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We consider the director fluctuations in nematic liquid crystals in a bounded volume, with 
allowance for the energy of cohesion to the surface. We consider in detail the cases of planarly and 
homotropically oriented cells. The correlation functions are calculated by a method that leads to a 
solution in closed form rather than to infinite series. We analyze the dependence of the director 
fluctuations on the dimensions of the system and of the coupling energy. The angular dependence 
of the intensity of the scattered light is calculated for normal incidence on an homotropically 
oriented cell. 

1. INTRODUCTION 

It is known that nematic liquid crystals (NLC) are, by 
virtue of their orientational ordering, optically anisotropic 
media. Since the preferred orientation (of the director) can 
be easily controlled with the aid of external fields, liquid 
crystals are used in various optical devices. Owing to the 
thermal motion, the direction vector fluctuates considerably 
in NLC. This, on the one hand, influences the characteristics 
of the apparatus, and on the other serves as a basis for inves- 
tigating the properties of nematics by light-scattering meth- 
ods. 

Director fluctuations and light scattering from them 
have by now been thoroughly investigated for an infinite 
medium. It is known, in particular, that these fluctuations 
have a Goldston character, which leads, for example, to a 
divergence of the extinction coefficient in the Born approxi- 
mation, and to a difference in the conditions of propagation 
and scattering of ordinary and extraordinary beams. 

As a rule, the orientation of the liquid crystals is the 
result of their interaction with the substrate. It is therefore of 
considerable interest to investigate NLC in a confined vol- 
ume. The prescence of boundaries influence substantially 
not only the director orientation in the entire volume,' but 
also alters the character of its fluctuations. This effect is the 
basis of one of the method of measuring the energy of the 
cohesion of the director to the substrate.' 

We are faced thus with the problem of describing the 
director fluctuations in a bounded volume. This problem 
was considered in Refs. 2-4. The standard approach is to 
expand the fluctuations in natural modes. The solution takes 
the form of an infinite series, each term of which must be 
found by solving a complicated transcendental equation. 

We propose here a closed solution of this problem for 
the usual conditions of the behavior of the director n on the 
boundary. We calculate the correlation function of the direc- 
tor fluctuations for homotropically and planarly oriented 
cells of the nematic. We analyze the dependence of the be- 
havior of the director fluctuations on the layer thickness and 
on the constants indicative of the cohesion energy on the 
boundary. In the case of an homotropically oriented cell, we 
obtain an expression for the intensity of singly scattered 
light. 

Let a liquid crystal be housed in a cell of thickness L 
between plane-parallel plates. We introduce a Cartesian co- 
ordinate frame with origin at the center of the cell and with a 
z axis normal to the plates. 

To analyze the director fluctuations in an NLC of finite 
dimensions it is necessary to include in the description of the 
energy of interaction with the boundary of the medium. We 
shall assume that this interaction is taken into account by a 
Papini p ~ t e n t i a l . ~ . ~  If the surfaces of the substrates between 
which the nematic is contained are isotropic, there is only 
one preferred direction-the normal to this surface. The di- 
rector-substrate interaction energy per unit area is then giv- 
en by - 4 Wcos20, where 0 is the angle between the director 
and the normal (the z axis), and W is the cohesion energy. 
If, however, the substrate is not isotropic, and an easy orien- 
tation axis exists and is located in the xy plane (we assume 
henceforth that it is directed along the x axis), the energy 
takes the form J( Wy n: + W,nf ) (see also Ref. 2),  where Wy 
and W, are the cohesion energies and are generally speaking 
unequal. 

The total free energy Fcan thus be represented by a sum 
of three terms 

where F, is a contribution not connected with the director 
field, F,,,, is the Frank energy 

Fbulk = 2 j hr[K,, (div n)'+K,(n rot n)'+K,,[n rot n12], 
2 

K,, are Frank moduli, and F,,,, is the surface contribution. If 
the substrates are isotropic and the equilibrium field of the 
director no(r ) = e, , then 

and if x is the easy-orientation axis, while the equilibrium 
field of the director no(r) = e, is 

where we put r = (r,,  z) .  
Let us consider the director fluctuations in the first 

case. 

2. DIRECTOR FLUCTUATIONS IN AN HOMOTROPICALLY 
ORIENTED CELL 

Assuming the deviation of the director n from the 
equilibrium value no = e, to be small, we can put 
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Sn(r )  = n ( r )  - no = ( n ,  ,n, , O ) .  The free-energy change is 
defined in this case as 

It is convenient to represent the fluctuation Sn(r )  by a two- 
dimensional Fourier integral 

6n (r) = - jd2*exp[i(x,r,)lbn(x,z), 
( 2 ~ ) '  

( 6 )  

where x  is a wave vector located in the xy plane 
x  = (x cos ( p ) ,  x sin ( p ) , O )  . For the change of the free en- 
ergy (5 )  we obtain 

where 
L / 2  

We have left out of ( 7 )  the argument x  of the function 
Sn(x , z ) .  

The following procedure is used to find the correlation 
function in an infinite medium. Differentiating by parts in 
the equation for AF and neglecting the terms outzide the 
integraisign we get an expression of type AF = (Sn,ASn)/2, 
where A is a certain differential operator, and the scalar 
product implies summation over the indices and integration 
over the continuous variables. The correl2tion function is 
then obtained in the form (Sn s Sn) = k TA - I .  A feature of 
organic media is the AF contains terms outside the integral 
sign, which ~ u s t  be taken into account when the inverse of 
the operator A is taken. The problem reduces then to choos- 
ing for the functions Sn(x,z )  boundary conditions such that, 
first, AF i s  a quadratic form and, second, the corresponding 
operator A be self-adjoint. 

In the present case these boundary conditions are 

for z  = L /2  and 

for z  = - L /2 ,  and the expression for AF, has a quadratic 
form 

where 

Thus, the boundary conditions ( 8 )  and ( 9 )  obviate the need 
for the terms outside the integral sign in the expression for 
the change of the fre%energy. Since the operator A is sym- 
metric and its adjoi%t A * is defined on the same class of func- 
tion, it follows that A is a self-adjoint o p e r a t ~ r . ~  Our aim is to 
determine the correlation function of the director fluctu- 
ations G, (x , z , z l )  : 

13, ( x ,  z, z') = j ~ r ,  exp [ - i  ( x ,  r,) 1 (60 (r,, z )  8 6n (0 ,  z l )  ), 

( 1 2 )  

which should satisfy the equation 

where 2 i ~ a  unit matrix, i.e., it is necessary to invert the 
operator A with account taken of the boundary conditions 
(8) and ( 9 ) .  

Note %at tke^matrix&reduces to diagonal by the trans- 
formation R - 'AR,  where R is the matrix of rotation through 
an angle p  in the xy plane 

cos cp --sin9 
sin cp cos cp 

h 

Equation ( 13 ) for the ~orrel~tionhm$rix G, breaks up in the 
new coordinate frame G ' = R - 'G, R into two indzpendent 
equations for the diagonal elements of the matrix G ' 

On the boundzuy of the medium ( z  = f L / 2 )  the elements 
of the matrix G '  can, according to ( 8 )  and ( 9 )  satisfy the 
equations 

W G i l  ( x ,  *L/2 ,  z ' )  +K33d,Gii' (u ,  + L/2, z ' )  =O. ( 16) 

The solution of Eq. ( 15) with allowance for the boundary 
conditions ( 16) can be represented in the form9 

G' ( x ,  z, 2')  

where functions ui+ - ( z )  are solutions of the corresponding 
homogeneous equations 

(x2Kii-K33dr2) U . , ~ ( Z )  =O ( 1 8 )  
and satisfy the boundary conditions 

Wu,'(*L/2) +K3,d,u,' (*L/2)  =0, ( 1 9 )  
with the Wronskian of these functions independent of z ,  
since Eqs. ( 18) do not contain first derivatives with respect 
to z. The solutions of Eqs. ( 18) with allowance for the condi- 
tions ( 19) are easy to find. For u', - one can choose the func- 
tions 

u+'(~)=(~~+w)exp(-P~~-L/2)+(~~-1~)e~p(~,~- ~ / 2 ) ,  

( 2 0 )  

where thenotationp, = x ( K , , / K , , )  ' I 2  isused, and w = W /  
K,,  is the reciprocal length indicative of the cohesion of the 
nematic with the sub~ t r a t e .~  

Substituting expressions ( 2 0 )  and ( 2  1 ) in Eq. ( 17) for 
the correlation-matrix elements, we get 
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Gii' (x, Z, z') = 
k ,  

2fi iKdi  

Goldston type not only in an infinite medium but also in thin 
films. 

X ( ( P f  - w2)ch( P , (z+z8) )  + [(P: + wZ)ch(B,L) 

+2Biw sh(BiL)Ich(fii(~-2'))-Ai sh(Bi Iz-Z' I ) ) ,  

where 

A 

The initialpatri52, can be obtained by the inverse trans- 
formation G, = RG'R -'. We have thus ultimately for the 
correlation functions 

<n=(x, z)n,'(x, z')>=<n,(x, z)n;(x. z')) (23) 

=COS cp sin cp [G,,'(x, z. 2') -G2,'(x, z. z') 1 .  
Note that the series obtained in Refs. 2, 3, and 4 for the 

correlation function of the director fluctuations coincide 
with the expansions of the meromorphic functions 
G I  (x,z,zl) of argument x into simple fractions. For exam- 
ple, at q7 = 0, z = z', w = co (stringent boundary condi- 
tions) and for identical Frank moduli Kii = K we have for 
the fluctuations of n, according to (22) and (23) 

This function has poles at x = inn-/L (n is the first nonzero 
number), and its principal parts at these points are equal to 

cos (an) -- cos (2nnzlL) ,1 k ,  T 
b 

2inncos(nn) k-inn/L K ' 

Summation over n leads to the expression 

which coincides with the results of Ref. 4. 
It is known that the director fluctuations in an infinite 

nematic are of the Goldston type ((Sn, e Sn - ,) -qP2,  
where q is a three-dimensional wave vector). They make the 
rms director fluctuation at a point infinite on account of the 
contribution of fluctuations with small q. The nonzero adhe- 
sion energy on the boundary of the medium causes the direc- 
tor fluctuations at any point of the volume to become finite. 
Indeed, eliminating the uncertainty x = 0 in Eq. (22), we 
obtain 

Gii' (0, Z, z') 

h 

i.e., the integral Jd 2xGh (x,z,zl) does not diverge in the re- 
gion x = 0. It diverges only at large %, but values of x - '  are 
smaller than the intermolecular distance have no physical 
meaning,3 therefore the integral must be cut off at a certain 
value k,. A divergence in the region ?t = 0 appears only 
when the adhesion energy W tends to zero, with 
(n,, (0,z) n,,  (0,z) ) - k ,  T/ (2  W )  . Thus, in the absence of 
adhesion to the substrate the director fluctuations are of the 

3. DIRECTOR FLUCTUATIONS IN A PLANARLY ORIENTED 
CELL 

We shall assume that the director no is directed along 
the x axis, while the z axis is perpendicular, as before, to the 
nematic boundary. A small deviation Sn of the director from 
equilibrium has no component along the x axis, i.e., 
Sn = (O,ny ,n, ). The surface contribution to the free energy 
change, a contribution connected with the fluctuation Sn, is 
given by Eq. (4) .  The bulk contribution to this change takes 
for such a geometry the form 

To avoid cumbersome calculations, we confine ourselves in 
this case to the single-constant approximation ( K ,  = K). 

Just as in the case of a homotropically oriented cell, we 
can take Fourier transforms with respect to the coordinates 
x and y. We then obtain for the contribution of AF, to AF 
due to the Sn(x,z) fluctuations, taking (4)  into account 

We omit here, just as in Sec. 2, the argument x in n(x,z). The 
boundary conditions that make it possible in this case to 
reduce the problem to inversion of a self-adjoint operator, 
are, as follows from (27), 

and the corresponding expression for AF, takes the form 

where 

B=K(x2-a,') 1. 

Putting 

<nu(x,z)n,'(x, z')) <n,(x,z)n,'(x, z') > 
G (x, z, z') = 

<n.(x, z)ny'(x, 2')) <n,(x, Z )  n;(x, z') ) 

we obtain the equation 

BG,(X, Z, z') =k, TI~(Z-z'), (32) 

which must be solved subject to the boundary conditions 

where u = & 1. The values u = 1 and a = - 1 correspond 
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respectively to the boundary conditions at z = L /2 and 
z =  -L/2.  

A 

Althoujh the matrix B is diagonal, the matrix of the 
correlators Gp is not, for in contrast to the considered homo- 
tropic orientation the boundary conditions constitute a sys- 
tem of two equations. To find the soktion in this case, let us 
consider a rectangular 2 X 4 matrix V 

This change makes is possible to reduce the problem to a 
first-order differential equation 

where 

:hê  boundary conditions have in this notation the form 
r, V(uL /2,zf) = 0, where 

The general solution o tke komogene2us equation corre- 
sponding to (35) is exp(zM)C, where q i s  an arbitrary ma- 
trix of dimension 2 x 4. We denote by V+ the solution for 
z > z', and by V- the solution for z <zl. This can be repre- 
sented in the form 

P, (z, 2') =exp(z M )c,. (36) 

To obtain a 6-funztion in the right-hand side of (35) we must 
choose matrices C +  - (z') such as to satisfy the relation 

e x p ( z ' ~ )  [d+(z') -6- (z') ] =O. (37) 

This equation, however,is insufficient to determine the 16 
elements of the matrices C +  . Equation (37) must be solved 
jointly with thezquations that %nsEre satisfaction the bound- 
ary conditions r,exp [ (L /2)M] C, (z') = 0. 

A 
Thus, the determination of the matrix of the correlators 

Gp (x,z,zl) reduces to a solution of a system of 16 linear 
%quations. After solving these equations, we can determine 
V+ (z,zl) with theAaid of (36), and consequently also the 
correlation matrix Gp (x,z,zl) in the entire range of variation 
of the agruments z and z'. As a result we get (see the Appen- 
dix) 

GPII (x, Z, z') = 
k ,  T {sh (x Iz-z' 1) 

~ ~ [ X ~ ( W ~ - W , ) ~ - A ' ] K  
x [A2-%" w,-w,)'] + C ~ ( X  (z+z')) 

X [A (w,w,--x~--x,Z)-~ (wu-wz) (w,,wZ+xI2)ch (xL) 
+x"w,"-w,")sh(xL) I + ch(x (z-z')) 
X [X  (w,-w,) (x2+x,2--w,w*) 
-A ( w ~ w , + x , ~ ) c ~  (xL)-XA ( W , W ~ + X ~ ' ) S ~ ( X L ) ] } ,  (38) 

G P Z Z  (x, 2, z') 

where 

Equations (38)-(40) go over at very large thicknesses L 
into the usual correlation function of the director fluctu- 
ations in the (x,z,zf ) representation for an infinite medium 

<n,(x, z) n,'(x, z') )=<n,(x, z) n,' (x, 2') ) 

<n,(x, Z) n,. ( x ,  z') )=<n, (x, z) n; (x, zV)>=0. 

If at least one of the energies W, or W, differs from zero, the 
correlation functions have no singularities at x = 0 (there 
are no Goldston fluctuations). Expressions (38)-(40) ad- 
mit also of various limiting transitions W,, -0, W,, + w . 
In particular, if the director can rotate freely in the xy plane 
on surfaces that border on the substrate, but a deviation from 
this surface entails very large energy losses ( W, = 0, 
W, = w ), we obtain 

<rz,,(x, z )  ny' (x, z ' )  ) 

- - kBT [ch (x (z+zl) ) +ch (xL)ch (x (z-z') ) 
2xK sh (xL) 
- sh(xL)sh(x 12-~'1) I ,  (42) 

<n,(x, s)n,.(x, 2 ' )  >= kB [-ch (x (z+zl)) 
2xK s11 (xL) 

+ ch (xL) ch (x (z-z') ) - sh(xL)sh (x )z-Z' / ) 1 ,  (43) 
<nu ( x ,  z) n,' ( x ,  2') )=0. 

For fluctuations that are homogeneous in the cell plane 
( x  = 0),  Eqs. (42) and (43) lead to the expressions 

k,  T 
<n,(x, z)n,' (x, z'))= ----[L2+2z2+2z'2-2L1~-~fI  J, 

4KL 

kB T (44) 
<n,(xt Z )  n,' (x, z l ) ) =  -[L2-4zz'-2L I 2-z'I 1 .  

4KL 

Evidently, fluctuations of rotation about the z axis that are 
homogeneous in the xy plane are maximal on the layer 
boundary and minimal at its center, i.e., 
(n, (0,z) n, (0,z) ) - L + 4z2, while fluctuational deflec- 
tions of the director from the xy plane are, on the contrary, 
maximal at the center of the layer and equal to zero on its 
boundaries, i.e., (n, (0,z) n, (0,z) ) - L * - 4z2. 

In the other case, when the director is freely deflected 
from the plane on the boundary of the medium, and rotation 
about the z axis entails appreciable energy losses ( W, = 0, 
W, = cu ), we obtain Eqs. (44) in which the subscripts z and 
y must be interchanged. Thus, (n, (O,z)n, (OJ)) -L + 4 2  
and (n, (0,z) n, (0,z) ) - L - 4 2 .  If, however, both ener- 
gies W, and W,, tend to zero, the fluctuations, as already 
noted, become of the Goldston type. 

It is of interest to track the manifestation of the singu- 
larity of the correlation functions at x = 0. Putting for sim- 
plicity W, = W, = W, we obtain for small W 
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i.e., the correlators diverge as W-0. 
The opposite case, when W is large, Eqs. (38)-(40) go 

over into 

<nu (0, z) nu (0.2') > 

k ,  T K  
<nu (x, z) n,' (x, 2')) -i - xu ( z f  z') +o(x2). 

LTV2 

4. LIGHT SCATTERING BY DIRECTOR FLUCTUATIONS IN A 
CELL WITH AN HOMOTROPICALLY ORIENTED NEMATIC 

A nematic liquid crystal is an optically anisotropic me- 
dium, and its dielectric-constant tensor is uniquely connect- 
ed with the director field7 

Cap (r) =&llna (r) na ( r )+e~(6~~-n , ( r )  no (r) ) . 

The director fluctuations Sn(r) lead to changes &(r )  of the 
dielectric-constant tensor 

6&aa (r) =&a (1za08n~ (r)+ng06n0 (r) ) , 

where E, = E~~ - E~ is the anisotropy of the medium. This, in 
turn, causes light scattering in the medium. The intensity Iof  
the scattered light is proportional to ( E  A (r)E: * ( r ) ) ,  
where E' is the scattered-wave field. Light scattering in un- 
bounded NLC have been investigated in sufficient detail 
(see, e.g., Ref. 10). Let us analyze the influence of the direc- 
tor-substrate interaction on the light-scattering process. 

If a plane wave with amplitude Eo and wave vector ki 
propagates in a medium, the value ( E  A ( r ) E  l;* ( r ) )  of sin- 
gly scattered waves E' can be determined by an integral over 
the scattering volume 

o1 
(Ear (r)EO1' (r) )= - j d3r1 d3rffTa,(r, rr)  TOA' (r, rf') 

c" 

where T,, (r,r1) is the Green's functions of the Maxwell 
equations, and the anisotropy must be taken into account in 
it. Since we are interested in the basic influence of the direc- 
tor cohesion energy on the scattering, we confine ourselves 
to the asymptote T,, (r,r') at large R = r - r' for an isotrop- 
ic medium 

where k = WE"~/C, E = + E~ )/2, s = R / R .  Substitution 
of (48) in (47) leads to 

o4 V 
(Eat (r) Egl' (r) )= (Eal-sa~r) (60a-s~s~) 

c4 (41x)~R' 
L I Z  L I Z  

1 
X-- J dzl J drrferp( - iqz~z~-zll) ) 

L - L I Z  -.I.,Z 

X   BE,,,(^, 2') SEA-' (x, z") )E,OEvo', (49) 

where V is the scattering volume ( V = LS and S is the 

illuminated area of the cell), 

< ~ E ~ ~ ( x ,  Z ' )~EI~*(X ,  2") > 
=e2[n,0n,0<6nP(x, z1)6n,'(x. 2")) 

+n,Pn,O(Gn,(x, z') 6n; (x: 2")) 

+~z,~n,0<6n,(x, z') 6nA' (x, 2")). 
+n,0ni0<6n,(x, 2') 6n,' (x. z") > 1,  (50) 

q = sk - k, is the scattering vector with components 
(7t cos p , ~  sin p,q, ) (we neglect the difference between the 
wave numbers of the ordinary and extraordinary wave). We 
shall consider only normal incidence, i.e., k, = ke,. If the 
scattering is in the direction s = (sin 8 cos p, sin 8 sin p, 
cos O), we have q = k(sin 8 cos p, sin 8 sin p, cos 8 - 1 ), 
q = 2k sin(8/2). Equations (50) and (49) jointly with ex- 
pressions (38)-(40) make it possible to determine the scat- 
tering intensity in an homotropically as well as a planarly 
oriented cell, and the double integral in (49) can be obtained 
analytically. For example, for an homotropically oriented 
cell with identical Frank moduli we obtain for the intensity I 

where 

I, is the incident-light intensity, and Ji denote the integrals 
L l 2  L I Z  

+Zxq, ch (XL)  sin ( q , ~ )  I} . (52) 

2 -- - [cll(xL)- cos(qzL)l. 
Lq' 

(53 1 

+2xq, sh (xL) sin (q,L) 1. (54) 

Recognizing the explicit dependence of the components of 
the scattering vector q on the scattering angle 8, we can rep- 
resent (5 1 ) in the form 

cos (0/2) 
I=I0C 

2f sin (0/2) [ (sin 0fa)  - exp (-29 sin 0) (sin 0-a) '1 
x{sin2 0-a2+ (sin 0 f a ) ~ f  sin 0 - cos 0) + exp (-g sin 0) 

XL (sin 0 - t ~ ) ~  cos (0+2E sinZ (0/2) ) 

I + (sin 0-a)' cos (0-2g sin2(0/2)) 

-2 (sin2 0-a') cos (2E; sin2 (0/2)) ] - exp (-28 sin 0) 
X [ a 2 - s i n 2 0 + ( s i n 0 - a ) Z ( ~ s i n 0 + c o s ( 0 ) ) ] ) ,  (55) 

where { = kL is a large quantity and a = W/(Kk) . If sin 8 
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FIG. 1. Angular dependence of the intensity of light scattered by an ho- 
motropically oriented liquid-crystal cell, referred to the intensity 
I, (8) = I,,Ccos2(Q/2) in an unbounded medium at various values of 
a =  W / ( K k ) = 0 . 2  ( I ) ,  0.001 (Z), 0.01 ( 3 ) ,  0.1 ( 4 ) ,  1 (5); 
[ = k L =  100. 

is not small, all the exponentials of type exp( - 6 sin 8) can 
be neglected, and we obtain the rather simple equation 

c0s(0'2) [ ~ s i n ~ - - ~ o s ~ +  
sin 8-a 

I=I,C 
2E sin ( 0 / 2 )  sin 0+a  1 .  (56) 

Evidently, at sufficiently large cell thicknesses L Eq. (56) 
goes over into the usual equation I, = C cos2 (8 /2) for scat- 
tering in an unbounded medium. 

Note that if 8 = 0 Eq. (56) becomes infinite. The rea- 
son is that we have neglected terms containing exp- 
( - 6 sin 8). The exact expression (55) for the scattering 
intensity remains finite in this case. 

Figure 1 shows the angular dependence, calculated 
from Eq. (55), of the scattered light for an homotropically 
oriented liquid crystal at normal incidence. It is seen that the 
suppression of the long-wave fluctuations by the surface 
coupling lowers the intensity of the small-angle scattered 
light. The characteristic width of the dip decreases with de- 
crease of the coupling energy or with increase of the cell 
thickness. For typical NLC samples and for thickness of the 
order of 10pm it amounts to 1-2 deg. 

APPENDIX 

The exponentials of the matrix M, which enter in ex- 
pressions (36) and (37), can be easily cal~ulat~$by diagon- 
alizing the matrix by the transformation S -'MS, where 

multiplying e^ap(8) from the left by % '  and from the 
right by S -IS, where 

ex' 0 0 0 

exp ( ~ S - I I V S )  = ('42) 

0 0 0 e-"' 
A 

It is expedient to consider in place of the matrices C, (z' ) the 

A A A 

matrices H'"' Lz') = S - 'C, (2'). The elements of the corre- 
lation matrix G, can tken be expressed in terms of the ele- 
ments of the matrices H'"' 

G P I % -  - H ~ : ' )  e ~ : + ~ i 2 0 )  e - ~ z ,  

G ~ ~ ~ = H ~ : ~ )  exz+H$) e--,  

with a = 1 for z > z' and a = - 1 for z < z' in these equa- 
tions. 

Multiplying both sides of (38) by $ exp( - $ -'&$zl) 
and taking (A1 ) into account we get 

j -exp( -xz ' )  0 \ 

The boundary conditions (39) can be written in the form 

(aw,+x)exp(axL/2)  (ow,-x)exp(--axL/2)  
( i x ,  exp ( o x U 2 )  i x ,  eap ( - - a x l / l )  

= ( ix ,  exp ( a x l i t )  i x ,  exp ( -axL /2 )  
- (crw,+x)exp (ax lJ2 )  - (aw,+x)exp  ( -axL /2 )  

where j = 1 or 2. For j = 1 we obtain from (A5) and (A4) 
the set of equations 

and for j = 2 

exp (xz' ) 
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Substitution of (A8) in (A7) and of ( A l l )  in (A10) now 
reduces the problem to inversion of two 2 X 2 matrices. After 
determining thus all the elements of the matrix H'"' with the 
aid of Eqs. (A3) wezan calculate the elements of the sought 
correlation matrix G,. They are contained in Eqs. (38 ) -  
(40). 
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