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We set up an example of a potential of the anharmonic oscillator type for which the time- 
independent Schrodinger problem leads to a strictly equidistant spectrum for all the excited 
states. The general solution of this problem is strictly periodic in time (i.e., there is no spreading of 
arbitrary wave packets). We discuss a direct method for building anharmonic potentials that lead 
to equidistant spectra and of operators similar to the creation and annihilation operators in the 
Fock representation. 

1. As is known,'.2 one of the main objects of quantum 
mechanics, the harmonic oscillator, has an equidistant spec- 
trum of energy eigenvalues, and the general solution of the 
respective evolution problem is periodic in time (to within 
an advance of the constant phase of the wave function). A 
characteristic feature of the harmonic oscillator as an object 
of classical mechanics is its isochronism, that is, the indepen- 
dence of the oscillation period of the amplitude. 

It is also knownlx2 that in quantum mechanics the tran- 
sition to anharmonic oscillators generally results in non- 
equidistant spectra and in the spreading of arbitrary wave 
packets, while in classical mechanics this leads to nonisoch- 
ronous oscillations. But it should not be assumed that there 
is a one-to-one correspondence between the isochronism of 
classical oscillators and the equidistant spectra of quantum 
oscillators. 

Indeed, according to the solution in Ref. 3 of the prob- 
lem of reconstructing the potential from a given energy de- 
pendence of the oscillation period, there are many isochron- 
ous asymmetric potentials but only one symmetric 
isochronous potential, the potential of a harmonic oscillator. 
Below, however, we construct an example of a symmetric 
nonisochronous potential of an anharmonic oscillator for 
which the eigenvalue spectrum is in fact equidistant and the 

with a time-independent operator H we define the conditions 
in which the following class of solutions exists: 

Y (x, t+2xlo) =etaY (z, t )  , (2.2) 

where w and a are the parameters of the selected class of 
solutions. The fundamental period of a solution, T = 277-/w, 
gives the time of return of the system to the initial state (to 
within a constant-phase increment a ) .  

Suppose that in the associated time-independent prob- 
lem, 

corresponds to a strictly point spectrum of H and that 

is the set of eigenelements of problem (2.3) ordered in in- 
teger values of n. Integrating Eq. (2.1 ) over the fundamental 
period of the selected class of solutions (2.2) yields 

Zalo 

i ( e 7 a - l ) ~  (x, t ) =  H d z ~ l  (x, f+r), 
0 

general solution of the evolution problem is strictly periodic which for the case of steady states *, (x,t) leads to the equa- 
in time, that is, the spreading of arbitrary wave packets is 

tion 
excluded. 

exp (ia) -1 
Among the many isochronous asymmetric potentials, p(E, o ,  -- E+e=HqE. (2.5) 

which generally lead to nonequidistant spectra, there are exp(-2niElo) -1 

those that meet the condition of equidistance. 
We believe that singling out the class of anharmonic 

oscillators having equidistant spectra and excluding the 
spreading of arbitrary wave packets is of definite interest in 
view of the problem of "quantum chaosM4 and, possibly, the 
problem of quantizing inherently nonlinear fields. The rea- 
son is that with anharmonic oscillators having an equidis- 
tant spectrum it is possible to go over to the Fock representa- 
t ion '~~  by introducing into the spectrum a shift operator, a 
natural generalization of the well-known creation and anni- 
hilation operators. 

Below we discuss an approach to the problem of con- 
structing one-dimensional potentials that lead to equidistant 
spectra of the Hamiltonian operator and the related creation 
and annihilator operators. We also analyze in detail the ener- 
gy eigenvalue problem for the potential of an anharmonic 
oscillator that excludes the spreading of arbitrary wave func- 
tions. 

2. For the Schrodinger equation 

This coincides with the initial eigenvalue problem (2.3) for 
H i fp  = 1, a requirement that is met if we deal with Hamil- 
tonian operators H leading to the following point spectrum: 

where Z ( n )  is an arbitrary integer function of the integer 
argument n that numbers the eigenelements (2.4) of prob- 
lem (2.3). 

When there is only one degree of freedom and the Ham- 
iltonian operator is of the form 

the class of solutions (2.2) exists if there is a solution to the 
problem of determining potentials U(x) that lead to a point 
"integer valued" spectrum (2.6) of the Hamiltonian opera- 
tor (2.7). If, in addition, the set of eigenelements (2.4) and 
(2.6) of problem (2.3) is complete, the solution of the 
Cauchy problem with arbitrary initial data belongs to the 
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selected class of solutions and arbitrary wave packets do not 
spread. Obviously, the set of such potentials includes those 
that lead to equidistant spectra [ Z ( n )  = n]. 

In what follows we basically restrict our discussion to 
equidistant spectra. To analyze the ensuing inverse problem 
of constructing potentials U(x) that rapidly grow as 
x- + cc and lead to a strictly equidistant point spectrum of 
the energy eigenvalues we employ the following approach. 

Suppose that there are operators L that transform the 
solutions of the Schrodinger equation (2.3) with an arbi- 
trary value of parameter E into solutions of the Schrodinger 
equation with a parameter equal to E + w: 

Thus, 

Substituting (2.9) into (2.8) and comparing the obtained 
expressions with Eq. (2.3) multiplied by L, we find that the 
operators L must satisfy the following operator equations: 

[H.  L ]  =oL,  [ H ,  L]  =HL-LH. (2.10) 

Note that the solutions of the operator equations (2.10) do 
not generally transfer the eigenelements (En ,$, ) of problem 
(2.3) into other eigenelements of the same problem. Indeed, 
the action of L on the eigenfunctions $, may be due to a 
change in the asymptotic behavior of L$, as x- + cc or 
x-x,, where the x, are singular points of the L. But under 
certain restrictions the solutions of the operator equations 
(2.10) determine a class of potentials U(x,w) leading to 
equidistant spectra. Here the action of operator L + = L 
and that of the Hermitian conjugate L - = Z * are linked to 
the following mapping: 

where the C, + , are constants determined by the normaliza- 
tion of the eig&functions, and En = wn + w,. Note that the 
operators L. satisfy the following relations: 

[ H ,  L+L-] = [ H ,  L-L+] =O. [ ( L + L - ) ,  (L -L+)]  =O. (2.12) 

To simplify presentation of the results, the explicit for- 
mulation of the restrictions ensuring that the solutions of the 
operator equations (2.10) act according to (2.11) is re- 
placed by a direct verification of the solutions. Obviously, 
operators L + that act according to (2.10) and (2.1 1 ) must 
be considered a natural generalization of the creation and 
annihilation operators acting in a Fock space, and generated 
by the eigenvectors of harmonic oscillators, to the case of the 
eigenvectors of anharmonic oscillators with an equidistant 
spectrum. 

3. Let us now analyze Eqs. (2. lo) ,  which for a Hamilto- 
nian of type (2.7) allow for formal solutions in terms of 
polynomials of finite degree in the momentum operator 
p= - id,: 

.M 

(s. p )  = L, (x. 0) pm. (3.1) 

Substituting (3.1) into Eq. (2.10) leads for the functions 
L, (x,w) to an overdetermined linear system of ordinary 

differential equations whose coefficients depend on potential 
U(x) and its derivatives. The condition needed for this sys- 
tem to have a solution leads to a nonlinear (in the general 
case) equation for the sought potential U(x,w). 

According to the above remarks, we must prove that the 
spectrum of the Hamiltonian operator (2.7) corresponding 
to the solutions of this equation is equidistant and that the 
operators L . act on the eigenfunctions according to (2.1 1 ) . 

In the simplest case where M = 1, substitution of (3.1) 
into Eq. (2.10) leads to the system of equations 

Solving this system, we arrive at the well-known result 

where I, and Uo are constants of integration, whose values 
can be set at zero. Thus, at M = 1 the solutions of the opera- 
tor equations (2.10) lead to a potential of a harmonic oscilla- 
tor with an equidistant spectrum and with operators L , 
and L satisfying (2.1 1 ) . 

In the case where M = 2, substitution of (3.1 ) into Eq. 
(2.10) yields the following system of equations: 

The condition needed for this system to have a solution leads 
to an equation for potential U(x): 

dU 1 (x+~o)-  + 2U = - m2 (x ,+x)~ + const. (3.5) 
dx 2 

Solving this equation yields the singular potential 

inwhich Vo =xo(+w2x i  -+w++I3 , ) , and  Uo,S,,and 
x, are arbitrary constants, with x, determining the position 
of the singular point of the potential. Finally, here is a formu- 
la for L: 

The singular potential (3.6) is symmetric with respect to 
point x = x, and consists of two potential wells separated at 
the singularity point by an infinitely high barrier. It can easi- 
ly be verified that in the classical case the potential wells are 
isochronous. In the quantum case, (3.6) leads to a Schro- 
dinger equation of the form 
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[see Eqs. ( 2 . 3 )  and ( 2 . 7 )  1, where we have used the notation 

In connection with Eq. ( 3 . 8 )  we consider the eigenvalue 
problem for parameter Z? on the ray 0  < f < + oo : 

lim $= lim $=0. 
:-+oo :++o 

After the independent variable 6 is replaced with Z  = w1"6 
in 

we arrive at the equation 

which allows for polynomial solutions F,, (2 )  at 

Hence, each of the potential wells forming the singular po- 
tential ( 3 . 6 )  leads to an equidistant spectrum of the Hamil- 
tonian operator. Here are some polynomials F,, (Z), which 
together with (3.1 1 ) determine the respective eigenfunc- 
tions: 

4. Now let us analyze a more meaningful situation that 
emerges if we represent the operator L in the form of a poly- 
nomial of the third degree in the momentum operator: 

The operator relation ( 2 . 10 )  generates the following system 
of equations: 

The solutions of this system have the form 

L3=-i.  LZ=E(x).  iLI=3U-1/2g2 (x )+C ,  

1  d3U -@L - -,- - 
dU 1  dU 

3U-- + - [ E  ( x )  +2C+5ol- 
- 4 dx3 dx 2 d x  

where c ( x )  = w x -  C , ,  C =  C ,  - +  C : ,  with C ,  and C ,  
constants of integration, and U ( x )  must satisfy the equation 

1 d ' U  d  (EU I z  --- dZ U 
3 - ( u - )  +-I5 (x)+Ea'l-- 

4 dx' d x  dx 2 dx' 

in which fi - 2 (  - C + w ) .  
Thus, when L is represented by a polynomial of the 

third degree in the momenta, the condition needed for the 
operator relations ( 2 . 10 )  to have a solution leads to a nonlin- 
ear equation of the fourth order that determines the class of 
permissible potentials. Equation ( 4 . 4 )  has, for instance, the 
following simple solutions: 

Note that these solutions are representatives of the solutions 
considered earlier for the cases where the L are operators 
linear and quadratic in the momentum operator. 

Direct substitution verifies that at w  = + and f, = 0  the 
symmetric potential 

is one of the regular solutions of Eq. ( 4 . 4 ) .  Let us verify that 
with this potential the spectrum of the Hamiltonian operator 
( 2 . 7 )  is equidistant. If in the Schrodinger equation ( 2 . 3 )  we 
allow for ( 2 . 7 )  and ( 4 . 6 )  and assume that 

we have the following equation for F ( x ) :  

which allows for polynomial solutions at the following val- 
ues of parameter E :  

Here are a few first polynomials of this kind: 

&o=O, Fo=l ,  
~ ~ = 3 ,  Fi=x3+3x, 

Obviously, the eigenvalues E,  = n + 2  correspond to the 
strictly equidistant part of the spectrum of the Hamiltonian 
operator for n> 1 .  But a gap separates the ground-state ener- 
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gy E, = - 5 / 1 2  from the equidistant part. Note that for 
n  > 1  a polynomial of degree n  + 2  corresponds to an eigen- 
function with n  zeros. It is easy to verify that the polynomials 
F, ( x )  emerging in this problem can be represented in the 
form 

( 4 . 1 1 )  

with n >  1 ,  which clearly indicates the simple but nontrivial 
link with the Hermite polynomials. Indeed, Hermite polyno- 
mials can be defined via the relation6 

This enables writing the polynomials Fn ( x )  in the form 

Combining this with the well-known recurrence formulas 
for Hermite polynomials, we arrive, for instance, at the fol- 
lowing alternative representations of F, ( x )  : 

F,  (x) = (x3+3x)  He,-, ( x )  - ( n - 1 )  ( l + x 2 )  Hen-? ( x )  

=He, ,+ , (x)  +2 ( n + 2 )  He ,  ( x )  4- (n-t-2) ( ~ ~ - - 1 ) f I e , - 2 ( ~ ) .  

( 4 . 1 4 )  

Allowing for the fact that the solutions of the Schrodinger 
equation with potential ( 4 . 6 )  lead to nonclassical polynomi- 
als, we give below the expressions for the generating func- 
tions of F, ( x )  and the corresponding eigenfunctions $, ( x )  : 

Equations ( 4 . 1 5 )  make it possible to establish all the neces- 
sary recurrence formulas for the F, ( x ) ,  for example, 

+2nxFn ( x )  - n  ( l + x 2 )  [F,+,  ( x )  

-2xFn ( x )  + (rz+l )  F,-, ( x ) ]  =0, ( 4 . 1 6 )  

and the formulas for the eigenfunctions with n> 1 ,  
$n+2-.~1b,+1+1z$,=-exp ( - x V 4 )  He,  ( x ) ,  

Finally, let us consider the normalization integral 

x' Fn (x )F , , ,  ( x )  
I , , , .=  J dx+ . (x ) lp . . ( x )=J  & c x p ( - _ )  ( 1 + x a ) 2  . 

- m - m 

Replacing in ( 4 . 1 8 )  one of the polynomials by ( 4 . 1  1  ) and 
employing the formula 

dFn ( 1 + x 2 ) -  = ( n - l ) x H e , - ,  ( x ) ,  ( 4 . 1 9 )  
a x  

which follows from ( 4 . 1 4 ) ,  we get after integrating by parts 
n  - 1  times, 

where a,,, is the Kronecker delta. Thus, the anharmonic- 
oscillator eigenfunctions normalized to unity have the form 

exp ( - x 2 / 4 )  
$n ( X I =  -- "Ax' @ I .  ( 4 . 2 1 )  

[ (n-1) ( n - I ) !  (2n)'"I'" ( l + x 2 )  ? 

Direct calculations of the appropriate normalization inte- 
gral in the case of the ground state yield 

Note that all the above expressions for the recurrence formu- 
las and generating functions are rigorously defined for states 
corresponding to the equidistant part of the spectrum of 
eigenvalues of the Hamiltonian operator. 

The ground state of the system, 

e s p  ( - x 2 / 4 )  5 
$0 = E - -- 

1+x2 ' O -  12 

is separated from the first excited state 
(x3+3x)  2 13 

$1 = 
1 +x2 - p ( - T ) .  E , = ~  

by a gap El - E, = 3 / 2 ,  which is three times the energy 
difference between neighboring levels in the strictly equidis- 
tant part of the spectrum, E n + ,  - E n  = 1 / 2 ,  n > l .  This, 
however, does not violate the strict periodicity in time of the 
general solution of the time-dependent Schrodinger equa- 
tion, 

which with arbitrary constants C,, C, ,..., C, ,... is a strictly 
periodic function of time with a fundamental period of 2 4 a .  
Since $ ( x , t +  1 2 a )  = - $ ( x , t ) ,  the probability density 
I $ ( x , t )  / * is a strictly periodic function of time with a period 
of 12a .  Let us verify that in the case of potential ( 4 . 6 )  the 
operator L defined in ( 4 . 1  ) and ( 4 . 3 )  has the properties 
specified in ( 2 . 1 2 ) .  Calculations show that at w = 1 / 2 ,  
6; =O,andC=  - w =  - 1 / 2 ,  

1  
L3= -i, L, ( x )  = y z, 
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The action of operator L on the eigenfunction 4, can be 
written in the form 

where 

g,= - -- + 4 
- en, ~,=n+2, n31. 

I+x2 (I+x:)~ 

Allowing for ( 4 . 7 ) ,  we find that Eq. ( 4 . 25 )  assumes the 
form 

Clearly, L$, = 0  because E ,  = 0  and F, = 1 .  Simple calcu- 
lations yield further: 

L$1=3$?. L$2=4$3, L$3=591. ( 4 . 28 )  

It can be shown by induction that 

L$,= (2+n)$ ,+1 .  

Thus, L possesses the required properties ( 2 . 12 ) ;  name- 
ly, it shifts the eigenstates with n) 1 upward in the spectrum. 
In what follows we denote this operator by L  + . To build the 
operator L - that shifts the eigenstates downward we em- 
ploy the fact that L - is defined by Eqs. (4.1 ) and ( 4 . 3 )  if we 
replace w with - w.  At { = 0 and C  = - w we obtain 

L - = L + + s U , - ~ ~  (x)  +2[ (L,)++io1p+2L3p3,  m>0. ( 4 . 2 9 )  

In the case of potential ( 4 . 6 )  this expression leads to 

where L + qb,, is defined in ( 4 . 2 7 ) .  Clearly, L - $, = 0. 
Moreover, L 4 ,  = 0 since at n = 1 the expression in brack- 
ets on the right-hand side of ( 4 . 30 )  is equal to - 3F2 ( x )  and 
the corresponding term is - 34,  ( x ) .  And since according 
to ( 4 . 28 )  L + 4,  = 34 , ,  the right-hand side of ( 4 . 30 )  van- 
ishes. Also, 

Thus, for the potential specified by ( 4 . 6 )  the problem of 
building operators L  + that satisfy (2.1 1 ) has a solution. In 
view of ( 2 . 1 2 ) ,  the operators L  + L  - and L  - L  + are func- 
tions of the Hamiltonian operator H .  Performing simple cal- 
culations, we find that 

where F - H  + 5/12 .  Note that the second operator rela- 
tion in ( 4 . 32 )  implicitly defines the Hamiltonian operator 
X (or H )  as a function of operator N. 

5. In conclusion we note the possibility of generalizing 
the above approach on the basis of the following reasoning. 

If we apply the operator relations ( 2 . 10 )  to the eigen- 
states $, in the case where the operators L  . satisfy condi- 
tions (2.1 1 ), we arrive at the following relations: 

These relations have solutions if the first-order difference of 
energy eigenvalues, En + , - E, ,  is independent of the inte- 
gral-valued variable n and is equal to f w.  Let us examine 
the formal operator relations 

[ [ H ,  L,] , L,] = + ~ U L , ~ .  ( 5 . 2 )  

If we apply these to the eigenstates $, in the case where the 
L ,  satisfy conditions ( 2 . 1 2 ) ,  we get 

These relations can be solved if the second-order difference 
of the energy eigenvalues, E n , ,  + En - 2E, .  , , is indepen- 
dent of the integer-valued variable n and equal to $t 2w. In 
other words, in the case of the Hamiltonian operator ( 2 . 7 )  
the solutions of the operator equations ( 5 . 2 )  must result in 
potentials U ( x )  to which the following point spectrum cor- 
responds: 

where w ,  a,, and yare the spectrum parameters. If y is an 
integer, the spectrum ( 5 . 4 )  belongs to the class of "integral" 
spectra ( 2 . 6 )  specified earlier, the spectra linked with the 
strict periodicity in time of the general solution of the Schro- 
dinger equation (2.1 ). Here is an example illustrating this 
hypothesis. At M = 1 substituting ( 3 . 1 )  into the operator 
relation ( 5 . 2 )  yields the following system of equations over- 
determined with respect to Lo ( x )  and L ,  ( x )  : 

Solving the last two equations in ( 5 . 5 )  yields 

where Co and C ,  are arbitrary constants. The solutions of 
the first equation in ( 5 . 6 ) ,  

determine the family of potentials U(p) that guarantee that 
the operator equation ( 5 . 2 )  has a solution. The solutions of 
Eq. ( 5 . 7 )  satisfying the condition that there exists a strictly 
point spectrum are 
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Here the admissible values of parameters Co and C ,  are lim- 
ited by the condition that Uo must be real. The eigenvalue 
problem for the singular potential (5.8) leads, as is known,' 
to a point spectrum of the type (5.4). 

The above examples attest to the validity of the hypoth- 
esis that for the Hamiltonian operator (2.7) the solutions of 
the operator equations of the form 

[ . . . [if, L ] ,  . . . , L] = IVIUIL", N 1 
n (5.9) 

1%' 

specify, in certain conditions, a class of potentials U ( x )  lead- 
ing to a point spectrum of the eigenvalues En represented by 
a polynomial of degree N in the integral-valued variable n. 

We have thus demonstrated the possibility of a "direct" 
approach to the problem of constructing, on the entire 
straight line or on segments of that line, potentials that lead 
to polynomial point spectra of the Hamiltonian operator (at 

least in the case of one degree of freedom). Representing the 
solutions of the operator equations (5.9) in the form of poly- 
nomials in the momentum operator (3.1) results in con- 
structing operators L that are analogs of creation and anni- 
hilation operators. But whether an appropriate Fock space 
can be introduced depends on representing the Hamiltonian 
operator as a function of the operator products L + L _ and 
L - L + and supplementing the condition in which the L + 

act via (2.1 I ) ,  and this requires additional analysis. 
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