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We obtain exact results about the dynamics of spatially nonuniform states in a one-dimensional 
X-Ymodel ofS = 1/2 spin. We show that in the t- co limit the system changes, as a rule, to a 
spatially uniform state due to spin-spin interactions. An exception is the behavior of excitations 
with a Q = T wave vector in the isotropic model when the spatial nonuniformity is retained for 
long times. We establish that the damping of nonuniform excitations takes place as t- co 

according to a ( t  / r )  - "power law where the exponent v depends on the form of the initial state, 
the parameters of the models, and the wave vector Q. When we vary Q, the exponent vchanges 
discontinuously at a certain value Q = Q,, where Q, is determined solely by the parameters of the 
basic Hamiltonian. 

1. INTRODUCTION dependent spin averages of the form 

In theoretical studies of the static and dynamic proper- 
ties of one-dimensional spin systems a great deal of attention 
has been paid to exactly soluble This is connect- 
ed with the great theoretical value of exact solutions in gen- 
eral and also with the fact that traditional methods of study- 
ing many-body systems with strong spin-spin interactions 
have turned out to be badly applicable to the one-dimension- 
a1 case. The most appropriate amongst the exactly soluble 
models for the study of the dynamics of one-dimensional 
systems has apparently been the linear X-Ymodel of S = 1/ 
2 spin with Hamiltonian 

[p(t) is the density matrix] which are needed for a descrip- 
tion of processes which start far from equi l ib r i~m.~ .~  

A characteristic feature of those latter results is that 
they were found under the assumption that the initial state 
(the initial excitation) of the system was spatially uniform. 
This specific fact was decisive for the fact that applying the 
methods used in Refs. 2 and 5 one could obtain exact expres- 
sions for the required quantities. On the other hand, the 
problem of the dynamics of spatially nonuniform excitations 
has practically not been considered. However, its study is of 
interest both for the theory of nonequilibrium phenomena in 
spin systems and for experiments since such excitations may 
be produced in a real spin system by external, for instance, 
acoustic, actions. 

where w, and we are the Zeeman and the exchange frequen- We consider in the present paper the dynamics of a one- 
cies, y is the anisotropy parameter (O(y(l), and N is the dimensional, thermally isolated spin system, which is de- 
number of spins in the chain. scribed by the X-Y model of ( 1 ) , when the initial excitation 

First of all, this model allows an exact quantum statisti- is spatially nonuniform. We show that it is in principle p0ssi- 
cal description ofboth the static and of a number of dynamic ble to solve exactly the problem stated here and we study in 

Secondly, theelementary excitations in theX- detail the features of the temporal evolution of a number of 
Y model are of the nature of spin waves which connects it spin averages in various situations. 
with the Heisenberg model, which is more widely used in the 
theory of exchange coupled spin systems, and enables us to 
hope that the results obtained for the X-Y model are of a 
more general nature. Thirdly, it is well known1'-" that the 
X-Y model is suitable for describing the low-temperature 
properties of a number of quasi-one-dimensional com- 
pounds such as PrCl,, PrES, and CsH,P04 which in princi- 
ple makes it possible experimentally to check the theoretical 
conclusions reached. 

Up to recently the main interest in studying the dynam- 
ics of theX-Y model was focused on finding the time-depen- 
dent spin correlation functions of the form ( A  ( t )B ), where 
A  and B are spin operators, 

A (t) =exp (G$t/fi) A exp (-%t/h), 

2. STATEMENT OFTHE PROBLEM AND BASIC RELATIONS 

Let the system considered initially, at time r = 0, be in a 
state described by the density matrixp(0) and let its evolu- 
tion for t > 0 be determined by the Hamiltonian ( 1 ). The 
averages ( A  ), can then be written in the form 

(A>,=Sp [p (0) A ( t ) ]  - - (A  (t)  )". 

Below we consider the dynamics of the spatial Fourier 
components of the magnetization along the Z-axis, ( S  $ ) I ,  

and of the correlation functions (g$) (a,@ = X, Y) of the 
X- and the Y-components of nearest neighbor spins which in 
the Q = 0, a = P case describe the exchange interaction of 
the system. Here we have 

and (...) indicates an equilibrium average with the Hamilto- 
nian ( 1 ), in terms of which one can in the linear response ~ ~ ~ e x p i j ,  j=l 8 Q a 6 - ~ S ~ ~ , : l e x p ( i ~ j ) .  j=l  

approximation express many observable quantities (suscep- 
tibility, scattering cross-sections, and so on) .4.9 Moreover, Q = 2 ~ n / N ,  n = - +N + 1, - +N + 2,...,+N, and N is an 
several exact results were obtained for a number of time- even number. To find the time-dependence of the spin opera- 
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tors we need to diagonalize the Hamiltonian ( 1 ) . The dia- 
gonalization procedure has been well described in Ref. 2. It 
essentially consists in changing from the spin operators to 
Fermi operators Cf ,C, using the Jordan-Wigner formulae 

where 

after which the Hamiltonian ( 1 ) takes the form 

where 

The Hamiltonian X -  is brought to diagonal form by 
changing to a Fourier representation using the formulae 

and a canonical transformation to the Fermi operators 

where 

Up2= (E,+E,)  /2E,, Vp=iEpUpl ( E P + e p ) ,  

ep=-ti ( a p  GOS p+oo) ,  g,=-yA(o .  sinp, (4) 
E,=iiop= { ~ ~ ~ + g ~ ~ ) ' ~ ~ .  

As a result X-  takes the form of the Hamiltonian of a 
system of noninteracting fermions 

[The ground state energy was put equal to zero in Eq. (5)  .] 
The Hamiltonian X +  is diagonalized using the same 

Eqs. (3)-(5). The only difference is that we must put the 
wave vector equal top  = (2n + 1 ) r/N. 

Using the properties of the P' operators the expression 
for ( A  ) , takes the form6*' 

where 

One easily finds the time-dependence of the A  operator by 
changing to the 77; operators (7,- = 77, ) and using the for- 
mula 

In the last stage of finding ( A  ), we average the operators 
A ( t ,  )P * over the initial state which in this part of the 
paper is assumed to be arbitrary and which will be specified 
only in the concluding stage of the calculations. 

To avoid unjustifiedly complicating the calculations we 
shall concentrate our effort in what follows on two limiting 
cases: the isotropic X-Y model ( y  = 0)  and its extreme an- 
isotropic variant ( y = 1 ) corresponding to the Ising model 
in a transverse field, and restricting then the range of values 
of the vector Q to 0 < Q < r .  

3. ISOTROPIC X-Y MODEL 

In the case of the isotropic X-Y model ( y  = 0)  the dia- 
gonalization of the Hamiltonians 2Y" simplifies consider- 
ably. It is completed by the transformation (3)  after which 
the Hamiltonians 2Y' take the form 

where w, = - o, - w e  cosp while we have, respectively, 
p = 2m/Nandp  = (2n + 1) r /N  for X -  and A?+ . 

We illustrate the main points of the further calculations 
by the example of finding the average ( S  'Q ( t )  P - ) . Using 
Eqs. (2) and carrying out the transformation ( 3 )  we obtain 

x < C A ~ , ~ C . - ~ , ~ - ) ,  exp ( i a t  sin p ) ,  
P 

where flQ = 2w, sin(Q /2). To find the final result we must 
solve the problem of taking into account the initial states. 
Following Ref. 7 we consider three kinds of initial states 
defined, respectively, by the density matrices 

~ ' ( 0 )  =F [S'], p=X, Y, Z. 

each of which is a functional of only one component of the 
spin operators while otherwise being arbitrary. Under those 
assumptions the required quantities can be evaluated exactly 
using a method which we consider in detail for the 
p (0)  = pz (0)  case. 

Inverting Eqs. (3)  and (2 )  and bearing in mind that L 
= 1 we express the C: operators in terms of the spin opera- 
tors of the model: 

Using this we find 

m-l 

In the sums on the right-hand side of Eq. (7)  only those 
terms remain in which the averaged expression does not con- I),,+ (1) =ql,* exp (* iopt )  
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tain X- or Y-components of the spin operators, because here 
(...), -Tr[pz ( 0 )  ...I. Using this we obtain 

We must thus also calculate the averages 
(Cp+ ,,,C,',,, -,P - ), which are needed for finding the 
required averaged of the gZB( t ) .  

Substituting the expressions found into Eq. (7 )  and 
changing in the limit as N+ w from summation over p to 
integration we find 

where J,  ( x )  is a Bessel function of the first kind. 
Using the same method to calculate averages of the 

form ( A ( t +  )P + ), and using Eq. (6)  we get finally 

Similarly we can also evaluate the averages (%'$), 
which in thep(0) =pz ( 0 )  case have the form 

< 8 Q ' " > , = ( 8 Q ~ ~ > , = 0 ,  

(8Q"9)t=1/2i exp (iQ/2) (SQZ>,Jl (QQt) .  

In the p ( 0 )  = pl" ( 0 ) ,  p = X, Y cases the required aver- 
ages can be written as follows: 

where 

J 1  (QQt), J ,  (v, t)  f'(t)= - f - cor (2o. t ) .  v,=2o. cos( g). 
Q,t vat 

while in the formulae for ( g g )  ), and ( g g )  the upper sign 
in f ( t )  is taken for p = X and the lower sign for p = Y. 
Knowing the averages ( $;) ,  and (g : ) ,  we can determine 
also the dynamics of the Fourier transform of the exchange 
energy ( g e )  which is proportional to the sum of these 
quantities, 

(ZQ>,=-t ioe  ( ( 8 C x >  t + ( 8 ~ " > t ) .  

Using (9)  and ( l o )  we obtain 
(8Q>t=-2Ro,<bQ'9) ,1(QQt)  /&,t. 

For the further discussion of the results we write down 
the asymptotic expressions for the averages found that are 
nonvanishing as t-  w . For p = Z we have 

(SQz>,-<SQ90 (2In)" (t1.t:)-'" cos (tQQ-n/4) (O<Qf n )  , 
( 1 1 )  

(8,") t -  (- i /2) <SQZ>, (2/n)"eiQ" (t/z,)-"sin (tQQ-n/4).  

For p = X, Y we have 

<8Q">t - -  (2/n)"(ePQ"), ( ( t l z , )  -" sin (tSZQ-nl4) 
*'I, ( t l ~ , )  -" {sin [ (vQ+2mo) t-n/4] 

where?, = / R Q I 1  andG = /vet- ' .  

It is clear from Eqs. ( 1 1  ) and ( 12) that the evolution of 
the required averages at long times is in the general case 
described by a sum of terms, oscillating at different frequen- 
cies with amplitudes which decrease according to a power 
law of the form 

where the index Y equals 4 forp = Z and v = + forp = X, Y. 

4. ANISOTROPIC X-YMODEL 

In the y = 1 case the procedure for evaluating the re- 
quired quantities remains in principle the same as for y = 0 ,  
but it becomes more cumbersome. Omitting inessential 
mathematical details we give in a unified form the final re- 
sults for the averages ( S  'Q, ), , ( 8 T )  ( a  = X, Y) : 

where the index r takes the values X,Y,Z, and where A,  
=S;, r z ( Q )  = (sl,),, A , - g z ,  r , (Q) = < g 2 > o t  
(r]=x,y) ,  a* (p,Q) =mP+e/2 k m p - Q / 2 '  

The form of the functions q, (p ,Q)  depends both on 
the value of the index r and also on the choice of the initial 
density matrix p ( 0 )  (the value of the index p ) .  For in- 
stance, for r = Z we have 

I - 4e-1Q/L { 1 ( P ,  Q )  I cos P * @ ,  ( P ,  V )  sin P) , p=X, 
= -4e-tQ/2 {l I T @ o ( ~ , Q )  Icos p.t@,(p.  V)sin PI,  p=Y. 

- 2[ITmo(p.  Q ) l ,  p = ~ .  

For the r = Ycase the corresponding formulae have the 
form 

9,' ( P ,  Q )  
2[cos 2pTcD0(p, Q )  I ,  P=X, 

2 [ I T Q 0 ( p ,  Q)cos 2pfcD1 (p.  Q)sin 2pJ, P= y,  
- { [ I T @ ,  ( p ,  Q )  Icos p f @ ,  (p, Q)sin P J ~ ' ~ " .  p=Z. 

And, finally, for r = X we obtain 

cpl'(p, Q) 

Here 

@, ( p ,  Q )  = [ ooZ--2000, cos p cos( 012) t o , '  coe 2p] /  

Q1(p ,  Q)  = [ a 2  sin 2p-2oooe cos (Ql2) sin p ] / O Q / ~ - - ~ O ) V / Z + P .  

Because of the complexity of the integrands q, ,? (p ,Q)  
and R * (p ,Q)  it is not possible to obtain expressions for the 
averages ( 14) in explicit form. We therefore restrict our dis- 
cussion to their asymptotic behavior at long times, using for 
this the stationary phase method.I4 

It is well knownI4 that the asymptotic form of integrals 
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containing fast oscillating factors is determined by the sta- 
tionary points of the phase functions [R*  (p,Q) in our 
case]. One can show that the function R + (p,Q) for any 
values of the parameters w, and w, and for Q > Q, , where 

Q,=2 arccos 6 (6=min{A. ilh), h=oolo,), (15) 

has three nondegenerate stationary points: 

p1=0, p2=n, p,=arccos (6-' cos ( Q / 2 )  ) . 

In the Q = Qc case the stationary pointsp, andp, merge 
into a single degenerate point (p, = p, = 0): 

while for Q < Qc there is no p, point. 
The phase function R - (p,Q) has a single nondegener- 

ate stationary pointp,, = arccos(6 cos(Q /2) ) for any values 
of w0, we, and Q. 

We illustrate the features of the asymptotic behavior 
(as t- UJ ) of the averages ( 14) by the most characteristic 
example of the evolution of the Fourier component (S;)), 
for p (0)  = pY (0).  The time-dependence of this average has 
a different form for different values of the parameters R and 
Q. For instance, for R < 1,0 < Q < Q, we have 

<SQz>,- (8n)-"I'qQ) {G(O, Q) (tlt,) -" cos [ tQ+ (0, Q) +3n/4] 
+G (n, Q) ( t / ~ ~ ) - ' ~  cos [tQf (n, Q)-3n/4]+ 

+G,(po, Q) (tlT)-" cos [tQ-(p,, Q)+3n/41}. (16) 

In theR < 1, Q = Qc case we have 

x cos [ ta f  (0, Q,) +3..~18], (17) 

where T ( x )  is the gamma function. 
For R < 1, Qc < Q < a  we have 

<SqZ>,--8/(2n)"r'(Q) ecW SI ' n p, cos ~3(t / ta)  - I k  

x cos I tQ- ( p 3 ,  Q)+n/4lS (18) 

For A =  1 we have for 0 < Q < a  

cos (40,t sin V/4+n/4) 
(S~ ' ) t -3 / (8~)"~~! ' (@)  { (wet sin Q/4)' 

cos (400t cos Q/4+ n/4 )  - ----- 
(oat cos Q/4)'I1 

(19) 

And, finally, for R > 1,0  < Q<a  we have 

(sQz),- -81 (2n) -'"r$(Q) 
x e-IQ/' sinZ po cos P, (t/T)-'" cos [ tQ-(p", Q) Sn141. (20) 

In Eqs. (16)-(20) we have 

d2 
G (p. Q ) =  ---I cos p-'Dn(p. Q ) c o ~  P+@, (P, V)sin P J ,  

dp2 

where 

f (p, Q)=cosp+@"(p. Q)cos p--@I(p. Q)sin P. 

It is clear from Eqs. ( 16)-(20) that the evolution as 
t -, UJ of the nonuniform Z-component of the magnetization 
of the system considered proceeds similarly to the evolution 
of the averages in the isotropic model. However, the index v 
which according to ( 13) characterizes the damping rate of 
the averages depends in this case on the values of the param- 
eters A and Q. One can show that the time-dependence of the 
average ( S  and also of the averages ( 8 3  ), and ( 8;) I 

have the same character also for other initial conditions. To 
illustrate this we show schematically in Fig. 1 for different 
initial conditions the ranges of the parameters il and Q in 
which the index v has different values. 

5. DISCUSSION OF THE RESULTS 

Turning to a discussion of the exact results obtained we 
note first of all that in the one-dimensional X-Y model inde- 
pendently of the initial conditions and the degree of anisot- 
ropy all spatially nonuniform quantities considered tend to 
zero as t- co for 0 < Q < a which indicates that the system 
goes over into a spatially uniform state. (The case Q = n- is 
special and is discussed below.) It is clear from Eqs. (12) 
and ( 16)-(20) that the damping of the excitations occurs in 
a complex manner and is non-exponential in character. 

Details of the time-dependence of the nonuniform exci- 
tations depend both on the initial state of the system under 
study and on the values of the parameters in the Hamiltonian 
( 1 ) and the wave vector Q which determines the degree of 
inhomogeneity of the excitations considered. For instance, 
the characteristics of the initial state in terms of which the 
required quantities can be expressed change if one changes 
the component S p  of the spin operators on which the den- 
sity matrix of the initial state depends. For instance, for 
p (0 )  = pZ (0)  (p = Z) all averages found are proportional 
to the initial excitation of the nonuniform 2-component 
( S  ;)o of the magnetization while for p = X, Y they are pro- 
portional to the initial values of the averages (8Zp), . More- 
over, the character itself of the time-dependence of the aver- 
ages considered changes, depending on p .  This fact can be 
traced using the example of the isotropic model by compar- 
ing Eqs. (8 )  and (9).  For instance, the Z-component (S  'Q 
of the magnetization decreases in the p = Z case from the 
value ( S  ), to zero as t -+ UJ , while for p = X, Y it remains 
always equal to zero, although the operator S'Q is not an 
integral of the motion for Q #O. On the contrary, the aver- 
ages ( g g )  ), and ( 27;) t are equal to zero for p = Z and non- 
vanishing for p = X, Y. 

Whenp changes, the index v, which is the main charac- 
teristic of the asymptotic behavior of the required quantities 
ast- alsoch changes [seeEqs. (11)-(13) andFig. l ] .For  
instance, for the average (gz)), we have in the isotropic 
model v = 3 forp = Z and v = ) forp = X, Y. In the case of 
the anisotropic X-Ymodel ( y = 1 ) the change in the index v 
when the nature of the initial state changes and for constant 
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A and Q is illustrated in Fig. 1. In particular, we have for the 
average ( S ; ) , ,  whenA < 1 and Q >  Q,: Y = + forp = Xand 
Y = + forp = Y,Z. 

The time-dependence of the spin excitations in the X-Y 
model turns out to be greatly affected also by the magnitude 
of the vector Q. This effect is most clearly pronounced in the 
anisotropic model and manifests itself in the Q dependence 
of the value of the index Y. For instance, for R < 1, p = Z we 
have for the average ( S  ; ) 

A similar behavior also occurs for other averages (see Fig. 
1 ) . It is clear from Eqs. (2 1 ) and Fig. 1 that the change in the 
index Y in those cases when it occurs takes place discontinu- 
ously at some critical value Q, of the wave vector Q. This 
critical value, given by Eq. ( 15 ) , is connected neither with 
the type of the initial state nor with a particular average, and 
it is determined solely by the parameters of the Hamiltonian 
( 1 ) . We note that in the isotropic case there is no such Q 
dependence of the index Y. 

The effect of the quantity Q on the dynamics of the 
nonuniform excitations in the X-Y model manifests itself 
also in the Q dependence of the times ri which characterize 
the time scale of the damping of the excitations. For in- 
stance, in the isotropic case the time T, increases when Q 
decreases and for small Q we have r, - Q- which indicates 
the stability of those long-wavelength excitations, the damp- 
ing time scale of which is equal to T= (for instance, ( S  ;) for 
p = Z ) .  On the other hand, the time T, has its minimum 
value for Q = 0 and tends to infinity for Q = T. This latter 
fact leads to the circumstance that those excitations with a 
wave vector Q = T the damping time scale of which is deter- 
mined by the quantity T, do not tend to zero as t -  . For 
instance, in the isotropic model for Q = T, p = X we have 

< 8 , - > , = - < 8 , ~ ~ > t = ' / 2 < 8 n m ) a  c o ~ ( 2 ~ o t )  ( t -+m),  
(22) 

<8,z~>,=-'I,<8,">, sin (200t)  (t-arbitrary ). 

FIG. 1. Values of the index v under various initial conditions for the 
averages (S $) , , ( O a  ), , and ( g;), . The shaded regions correspond 
to v = +, the unshaded ones to v = +, the dash-dot line to v = $, and 
the dashed line to v = +. 

This fact contradicts intuitive ideas about the nature of the 
evolution of physical quantities in many-body spin systems 
under the action of spin-spin interactions. 

The traditional view of this problem consists in that any 
physical quantity with an operator which does not commute 
with the main Hamiltonian must as t-.  take on a station- 
ary value which is independent of the time.I5 Then in that 
sense unusual behavior of the averages in the X-Y model is 
connected with the peculiarities of its energy spectrum. In- 
deed, for Q = T the sum of the eigenfrequencies 

no longer depends on Q since = 0. In the expressions 
determining the time-dependence of the averages ( gg) 

FIG. 2. Characteristicbehavior of the times T, T,, T,, and T, as functions of 
the degree of spatial inhomogeneity of the initial state for different values 
of the parameter A: Q,, and Q,, are the critical values of the wave vector Q 
corresponding, respectively, to /1 = 0.96 and /1 = 0.5. 
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there is therefore, instead of a sum of terms oscillating at 
frequencies which are close to one another, which tends to 
zero as t- CZ, a sum of terms which oscillate at one and the 
same frequency 2w0. 

We note also that for Q = a in the p = X ,  Y cases the 
average ( g$ ), no longer depends on the magnitude of the 
exchange frequency w, [see Eq. (22) 1. The time-depend- 
ence of (gz)), then has exactly the same form as in a system 
of noninteracting spins in a magnetic field parallel to the Z 
axis. This means from a physical point of view that in the 
system considered one can "eliminate" the effect of the ex- 
change interaction on the dynamics of several quantities by 
the choice of the initial conditions. 

The way the times r ,  depend on the wave vector Q in the 
anisotropic X-Y model ( y = 1 ) is shown in Fig. 2 for differ- 
ent values of the parameter A (A # 1 ). The most interesting 
feature of these functions is apparently the fast increase in 
the times r ,  and r, when Q approaches the critical value Q, . 
This indicates the slowing down of the relaxation process as 
Q-Q, for those physical quantities the damping time scale 
of which is determined by the times 7, and r, (for instance, 
(S' , ) ,  forA < 1) .  
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