with zero momentum. The particle 
number density in the ground state ( p  = 0 )  thus tends to a 
finite limit when the total number of particles N and the 
volume V of the system tend to infinity. This leads to the 
necessity to take into account averages of the normal prod- 
uct of the &$ and 2, operators, of the form (;,+ )";:, the 
contribution of which is ignored in the standard temperature 
diagram technique. This fact was taken into account in a 
specially developed formalism for calculating the single-par- 
ticle Green f ~ n c t i o n , ~  the essence of which can be reduced to 
a separate consideration of two parts of this function, corre- 
sponding, respectively, to condensate particles 
(8''' (p,iw, ) ) and to supercondensate particles 
(gT(p,iw, ) ) .  At the same time an analysis of the results of 
the application of the formalism developed in Ref. 2 for the 
calculation of Green functions such as the "density-density" 
Green function L T(k,iQ, ) of ( 6 )  shows that it is possible to 
use partially the rules of the standard diagram technique. In 
fact, we are dealing with a "correspondence rule": if in the 
diagram representation, for instance, for the L T(k , iR , )  
function, written down using the rules of the standard dia- 
gram technique, there are no "blocks" in which the "danger- 
ous" (&$ ) "2: products appear, this representation is valid 
also for temperatures below the Bose condensation tempera- 
ture. In particular, the total diagram representation for the 
L T(k, iR,  ) Green function shown in Fig. 4 [the straight 
lines correspond to the exact Green functions g(p,iw, ) ]  is 
for k#O valid for any temperature and all "dangerous" 
products are contained in the four-point diagram T. Similar- 
ly, one can for T write down a diagram representation which 
is connected with splitting off a part which is irreducible 
with respect to a single interaction line in the "k channel" 
( k # O )  [Fig. 4; the wavy line corresponds to the Fourier 
component ~ ( k )  of the interparticle potential]. As a result 

60 Sov. Phys. JETP 75 (I), July 1992 Bobrov et aL 60 



FIG. 4. 

FIG. 5. 

we are led to Eq. (7)  for the Green function L =(k,iR, 1. For function does not contain unconnected parts. Now splitting 
the known Green functiong(p,iw, ) the solution of the prob- off in the functions F and @"' the parts and q'" which 
lem is thereby focused on the calculation of the irreducible are irreducible in the "k channel" with respect to a single - r. In the present paper we restricted ourselves to a consider- interaction line and using (7)  we obtain 
ation of the simplest case: T = 6 , , ,  corresponding to the 
RPA. It is clear that in that case we have ( i Q n +  E P - * / ~ - & P + ~ I Z ) F ( P ,  k ,  a n ) =  { f p - k / 2 - f p t ~ / ~ )  

][IRPA ( k ,  i ~ 1 , , ) = ~ - ' < 6 ; k  I 6 K k ) ) < r j 7  (53) + V - l  Z V ( ~ ) @ ( C ' ( P , ~ ;  k , i Q n ) 7  (59 
9 

which corresponds to (20) for all temperatures. 
One can obtain a similar result also by using the exact - 

equations of motion. Indeed, according to (6)  when @(")(p, q; lc, i Q , ) = @ ( " ( p ,  q; k,  i Q , ) ~ - ' ( k ,  i Q , ) .  (61) 

we have 

(54) where the permittivity ~ ( k , i R ,  ) is given by Eq. (9) .  In the 
case of a weakly imperfect Bose gas one can clearly neglect 
the last term on the right-hand side of Eq. (59). As a result 
we aeain obtain 

u 

FT ( p ,  k,  i ~ , )  = < ~ i p ? t ~ 2 6 ~ + r 1 ~  1 &-t)(~,, . (55) 

integrating by parts in the definition (55 ) of the Green func- LIMA i~n)=v-'C ( ~ 7  kt i Q n )  

tion F and using the equations of motion for the creation P 
( 0 )  ( 0 )  

and annihilation operators we find =v-l ~ P - * / Z - ~ P + ~ D  

i % - f E p - k / z - & p + k / z  

iQnFT ( p ,  k, iQn) = { f P - k , ~ - f p + k / = }  - ( E P - ~ I Z - E P + ~ I ~ )  

x P ( p ,  k, iQ.) +V"L v ( g )  @'(P- q; k, I%),  (56) which confirms the validity of our considerations. 
9 

where f ,  is the exact single-particle distribution function. 
For the Green functions F of (55) and QT of (57) one can 
also realize a diagram expansion connected with splitting off 
parts which are irreducible in the "k channel" with respect 
to a single interaction line. However, in this case it is neces- 
sary from the beginning to split off the unconnected parts in 
the Green function @T (Fig. 5). This procedure is also valid 
at all temperatures. Hence we have 
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