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A scaling approach to the description of diffusion in a disordered medium is proposed. A two- 
dimensional lattice model of hopping diffusion is considered. A right square lattice is used, 
consisting of "bonds" of two types with different characteristic hopping times. A lattice scale 
transformation procedure is developed which permits deriving the renormalization group 
equations for the space and time scale transformations. Explicit solutions of these equations yield 
the effective diffusion coefficient of a two-dimensional heterogeneous medium and the time 
dependence of the mean-square displacement of a particle undergoing a random walk. This 
dependence turns out to be nonlinear at finite times, but at large times it asymptotically 
approaches the linear diffusion regime, with a coefficient of proportionality equal to the effective 
diffusion coefficient. 

INTRODUCTION 

In spite of numerous studies1-' the problem of investi- 
gating diffusion processes in disordered media remains a vi- 
tal and interesting topic. This seemingly simple problem 
meets with mathematical difficulties due to the non-Marko- 
vian nature of random walks in disordered media and in 
many cases cannot be solved exactly. At the same time, 
many physical phenomena in real condensed media are dif- 
fusive in nature or involve diffusion processes and may be 
diffusion limited. Examples include diffusion in amorphous 
systems and polymer solutions and polymer gels,2 the kinet- 
ics of diffusion-controlled chemical  reaction^,^ etc. Certain 
properties of polymer molecules can be described in the lan- 
guage of self-avoiding random walks.4 

Random walks in disordered systems are ordinarily 
studied on simple lattice models both by mathematical mod- 
eling5 and by various analytical methods. The most widely 
used method is expansion in the concentration of impuri- 
ties6 with the use of the averaged generating functional.' 

For the special case of random walks on fractals, a scal- 
ing approach has been used successfully8 and seems very 
promising. It should be noted that real systems have definite 
fractal dimensionalities only in a narrow range of scales, and 
real systems on the whole must be treated as fractals of vari- 
able dimensionality. Consequently, the power-law time de- 
pendences obtained for the mean-square displacement are 
valid only in a narrow time interval. 

The use of scaling ideas, which have proven extremely 
fruitful for describing phase transitions and the properties of 
polymer molecules, is possible here because of the analogy 
with the Kadanoflg procedure of coarsening a spin lattice 
(i.e., increasing its block size) and with the renormalization 
group method of calculating the percolation threshold in 
percolation theory. lo 

STATEMENT OF THE PROBLEM AND DESCRIPTION OF THE 
MODEL 

Our problem is to describe a diffusion process in a two- 
dimensional medium consisting of two types of regions with 
different diffusion coefficients. We assume that these regions 
are randomly placed on the plane in a uniform and indepen- 
dent manner. The "volume" fraction of regions with "fast" 
diffusion (D l )  is denoted p, and that of regions with slow 

diffusion (D ") by 1 - p ( D  '>D "). One of the characteris- 
tics of interest to us will be the average diffusion coefficient 
of such a medium, D,, . 

When two types of regions are present it must be taken 
into account that the interaction of the diffusing particles 
with different regions can be different. Because of this differ- 
ence, the probability of transition of a particle from a region 
of type I to a region of type I1 will differ from the probability 
of the reverse transition. For simplicity we will neglect this 
difference in the present paper, although in principle it could 
be taken into account in the proposed approach. 

We consider a model of hopping diffusion, in which we 
specify a certain scale L, for the elementary hop over a char- 
acteristic time rO, the diffusion coefficient in such a medium 
being defined as D = L i / r0 .  We note that this description is 
somewhat arbitrary in the choice of the elementary scale Lo : 
if we let Zo +AL, and the characteristic hopping time 
F0 -+A *T,, the diffusion coefficient itself will remain un- 
changed. 

It is natural to suppose that a two-component disor- 
dered medium also has a certain leeway in the choice of ele- 
mentary scale. However, for a two-component medium, 
scale invariance implies the possibility of a new division of 
the space into two types of regions, whose diffusion coeffi- 
cients are determined with the aid of the scale transforma- 
tion functions: 

D 1 = F , ( p ,  D', Dl1) ,  Dn=F,(p ,  D', D"), 

and by analogy with percolation models, a scale transforma- 
tion changes the fractions occupied by regions of the first 
and second types: jj = f(p) . 

The scale-invariance property of the investigated sys- 
tem consists in the fact that its average diffusion coefficient 
does not depend on the choice of initial scale, i.e., - - 
D,, (p,D ',D " ) = D,, (p, D ',D ' I ) .  In particular, if the divi- 
sion into the two types of regions is done in such a way that 
p = 1 (or 0), beginning with a certain scale, then the average 
diffusion coefficient is D,, = 5 ' (or b ") . 

To describe hopping diffusion in a two-component me- 
dium we introduce a plane square lattice So having a "bond" 
(unit) length Lo and consisting of two types of bonds, fast 
( I )  and slow (II) ,  placed randomly, uniformly, and inde- 
pendently over the lattice. A particle executes a random 
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walk over the lattice, moving in each jump to one of the 
adjacent lattice sites, the direction of the jump being equi- 
probable in all directions, independent of the type of bond 
that must be jumped across. The time for a jump along a 
type-I bond is T:, and that for a type-I1 bond is T: (7: <#). 
The quantitative fractions of type-I and type-I1 bonds are 
P~ , = -po and p: = 1 - p,, respectively. 

We define the "intrinsic" diffusion coefficients of the 
bonds (regions) as follows: 

SCALE TRANSFORMATION OF THE LATTICE 

The supposed leeway in the choice of scale of the inves- 
tigated system means that we can choose a lattice with a 
different elementary unit. We choose the new lattice not in 
an arbitrary way but in relation to the old lattice, through the 
following "diagonal" transformation: 

as a result of which the diagonal of the unit cell of the initial 
lattice So becomes the "bond" (edge) of the new lattice S, 
(see Fig. 1 ) . 

For an n-fold diagonal transformation we have 

where L,, the bond length of the lattice S,, is given by 
L, = 2n'2L0. 

We denote by {R,,} the set of all possible random- 
walk trajectories of a particle on the lattice S, (including 
self-crossing) with a length of 2" units of this lattice (i.e., 
2"L, ); R,,,,, is the distance between the start and end of 
some trajectory of the set {R,,}, and t,,,,, is the time re- 
quired to travel this trajectory. 

Then we define the average diffusion coefficient D, ,  on 
the lattice S, as 

FIG. 1 .  Possible forms of two-unit trajectories: a-those taken into ac- 
count; b-those discarded. 

where the angle brackets denote averaging over the set of 
trajectories R , ,  (we note that (R Z, ,,,, ) ,,,,,,,, = 2"L 
= 2"+,Li) .  

We define the notation 

D,,= tim Do,,=D ,,,. 
m+ m 

Although direct calculation of Do,, is impossible, this quan- 
tity can be related to another quantity that can be deter- 
mined, viz., D,,, . Indeed, if the hypothesis that the system is 
self-similar is correct, i.e., if there exist transformation laws 
for the observable quantities on going from one lattice to the 
next (S, - , -S, ) and if a complete averaging occurs at large 
scales, then D,,, does not depend on n; in precisely the same 
way, D,,, does not depend on m. Since D,,_ =Dm,, for 
n,m - a,, it follows that 

D,,= lim Dm,o=D,,o. 
n - t m  

CONSTRUCTION OF LATTICE-COARSENING ALGORITHM 
(SCALE TRANSFORMATION) 

Let us first calculate the average diffusion coefficient 
for trajectories consisting of one unit (and then of two units) 
of the original lattice So. For one-unit trajectories we have 

where D =p, D f , and D E ( 1 - p, ) D are the effective 
diffusion coefficients for bonds of types I and 11, and 
h, = rh/r: = D:,/Df.,. 

For two-unit trajectories on the lattice So we have 

Here the first and third terms correspond to trajectories con- 
sisting of two bonds of the same type (type I or 11, respective- 
ly). The time required for a particle to travel such a trajec- 
tory is equal to 27; or 279, respectively (for the fast or slow 
trajectory). The second term corresponds to "mixed" trajec- 
tories consisting of two bonds of different types. The time 
required for a particle to travel such a trajectory is 7: + r:'. 

We now perform lattice transformation (2) :  S, -S, . 
We construct the diagonal lattice S, out of three types of 
bonds-fast, slow, and mixed-in such a way that the frac- 
tion and position in S, of the bonds of each of these types 
corresponds to the fractions and positions in So of the two- 
unit configurations (trajectories) of the corresponding type 
(see the explanation of formula (5 )  above). Then the frac- 
tions comprised of fast, slow, and mixed bonds are, respec- 
tively 

The hopping time along a bond of each of the three types is 
also specified in such a way that it corresponds to the time of 
travel of the two-unit trajectory of the corresponding type on 
the lattices,. Then for the fast, slow, and mixed bonds of the 
lattice S, we have, respectively 
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It can be easily verified that for the lattice S, specified in this 
way the average diffusion coefficient on the one-unit trajec- 
tories is equal to the diffusion coefficient on the two-unit 
trajectories of lattice So : 

We make the following conjecture: the lattice S, con- 
structed in the manner described above is approximately dif- 
fusion-equivalent (i.e., equivalent from the standpoint of the 
diffusion characteristics) to the original lattice So, i.e., 

The approximation consists in the fact that we have taken 
into account the r-shaped two-unit trajectories on S, and 
discarded the rest (see Fig. I ) ;  for a lattice consisting of 
bonds of the same type our approximation is exact. 

This conjecture means that a random walk of 2" steps 
on the lattice S, (i.e., on the set of trajectories {R,,  1) is 
equivalent on the average to a random walk of 2" ' steps on 
S, (i.e., on the set of trajectories {R,,, - , I ) .  We note that 
for any m we have 

Let us now turn to construction of the coarsened lattice 
3, , which, like So, consists of two types of bonds. We divide 
the total number of mixed bonds of lattice S, , which com- 
prise a fractionpi3', into two parts: 

We combine (formally, for now) the first part into one 
group with fast bonds and the second into a group with slow 
bonds. As a result, instead of three types of bonds we have 
only two, the fractions of each being [see Eq. (6) ] 

In accordance with such a division the contribution to the 
diffusion coefficient Do, corresponding to the mixed bonds 
(the second term in formula ( 5 ) )  is also divided into two 
parts. The first of these, which is proportional to a,, is com- 
bined with the first term, and the second, proportional to 
1 - a,, with the third. As a result we obtain from (5)  an 
expression analogous in structure to (4):  

where 

~i1=~o~~o+4ao(i-~o)~o/(l+h,) ID, ,' 
= [p0+4ao ( l - p o )  hol(l+ho) I Do1, (13a) 

D,"=(l-po) [ (~-po)+4(1-ao)p~/(l+ho)l hoD, ,' 
=[ (1-~~)+4(l-a~)p~/(~+h~)lD,". (13b) 

The average intrinsic diffusion coefficients of the bonds 
of the first and second groups are given by 

We replace all the bonds in the first group with identical 
bonds corresponding to a diffusion coefficient D t, and those 
of the second group, with bonds corresponding to D f.. As a 
result, we obtain a lattice 3, consisting of bonds with only 

two intrinsic diffusion coefficients, i.e., two types of bonds. 
The average diffusion coefficient b,, for one-unit trajector- 
ies on the lattice 3, is calculated from formulas ( 13 ) . 

We make another conjecture: For a suitable choice of 
a, (0<a, < 1), which according to ( 11) and (12) deter- 
mines the division of the bonds of lattice S, into two types, 
the lattice 3, obtained will be approximately diffusion- 
equivalent to the lattice S, : 

We choose the parameter a, from the following consid- 
erations. The lattice-coarsening procedure under study re- 
duces to analysis of a certain effective trajectory joining sites 
of the new coarsened lattice. This procedure can also be used 
to frame the solution of the percolation problem. It turns out 
that for correct determination of the percolation threshold 
in the given algorithm the trajectories consisting of two types 
of bonds must also be divided in some proportion between 
the two types of new coarsened bonds. Since the percolation 
problem (the problem of connectedness) in our algorithm 
(unlike the case of a diffusion process) corresponds to the 
sequential traversal of a trajectory, an averaging of the tran- 
sit time of a particle on the specified trajectory occurs. Con- 
sequently, if we first replace the mixed bonds by bonds of two 
types in the proportion corresponding to the percolation 
problem (a fast fraction p and a slow fraction 1 -p ,  the 
answer for which in the percolation problem is well known: 
p = p )  and compare with the diffusion-equivalent division 
(fractions a, and 1 - a,, respectively), then the following 
relation must hold: 

from which we immediately find the desired form of a, : 

Thus the fraction of mixed bonds put into the first 
(fast) group is proportional to the fraction of fast bonds p, 
in the original lattice (as in the connectedness problem) and 
also (and this is a peculiarity of the diffusion process) to the 
hopping time 7; for this bond: a, ap,rh (and, accordingly, 
1 -a, m (1 -p,)r;). 

We have thus described the procedure for going from a 
random walk of a particle over an original lattice S, consist- 
ing of two types of bonds to a random walk on a coarsened 
lattice 3, which is similar to it. 

To obtain the diffusion coefficient averaged over a large 
scale it is necessary to apply the described procedure many 
times, replacing in formulas ( 5 ) ,  (6), ( 12), ( 13), (13a,b), 
(14), and (16) for each quantity the first subscript 0 by n 
and the subscript 1 by n + 1. Here it is understood that after 
each step of the scale transformation S,, - , -3" the con- 
structed two-component lattice 3, is used as the initial S, 
and the transformation procedure is repeated anew: 
s n - s n + l .  

A direct check shows, however, that the relative posi- 
tion of bonds of the same type is independent only on the 
original lattice So. As the lattice is coarsened by the proce- 
dure described, a correlation between the properties of adja- 
cent bonds arises, and the probability that two bonds of the 
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same type will be adjacent becomes larger than that for 
bonds of different types. 

This correlation can be taken into account as follows: 
let the probability of realization of a trajectory consisting of 
two type-I bonds be 

.PI(')=poQo ( p o l .  

[Q,  (p ,  ) = po in the absence of a correlation.] Since the cor- 
relation for type-I1 bonds is the same as for type-I bonds, the 
probability of realization of a trajectory consisting of two 
type-I1 bonds is 

Pt'2'=(I-~o)Qo( l-po). 

Then the probability of realizing a mixed trajectory will be 

P , ( " = l - [ p o Q o ( p o ) + ( l - ~ o ) Q o ( l - ~ o )  J. 

As a result, in place of expression ( 5 )  we obtain 

D,1=[~c~1~+2ho~,'3~/(l+ho)+PI'2'h~ID, 2. ( 1 7 )  

The other quantities transform in an analogous way. 
Then, since the conditional probability Q also depends on 
the number of the coarsening step n [i.e., Q(p,  ) = Q, (p ,  ) 1, 
the coarsening procedure must be applied the necessary 
number of times. 

Since Q, (p) must satisfy the requirement 
P ,  <Q, (p ,  < 1 ,  we choose Q, ( p )  in an extremely simple 
form that does not depend explicitly on n: 

As a result, we arrive at the following relations specifying the 
transition from the lattice S, to the lattice 3, + , : 

For an n-fold transformation So -3, we have 

k=O 

n-l 

We have been unable to find a rigorous justification of the 
possibility of replacing the three types of bonds by effective 
bonds of two types at each step.   ow ever, we can give phys- 
ical arguments analogous to those given by   ad an off:' Be- 
tween bonds of the same type there exists a certain correla- 
tion which increases with increasing coarsening scale, and 
the mixed-bond fraction, decreasing with each coarsening 

step, goes asymptotically to zero; as a result, the error intro- 
duced will be insignificant. In addition, as was shown above, 
our proposed lattice-coarsening procedure corresponds to 
the analogous procedure in the connectedness problem, for 
which the scaling approach is well founded. To check our 
assumptions we compared the values of the average diffusion 
coefficient D,, , calculated at the second step of the recursive 
procedure, with the results of a modeling (Dm, ) of the ran- 
dom walk of a particle over four-unit trajectories on the 
original two-component lattice. For h, = 0.1 the disagree- 
ment did not exceed 5.1 % (see below), and for larger h, it 
was even smaller. Thus the assumptions made can be regard- 
ed as quite correct. 
Po 0,i 0.2 0.3 0.4 0,5 0,6 0.7 0.8 0,9 
D,, 0.013 0,020 0,034 0.060 0.105 0,179 0,293 0,460 0.696 
Dm,, 0,013 0.019 0.033 0,061 0,110 0.187 0,2ol 0,464 0,696 

INFINITESIMAL SCALE TRANSFORMATION 
(RENORMALIZATION GROUP EQUATION) 

Formulas ( 19)-(25) correspond - to a discrete transfor- 
mation of the lattice S,  - S ,  + , , which corresponds to a 
coarsening of the scale L ,  - L ,  + , = 21/2L,  by a factor of 
BLl2 .  Let us now find the lattice transformation S, -S ,  + 

corresponding to an infinitesimal scale transformation 
L,  -2""/L, = L,  + ,, by a factor of 2"", where Sn -0 .  For 
this purpose we rewrite formulas ( 19)-(21) and ( 2 3 )  in the 
following form: 

Expressions ( 2 9 ) - ( 3 2 )  correspond to ( 19)-(21) and ( 2 3 )  
for Sn = 1 and go over to identities for Sn = 0 ,  which corre- 
sponds to the identity transformation of the lattice S,  into 
itself. We assume that expressions (29) - (32)  are valid even 
at nonzero Sn -0 .  Then, using the fact that for small Sn we 
have 1 + xSn -- exp (xSn ), and going over from a sum to an 
integral in the argument of the exponential function which 
then appears in the correspondingly transformed expres- 
sions (26) - (28) ,  we obtain formulas for the effective diffu- 
sion coefficient and the quantity h  (n)  in the form 
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~ ( n )  (1-PO) 1 
h,, = h, ----- exp{ - y j  [p(l+h-4(l-a))  

po[i-p(n) 1 0 

We note that Eq. (35) is obtained by dividing expression 
(34) by (33), multiplying by the ratio p (n ) / [ l  - p (n ) ] ,  
and using the definition (23 ) of h (n ) . 

From Eq. (29) with (24) we obtain an equation for the 
fast-bond fraction p (n ) : 

dp(n) -- p(l-p)[ph-(l-p) I - 
dn 2[ph+ (1-p) 1 ' 

(36) 

By differentiating (35) with respect to n and using (24) and 
(36), we can convert the integral equation to a differential 
equation: 

The initial conditions for Eqs. (36) and (37) are 

The system of equations (36), (37), and expressions (33) 
and (34) specify the scale transformation So +S, . 

CALCULATION OF AVERAGE DIFFUSION COEFFICIENT 

Figure 2 shows a phase portrait of the system of equa- 
tions (36), (37) in the square O<h, p< l .  The point 
(p  = 1,h = 0) is an unstable node, the point 
(p = 1/2,h = 1 ) is a saddle, and the linesp = 0 andp = 1 are 
lines of stable equilibrium. 

Dividing Eq. (36) by (37), we obtain the ordinary dif- 
ferential equation 

dp p(l+h) -= 
4 

dh 2h(l-h) -'2h(l-h) ' 
(38) 

the solution of which with the specified initial conditions 
p(  ho ) = po has the form 

We now return to the system of master equations (36) 
and (37). We are interested in the behavior ofp(n) and h (n )  
as n - CO.  If the initial point (po,h, ) lies to the left of the 
separatrix 

then as n+ w 

p (n) + 0, h (n) -+ hol [p,hO+ (1-PO) 12=h',0' . (41 

If the initial point (p,,ho ) lies to the right of the separatrix 
(40),thenasn-+CO 

In the first case only type-I1 regions (slow bonds) remain in 
the system on a large scale, whereas in the second case only 
fast bonds remain. If the initial point lies on the separatrix 
(40), then the number of fast and slow bonds becomes equal, 
but their diffusion coefficients are the same. 

Let us now take up the problem of directly calculating 
the limiting values of the effective diffusion coefficients for 
n + CO. Going over in expressions (33) and (34) to an inte- 
gral over h with the use of relation (37) and then using Eqs. 
(24) and (39), we obtain for n - co 

where we have introduced the quantities p , and h, which, 
depending on the initial conditions, are equal to (respective- 
ly): 

(0,h ',O') if the initial point lies to the left of the separa- 
trix; 

( l,h '," ) if the initial point lies to the right of the separa- 
trix; 

( 1/2,1) if the initial point lies on the separatrix. 
As a result, we obtain for the average diffusion coeffi- 

FIG. 2. Phase portrait of the system of Eqs. (36), (37 ) ;  the solid curve is the 
separatrix. 

FIG. 3. Concentration dependence D,, (pa ) for different values of ha: I- 
0.001; 2 4 . 0 1 ;  3 4 . 0 5 ;  4-0.2; 5 4 . 5 ;  6 0 . 8 .  
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cient D,, = D ', + D 

We note that the final expression is universal for all locations 
of the initial point ( p ,  ,h, ) relative to the separatrix (40). 

The D,, ( p ,  ) concentration dependences are shown in 
Fig. 3 for various values of h,. The curves are monotonic but 
with an inflection point, and for a given h, the value of the 
concentration p,,, at the inflection point is such that the 
point (p,,, ,h, ) lies on the separatrix (40). 

DEPENDENCE OF THE MEAN-SQUARE DISPLACEMENT ON 
TIME 

The value of D,, obtained above is asymptotic, when 
the scale of the random walk of the particle is large and a 
complete averaging has been done in the system (if averag- 
ing is possible at all). At finite scales or for a finite time of the 
random walk the motion of the particle will be substantially 
influenced by fluctuations in the position of the regions, and 
the time dependence of the observable quantities will there- 
fore be nontrivial. In principle the time dependence of the 
quantity D,, ( n )  introduced above can be determined for 
finite values of n, but it is of greater interest to construct the 
time dependence of the average mean-square displacement 
R :, ( t ) .  

To determine the desired time dependence we will use 
the scale transformation algorithm given above. However, 
for calculating the time dependence we will consider the 
change of the time scale rather than of the spatial scale as 
before. 

Let us modify the discrete scale transformation algo- 
rithm as follows. Each step of the scale transformation cor- 
responds to a doubling of the time: 

For motion along bonds of type I the mean-square displace- 
ment in the time t, is equal to the square of the bond length 
L times the corresponding scale S, , while the mean-square 
displacement in the doubled time 2tn is 2L f, times that fac- 
tor. For motion along the slow bonds the squares of the dis- 
placement in times t, and 2t, are h, L f, and 2h, L i, respec- 
tively [for the original lattice So the mean-square 
displacement along type-I1 bonds is (r;/rA1)L i]. If over a 
time 2t,, a particle has passed through bonds of both types 
(the analog of the mixed bond of the coarsened lattice), then 
the mean-square displacement will be 4hn L /( 1 + h, ) . As 
a result, instead of the discrete relations (20) and (2  1 ) we 
obtain for the squares of the displacement through regions I 
and 11 

and on going to an infinitesimal transformation we will have 
in place of (30) and ( 3  1 ) 

Ultimately we get 
n 

1 
~ , ~ ( n ) = ~ ~ L . . ' e x ~ ( n  - - J [ ~ - p ( k )  I 

2 0  

x [I- 4a(k)h(k)  jdL}, 
l+h(k)  

(51) 

In addition to equations for the functionsp and h, which 
retain the form in (36)-(38), Eq. (46) yields an equation 
for t (n) :  

dt ( n )  ldn--t ( n ) ,  

which relates the scale transformation parameter n with the 
time t: 

t ( n )  =7,'en. (53 

Substituting (39)-the solution of Eq. (38)-into ( 3 7 ) ,  we 
obtain an ordinary differential equation for the function 
h ( n ) ,  the solution of which, with allowance for (53), gives 
the time dependence h ( t )  : 

where 

CO= [poho+ (I-po) I ho-'" 

Passing in (51) and (52) to integration over h with 
allowance for (54), in the case of a finite number of steps of 
the scale transformation; i.e., in a finite time, we obtain the 

FIG. 4. Dependence of the mean-square displacement on time for uniform 
(1,3,5) and nonuniform (2,4,6) initial distributions of particles, with 
p, = 0.4 (1 ,2 ) ,  0.3 (3 ,4 ) ,  0.2 (5 ,6 ) ;  h, = 0.001. 
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following expression for R :, ( t )  : 

To sum up, we have found that at short times the dependence 
R :, ( t )  is nonlinear, but for h, # O  its asymptotic behavior 
for t % 7: [ p ,  ( 1 - po ) ( 1 - h ) /ho  ] becomes linear: 

ho(l+ho) 
R :, ( t )  = . D: ot= D,, t, 

h , + [ p o h ~ + ( ~ - - ~ ~ ) I 2  (56) 

where D,, agrees exactly with expression (45) (see Fig. 4).  
For h, =O the dependence R :v (t)  does not become lin- 

ear anywhere: 

R :, ( t )  =poDCo1 (t~,')'"=poL; ( t /~ , ' ) '" .  (57) 

CONCLUSION 

As we have said, the diffusion problem is easy to state, 
and the solution, if it can be found, is easily interpreted. The 
model considered here can describe a number of real phys- 
ical situations, such as the diffusion of small molecuies in 
dilute polymer solutions. In this case the type-I regions cor- 
respond to diffusion in the pure solvent, and the type-I1 re- 
gions to diffusion through the polymer balls. It can be as- 
sumed that the type-I1 regions correspond to reversible traps 
with a lifetime 7:' - r: , and for ry-+ cc (or ha -0) they cor- 
respond to trapping centers. 

The case ha = 0 also describes the kinetics of a mono- 
molecular chemical reaction with randomly located initiat- 
ing centers. This problem was considered in the limit of low 
concentration of the initiating centers in Refs. 6, where it 
was shown that at long times one has R %, ( t )  cc t ' I2 ,  which 
corresponds to our result (57). If, however, the disorder in 
the position of the initiating centers is not taken into ac- 

count, then R ( t )  -. const. This difference can be attribut- 
f- m 

ed to the influence of fluctuations in the distribution of ini- 
tiating centers on the character of the diffusive motion of the 
particles. 

Similarly, in the case h, # O  at short times, fluctuations 
in the position of the type-I1 regions have a substantial effect 
on the character of the diffusive motion, and, as a result, the 
dependence R i, ( t )  at short times is nonlinear [see Eq. 
(5611. 

Expression (56) describes the diffusion of particles 
which initially are distributed uniformly in space. However, 
in our case a uniform distribution of particles in space is not 
an equilibrium situation, since over time a larger number of 
particles will accumulate in the type-I1 (slow) regions than 
in the type-I (fast) regions. In view of this circumstance we 
can take the nonequilibrium character of the initial distribu- 

tion into account as follows: a fraction pa + ( 1 - pa ) h, of 
the particles participates in the diffusive motion immediate- 
ly, while the remaining fraction ( 1 - p, ) ha is initially in a 
bound state (i.e., does not participate in the diffusive mo- 
tion), but over a time 7: - ri these particles join in the mo- 
tion. The time corresponding to the onset of motion of the 
bound particles is uniformly distributed over the interval 
r: - 7:. As a result, the time dependence of the mean- 
square displacement will be described by the expression 

w h e r e t = t i f t < r y - ~ ~ , a n d t = r ~ - ~ ~  ift>/ry-r: ,and 
the function RaV ( t )  is defined in expression (56). 

We will not write out here the awkward expressions 
that result from an elementary calculation of the integral in 
(58). We will merely note that the dependence in (58) is 
nonlinear at short times, while for t- cc it has the same 
asymptotic behavior as the function R :, ( t )  given in Eq. 
(56): :, (t)  z D,, t (see Fig. 4). 

While the nonlinear character of R :, ( t )  is due both to 
fluctuations in the distribution of impurities and to the non- 
equilibrium nature of the initial distribution, the time de- 
pendence in (58) is nonlinear exclusively by virtue of the 
presence of fluctuations, the influence of which becomes un- 
important at long times (unless ha = 0).  In principle any 
initial conditions can be taken into account in an analogous 
way. 

In conclusion we note that the proposed approach can 
be used to study even more general situations. For example, 
the difference in the interaction of diffusing particles with 
different types of regions can be taken into account by a 
change in the relationships among the selection probabilities 
for the direction of motion from a site surrounded by bonds 
of different types or by the introduction of a probability for 
the particle to remain in place (sojourn probability). 
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